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Abstract. Middleware platforms such as CORBA are widely conside-
red as a promising technology path towards a universal service market.
For now, however, no mechanisms are offered for dynamically integrating
service-specific code (so-called smart prozies) at the client which is a ma-
jor prerequisite for the development of generic clients that may connect to
different service implementations offering different quality-of-service gu-
arantees. In this paper, we therefore demonstrate how support for smart
proxies can be integrated within CORBA by means of a native-code ship-
ping service that only relies on the recent objects-by-value extension and
portable-interceptors proposal. The feasibility of this approach is shown
by a smart-proxy supported video service.

1 Introduction

Today middleware platforms already play an important role in distributed com-
puting, shielding developers from the particularities of distribution and underly-
ing communication protocols [2[90T0]. Emerging quality-of-service (QoS) requi-
rements, however, can hardly be met while upholding the level of abstraction
provided by RPC and remote object invocations. For tasks such as continuous
media streaming, parameters such as latency and throughput must be carefully
controlled in service-specific ways. Additionally, services are deployed in diverse
environments with largely different resource availability. An ATM network with
resource reservation capabilities, for instance, requires different QoS control than
a best-effort connection via the Internet with large resource fluctuations, and
mobile computing requires different functionality than LAN-based stationary
computing.

Due to this variety of requirements and environments, one or few proto-
cols built into a middleware platform will prove to be insufficient. Even worse,
the middleware platform might become a stumbling block when service-specific
communication mechanisms with functionality such as bandwidth reservation,
feedback control, and compression are needed. Hence, in CORBA, for instance,
only control and management interfaces for streams are defined [7], while appli-
cation developers need to implement every protocol required in matching stream
end points.

C. Linnhoff-Popien and H.-G. Hegering (Eds.): USM 2000, LNCS 1890, pp. 202-B13] 2000.
© Springer-Verlag Berlin Heidelberg 2000



Loadable Smart Proxies and Native-Code Shipping for CORBA 203

This particularly is a problem in view of an emerging universal service mar-
ket, in which ideally a single, “generic” client should be able to connect to dif-
ferent instances of the same service offered from differed providers, with quality
of service becoming an important means of distinction among different offers.
With current platforms, however, the client has to implement all protocols of all
service instances, that is, protocol independence and location transparency are
lost. Furthermore, the client developer must know about the internals and low-
level details of each service instance, which considerably complicates application
development.

As a consequence, we have proposed smart pmm’es@ that encapsulate any
service-specific functionality required at the client side [4]. Smart proxies are
loaded from the service dynamically on demand, replacing the traditional cli-
ent stub while providing the same high-level service interface as if the remote
server were co-located with the client. Access to QoS-supporting services then
becomes as easy for the client programmer as to a conventional service; all low-
level service-specific development efforts are shifted to the service developer,
who implements both the server and its smart proxies using whatever protocol
functionality and communications patterns are appropriate. Furthermore, trans-
parently to the client, different implementations may be tailored for particular
environments while the service interface remains constant (or at least backward
compatible).

In this paper, we discuss how passing objects by value (OBV) and porta-
ble interceptors can be used to integrate the required support for smart proxies
into CORBA. Particularly, a generic code-shipping service for value-type objects,
instanced for C++, is presented that allows native-code implementations to be
dynamically loaded. In Section ] the notion of smart proxies is briefly intro-
duced. Section Bl and Section @ then show how proxy shipping can be built on
OBV and how access to even native proxy code can be provided. Afterwards, in
Section Bl these mechanisms are illustrated by an example application. Related
work is discussed in Section[6], before Section [7lcloses the paper with conclusions.

2 Smart Proxies

A smart proxy [4] is service-specific code at the client node providing the same
interface to a possibly remote server as if the server were local. Unlike generated
stubs, however, proxies can encapsulate arbitrary communication and QoS nego-
tiation protocols and patterns for client-server interaction. Furthermore, if smart
proxies can be shipped and linked dynamically, the client is free to choose an
appropriate service implementation independently of the underlying protocols.
During binding establishment, the server then decides which proxy is actually to
be installed at the client, taking resource availability both within the client and
network environment into account. Then, proxy and server may conduct further

! Note that these smart proxies differ from those offered by Orbix and TAO as dis-
cussed in Section Bl
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Fig. 1. Exemplified Smart Proxy Usage

QoS negotiation as needed by the application. Moreover with dynamically ship-
ped proxies, an improved communications protocol of an upgraded service can
be deployed transparently to the client.

Consider a video service with a standardised control interface including pa-
rameter settings such as resolution and frame rate. As shown in Fig.[Il a variety
of service implementations may be appropriate depending on the operating en-
vironment. If some resource reservation is supported, for instance, the smart
proxy can map high-level QoS parameters to low-level reservations in terms of
network bandwidth; with best-effort communication only, in contrast, the smart
proxy and its server may employ a feedback mechanism to achieve dynamic
QoS adaptation. And if bandwidth is scarce, messages can be compressed, while
for co-located clients and servers more efficient shared-memory communication
might be used. All this functionality, however, is hidden from the client appli-
cation which is an important prerequisite for a universal service market. Only
then, service providers can develop their own sophisticated implementations ac-
cording to standardised service interfaces that can be dynamically installed at
and readily used by any client.

Dynamic loading of smart proxies, of course, effectively requires code shipping
from the server to the client, which is significantly simplified if a virtual machine
as in Java, for instance, is used for running smart proxies. Proxies then need
only to be implemented for the virtual machine instead of for each possible plat-
form in a heterogeneous environment. However, specifically for QoS-constrained
services, smart proxies may need to provide good timing predictability and high
computational performance and, thus, a virtual-machine approach would be too
restrictive, at least for the time being. Yet for platforms that allow dynamic
linking of shared libraries at run time, native-code proxies can be built as shared
libraries. This approach requires a different proxy version for different client en-
vironments and possibly different client languages. Many language implementa-
tions, however, provide mechanisms to access libraries in the platform’s standard
object-code format such as ELF or COFF and, hence, could share the same libr-
ary code. Developing proxies for each anticipated client environment, however,
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is still far less effort than re-implementing the same functionality without smart
proxies for each client application individually; particularly, since in the latter
case not only the service developer must know about the low-level details of the
service but also each client developer.

Of course, code shipping in general causes security risks, and with native-
code proxies protection is even more difficult than with using a virtual machine.
While this problem requires future research, for now, risks may be mitigated by
using smart proxies only inside security domains or loading them only with a
crytographical signature from trusted servers.

3 CORBA Objects by Value

In contrast to regular, possibly remote, CORBA objects, value-type objects as
defined in CORBA 2.3 [J] are always local and invoked without ORB mediation.
Value-type objects are copied if passed as parameters to regular objects, and the
specification of OBV defines how their state is to be marshalled, transmitted,
and unmarshalled.

While smart proxies can be implemented as value-type objects, ideally it
should be transparent to the client whether it communicates with a value-type
proxy object, or directly with a server if, for instance, no appropriate proxy im-
plementation is available or proxies just are not useful in a particular situation.
This transparency, however, is not possible if we need to pass the service object
as regular CORBA object declared with interface and the smart proxy as a
valuetype. For this case, the OBV specification defines abstract interface
types which cannot be instantiated but be used as base class for regular inter-
faces as well as for value types. If an abstract-interface type is used as a formal
parameter either an IOR or a value-type object can be passed depending on the
actual argument.

abstract interface Service {

// service operations
I
interface Server: Service {};
valuetype Proxy supports Service {};
interface ServerFactory {

Service bind( ... );

};

The IDL above shows how abstract interface can be utilised for a proxy-
supported service. The actual server as well as the smart proxies implement an
abstract service interface and either a proxy or an IOR to the server is passed at
binding establishment.

OBV, however, is not about shipping the object code in the first place. Only
as an optional feature an IOR of a CodeBase object might be included in the
messages which can be queried for URLs of object implementations. While this
extension seems to be useful for and motivated by Java only, implementations
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of value-type objects in other languages must be present at client and server at
compile time.

The OBV extension of the CORBA object model, however, still can serve as
a basis for the integration of smart proxies. If we are content with distributing
proxy code at compile time, we can simply send proxies as value-type objects
during binding establishment. Configuration parameters can be set by the server
and are transmitted as part of the proxy state. An approach to add dynamic
shipping of proxy code is discussed in the next section.

4 Native-Code Smart Proxies

In this section, we describe how C++ smart proxies can be integrated in CORBA
by means of a general code-shipping service for value-type objects. This way,
implementation code can be shipped as transparently to the client application
as possible while the server provides some information where the proxy code can
be accessed.

4.1 Run-Time Linking of Native Code

Even though most languages rely on a standard object-code format (e.g., ELF
on LINUX) and most compilers provide some support for calls to system libraries,
binding proxies written in a different language than the client application ge-
nerally remains language-specific. In this case, wrappers may be needed to deal
with different calling conventions and argument types, but could be generated
automatically from the IDL. For now, we have implemented an infrastructure
for one language only. We have chosen C++, because on UNIiX-platforms C and
C++ are commonly used and CORBA programming in plain C is somewhat more
laborious.

The basic prerequisite for dynamically loading native code is the ability to
link code at run time. On UNIX platforms, for example, this functionality is avai-
lable by calling the dynamic-linking loader directly via a programming interface
for opening a shared library file and manually resolving all symbols required.
This way, pointers to C functions provided by the library can be retrieved. Ac-
cessing a C++ implementation of a proxy class is slightly more difficult, because
calls to member functions require the this object pointer. Hence, we add a plain
C factory function to each proxy library which then is the only symbol that needs
to resolved by the linker. These factories return actual C++ objects implemented
by the library for which only an abstract base interface must be available.

// In the library:
typedef CORBA::ValueBase* (*generator) ();
extern "C" {
CORBA: :ValueBase* generate() {
return new Proxy_impl;
}
}
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// Library access:
handle = dlopen(code,RTLD_LAZY);
ptr = (generator)dlsym(handle, "generate") ;
proxy = (ptr) ();

4.2 Integration with OBV

As introduced in Section [3, smart proxies should be transparent to the client.
That is, an invocation such as

service = service_factory->bind(...);

could simply return an IOR to a remote service-object, or a local smart-proxy ob-
ject by value. For value-type objects the ORB demarshals the object state into
a newly created instance allocated by an application-provided factory. These
value-type factories as well as the object implementation are linked to the client
application; the former are registered with the ORB during start up. If no fac-
tory is registered for some value type, the ORB raises an exception. For smart
proxies, this means that their implementation and an appropriate factory must
be available at the client prior to receiving a proxy value-type object.
An explicit two-way binding process such as

orb->register_value_factory(id,
service_factory->bind_factory(...));
service = service_factory->bind_service(...);

could make sure that both are present at the client (see Fig.[Za), yet is not
transparent to the client developer.

Alternatively, instead of returning a pointer to the smart-proxy object, a
generic helper object per service interface could be introduced in combination
with a custom marshaler, as shown in Fig.Rb. In this case, the factory allocates
a helper object, while the custom marshaler dynamically loads the required
smart-proxy implementation if not already available at the client. Afterwards,
the custom marshaler initialises the helper object to delegate service invocations
to the actual proxy. Note that the custom marshaler, the helper object, and its
factory could be automatically generated from the IDL specification. This way,
code shipping becomes transparent for the client at the cost of an additional
indirection for each method invocation.

This indirection can be avoided, if the invocation path is intercepted before
the ORB invokes the value-type factory and, thus, an appropriate factory can re-
gistered just in time. While custom marshallers are called only after the ORB has
requested a new instance from the appropriate factory, the portable-interceptors
specification provides a hook for functions that are called between a reply is
received by the ORB and the call of any value-type factory relevant to that re-
ply. At that time the missing smart-proxy implementation and its factory can
be dynamically loaded and registered as shown in Fig.Pk and discussed in the
following section.
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Fig. 2. Design Alternatives for Proxies with OBV

4.3 A Proxy Code-Shipping Service with Portable Interceptors

We have used the portable interceptors as proposed to the OMG [§] to build a
service that supports downloading of native code. While we have built this service
to enable smart proxies, it can be used to obtain implementation code of value-
type objects in general. There are three components: Two of them implement
interceptors on the client and the server side, repectively, and a third one acts
as a code repository.

As illustrated in Fig.[3, the receive_reply interceptor of the client checks
whether a proxy is being received. If this happens and the corresponding im-
plementation code is not yet available, the interceptor downloads the code from
a repository possibly launched by the server on demand, dynamically links the
code with dlopen, creates a value-type factory, and registers it for that type of
proxy; for this, each proxy implementation must be of a different type which is
derived from the abstract service interface. Subsequently, the ORB can create the
proxy and unmarshal its state. All this is transparent to the client application
aside from initialising its shipping-service component.

Two pieces of information are needed by the interceptor to provide this fun-
ctionality: the repository id of the proxy and the address of an appropriate code
repository. While the former is part of the reply, the latter somehow has to be
communicated by the server. Access to the return value and parameters, howe-
ver, is only an optional feature of portable interceptors and, hence, there does
not seem to be a portable way of checking for relevant value-type arguments at
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Fig. 3. Binding and Smart-Proxy Shipping

run time. Because of these problems, we send the repository id of the proxies
as well as the IOR of the code repository from the server. This information is
attached to the reply in a service context which is set by a server-side interceptor
and read by its client-side correspondent.

For the server application it would be most comfortable if it could simply
register code repositories for the value-type objects it may send with the code-
shipping service that manages the interceptors. However, also server-side inter-
ceptors do not necessarily have access to the parameters of a reply and, thus,
cannot check what value-type objects are being sent. Consequently, the server
application has to explicitly provide this information for each relevant reply
via an attach method. That is, before returning a proxy object, the servant
notifies the code-shipping service of the proxy’s repository id and the code repo-
sitory’s IOR. This information is transferred to the send_reply interceptor via
the PICurrent environment and is sent from there in a service context.

typedef sequence<octet> ProxyCode;
interface ProxyRepository {

ProxyCode get_code(in string RepID);
};

Since there is no reason to use an external protocol for the actual code ship-
ping, code repositories are implemented as CORBA objects that encapsulate
proxy libraries as a sequence of octets as shown in the IDL description above.

Alternatively to including a repository IOR, the server itself could always
be queried for the code. Keeping all code at the server, however, would be less
flexible than using one or more separate code repositories. A further alternative
is attaching the library code itself to the reply message avoiding an additional
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invocation. In this case, some effort has to be put into the server side not to send
large libraries multiple times and, again, only the server could store the proxy
implementations.

5 Example

To demonstrate how smart proxies can be used in CORBA, we have implemen-
ted a live-video service providing access to a camera, and a video-conferencing
client. Smart proxies were used to provide several communication mechanisms
in addition to IIOP. The IDL of the service interface is as follows:

abstract interface Video {
void start(in unsigned short frameRate);
void stopQ);
boolean getFrame(out Frame f, out Time t);
void close();

};

There are five implementations of the service. All of them use CORBA remote
object invocations for controlling the transmission, but transmit the actual data
differently.

1. The server sends frames to a proxy via UDP. Frames must be fragmented
and packet loss must be handled correctly.

2. Video frames are JPEG compressed and also sent via UDP.

Proxy and server communicate via TCP/IP.

4. When client and server run on the same node but in different processes,
video data can be efficiently passed from server to proxy via shared memory.

5. A server without a proxy communicates directly with its clients and actually
transmits the frames in the getFrame calls via IIOP.

et

The video-conferencing client connects to one or several service implementations
and displays the frames received from the respective sources as shown in Fig.@l
In this simple scenario, a server can choose among protocols by simply using
information about the network topology and the address of the client.

Servers and client are built with ORBacus 4.0b2 for C++ and run on x86
PCs with Linux 2.2 using a Hauppauge frame-grabber card with a camera as the
video source. Fig.Ml displays the frame rates achieved by the respective service
implementations demonstrating the different performance characteristics. For
the measurements, the client only connects to one video source, either via a
10 Mb/s Ethernet or locally.

Due to the smart proxies, the implemented communication mechanisms with
their diverse characteristics are uniformly accessed by the client. More elaborate
smart proxies can be used to transparently handle QoS management including
QoS mapping and resource reservation as we have demonstrated with the non-
CORBA version of this service [4]. Note that with the various communication
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mechanisms being encapsulated in the smart proxies, other clients such as a
video surveillance application can also transparently use the service without
modification.

6 Related Work

Conceptually, smart proxies are related to fragmented or distributed objects
as conceptionally proposed by Makpangou et al. [6] and applied by Globe [14]
and AspectIX [3], for instance. These objects are physically distributed and
consist of fragments on different nodes. Distribution and inter-fragment com-
munication are hidden from other objects and clients. Globe aims at improving
scalability for distributed applications, for instance by providing replication and
caching for web documents. AspextIX is extending CORBA to enhance QoS and
support for mobile and reconfigurable object fragments. In contrast to the sym-
metric model of fragments in a distributed object, smart proxies and servers
have distinct roles, still similar to the familiar roles of client and server. Hence,
the use of smart proxies may be more easily adopted by programmers than the
development of services as distributed objects. Moreover, smart proxies require
less platform support and even can be built on a standard platform such as
CORBA as shown in this paper.

Some CORBA ORBs such as Orbix [I] and TAO [II] also support a kind
of smart proxies. They allow application programmers to manually replace the
IDL generated stubs with “smarter” ones, which may implement additional fun-
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ctionality such as caching, load balancing, or merging remote invocations for
efficiency. While this approach can improve performance, improvements must
happen independently of the server and, hence, possibilities are limited by the
regular remote object interface. In our model in contrast, smart proxies are
server-specific and can particularly benefit from improved communication pro-
tocols between them and their servers.

Another way of integrating advanced functionality in proxies at compile time
is used in the QuO architecture [5J16]. This platform uses QuO definition langu-
ages (QDL) in addition to an IDL for specifying QoS and adaptive behaviour of
a service. From these descriptions so called delegates are generated and linked
to the client like regular stubs are generated from an IDL. In this way, resource
reservation, QoS monitoring, and adaptation can be easily integrated within de-
legates. Functionality beyond the capabilities of the code generator, however,
can only be added to the QDLs as source code, exposing implementation details
in the service interface.

In Sun’s Jini environment [I3I17] proxies also are an important concept.
When accessing a service, the client receives sort of a smart proxy from the
lookup service. This proxy then handles communication with the server. This
mechanism allows devices and services to be dynamically added and removed
from the system. Also, proxy and server can choose their own protocol for com-
municating with each other. The underlying Java and RMI infrastructure [12]
provides advantages of security, ease of code shipping, and platform indepen-
dence, but also incurs the drawbacks of restriction to one language, and the
potential performance penalties and unpredictability of a virtual machine.

7 Conclusions

Loadable smart proxies can be used to encapsulate service-dependent client-
side code in self-contained modules. The service developer has both ends of a
connection under control and may choose the most appropriate communcation
mechanisms for a particular service implementation. This way, different network
protocols and QoS management functionality can be integrated. These different
service implementations are hidden from the client developer, who only accesses a
high-level interface defined in IDL. Hence, location transparency can be provided
even for services requiring specific functionality on the client node. Moreover, this
functionality is available to all client applications using a particular service and
need not be re-implemented in each of them, which is an important prerequisite
for the formation of a universal service market.

In this paper, we have shown how dynamic loading of native-code proxies can
be implemented in CORBA. The mechanism proposed, however, is effectively a
generic native-code shipping service for value-type objects. This service does
not depend on proprietary ORB extensions but can be used on any CORBA
platform supporting OBV and portable interceptors. The implementation of a
video service has demonstrated the feasibility and utility of our approach.
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