Integrating Trading and Load Balancing for Efficient
Management of Services in Distributed System

Dirk ThiBen! and Helmut Neukirchen?

! Aachen University of Technology, Department of Computer Science, Informatik IV
Ahornstr. 55, D-52074 Aachen, Germany
thissen@i4.informatik.rwth-aachen.de
2Medical University of Liibeck, Institute for Telematics

Ratzeburger Allee 160, D-23538 Liibeck, Germany
neukirchen@itm.mu-luebeck.de

Abstract. Due to the requirements of open service markets, the structure of
networks and application systems is changing. To handle the evolving complex
distributed systems, new concepts for an efficient management of such systems
have to be developed. Focussing on the service level, examples for existing con-
cepts are trading, to find services in a distributed environment, and load bal-
ancing, to avoid performance bottlenecks in service provision. This paper deals
with the integration of a trader and a load balancer. The allocation of client re-
quests to suitable servers is adaptable depending on the current system usage
and thus the quality of the services used is increased in terms of performance.
The approach used is independent of the servers’ characteristics, as no provision
of additional service properties to cover load aspects is necessary for the servers
involved. Furthermore, it may be flexibly enhanced, as the concept of ‘load’
used can be varied without modification of trader or load balancer. This ap-
proach was implemented and evaluated in several scenarios.

1 Introduction

The integration of small isolated networks into bigger ones, distributed all over the
world, caused a change in the design of application systems. Single applications are
increasingly becoming distributed, thus can use resources more efficient and enable
more flexible team work. The distribution of subtasks to different nodes enables an
increase in a system’s performance. By using middleware concepts, e.g. the Common
Object Request Broker Architecture (CORBA), it is possible to create an open service
market. Different application objects, which provide services with known service
types, can be used to compose the functionality of a new application. A trader supports
the search for objects providing a required service. If the same service can be provided
by several objects, it is possible to distribute the requests among them. Nevertheless, a
system can by partly overloaded, if one resource is used intensively. Here, the concept
of load balancing can be used to distribute tasks uniformly to available servers.

* This work has been funded by the German Research Council (DFG) under SFB 476.

C. Linnhoff-Popien and H.-G. Hegering (Eds.): USM 2000, LNCS 1890, pp. 42-53, 2000.
© SpringerVerlag Berlin Heidelberg 2000

Integrating Trading and Load Balancing for Efficient Management 43

This paper addresses the integration of a load balancing component into a trader.
This enhancement enables the trader to consider performance aspects when selecting a
server. The enhanced trader selects a service which is optimal in two aspects. First, the
service quality determined by the service properties is taken into account. Second, the
load of the corresponding server is considered. The concept was implemented and
evaluated on a CORBA basis. The concepts of trading, load balancing, and a combi-
nation of both are briefly explained in chapter two, and related work is presented.
Chapter three introduces our approach. In chapter four, some analyses show the use-
fulness of our approach. Finally, chapter five concludes the paper and addresses some
perspectives for further work.

2 Trading and Load Balancing

If the same service is offered by several servers, a client will have to be supported in
choosing one of them. Two powerful mechanisms are trading and load balancing.
Whereas in trading the choice is driven by a client’s requirements, the load balancing
approach applies on the server side.

2.1 Trading

The trading service can be seen as an enhancement of the naming service, which gives
a client more flexibility in specifying the service it needs. Whereas with the naming
service a server and the service this server offers, respectively, must be assigned a
unique name, the trading concept describes a service by a service type and service pro-
perties. The service type defines the functionality of a service. This type contains the
interface type definition of a service, thus enabling an open service market. Yet, the
interface type is not sufficient to describe a particular service. Therefore, the service
type also includes a set of service properties which can be used to describe non-
computational aspects of a service. A server which wants to make a service available
in a distributed system passes a description of this service in terms of a service type
instance, i.e. the object reference and the corresponding service property values, to the
trader. Such a server is called exporter. It has to be considered that some service prop-
erties are dynamic, i.e. their values are varying over time. For these properties, the
values are not registered at service export time, but when a service is requested. If an
importer, i.e. a client searching for a service, contacts the trader it has to specify the
service type, too. It can formulate restrictions on the service properties to express its
needs, as well as criteria to determine an order on the services found, for example a
minimisation of a property’s value. The trader matches the importer’s description
against all recorded services and returns a list of server references. Traders were im-
plemented in various environments [4], but they never became very popular. However,
with the adoption of trading as a CORBAservice it became of general interest. Today,
many trader implementations exist for CORBA platforms.

44 D. Thiflen and H. Neukirchen

2.2 Load Balancing

Load balancing aims at a uniform utilisation of all available resources in a system by
distributing tasks according to a given strategy. An optimal strategy would achieve a
minimal response time of the system and the servers involved. Simple strategies are
static; usually, such strategies are referred to as load sharing. New tasks are distributed
to the available servers using a fixed schema. Strategies of this category include the
cyclic assignment of tasks to the given servers or random server choice. They are easy
to implement, but cannot adapt to special situations. The more promising strategies
adapt to a system’s load, and can react on changes in the system. Tasks are distributed
according to the load of the available servers. Such dynamic load balancing strategies
have to consider the fact that measured load values only reflect the past. By updating
the load values more often this problem could be minimised, but the network load for
transmitting load information to the load balancer would increase too much. A com-
promise between communication overhead and relevance of the data has to be made.
Furthermore, semi-dynamic strategies are possible, which use the load balancer’s
knowledge about the past distributions, but not the current servers’ states. Much work
has been done mostly on homogeneous systems. For example, [2] came to the result
that simple strategies with small communication effort are most suitable. Strategies
which were based on a threshold showed the best results. In these strategies servers
are randomly chosen for the next task if their load is lower than the threshold. More
recent strategies use more complex techniques, for example fuzzy decision theory [1].
These works contradict the advantage of simple strategies. On the other hand, [3]
affirms the earlier results on simple strategies.

2.3 Combining a Trader and a Load Balancer

Trading is a good concept to support the binding between clients and servers in large
open systems. But if one service type is searched for frequently, and each client wants
the ‘best’ service instance, single servers can be overloaded. On the other hand, a load
balancer tries to realise a perfect distribution of the clients’ requests to the available
servers. Yet, it can only select one server in a particular group; in large open systems,
where many services with different types exist, the load balancer would have to know
the type of the service to select a server. Additionally, the load balancer can only se-
lect a server by its load, not by considering service properties. Thus, a combination of
trader and load balancer seems to be a suitable solution for a load-oriented assignment
of clients to servers in a distributed environment. The direct approach would be the
usage of load values as dynamic service properties. The trader could do a load distri-
bution based on these attributes. Yet, it could be hard or even impossible for a service
provider to provide an additional interface where the trader could request the informa-
tion for dynamic attributes, especially in cases where legacy applications are used.
Furthermore, this concept is inflexible, as a more differentiated interpretation of the
‘load’ value, also taking into account other load information aspects, would be hard.

Integrating Trading and Load Balancing for Efficient Management 45

Although both trading and load balancing are current research topics in distributed
systems, only little work has gone into combining these approaches. The first were [8]
and [11], which did simulations for the usage of a fair service selection strategy which
considers global system aspects when mediating a service. Such a strategy does not
guarantee an optimal selection for each client, but tries to optimise the global behavi-
our of a system. They confirm the results of earlier work regarding the usage of simple
strategies. Additionally, [11] mention the risk of an oscillating overload of single serv-
ers. As a solution, a dynamic strategy with a random component is proposed. A main
topic in [11] is the use of the knowledge of a server’s load a trader has from past
service mediation. It was shown that a cyclic assignment of clients to the servers, and
using load balancing, are similar with respect to the quality of load distribution. Yet,
this approach is based on knowledge of the service time for each task. An approxima-
tion of this time, considering the server performance and the service type, is not feasi-
ble in heterogeneous and open systems. Furthermore, it has to be considered that not
every service utilisation is arranged by the trader; on each host, there will be a load
independent from the trader’s activities.

In [5], the co-operation of a trader and a management system is discussed. On each
host a management agent gets management information from the components hosted
locally. A trader is implemented on top of the management system and uses its func-
tions to request the values of dynamic attributes or a server’s load. Dynamic attributes
are obtained by mapping management attributes onto service properties. By specifying
complex selection and optimisation criteria for a service selection, a load distribution
can be made. Disadvantages of this approach include the dependency on the manage-
ment system and the lack of a special load balancing component. Furthermore, a load
distribution is not transparent for a user, who must specify special optimisation crite-
ria. In [10], an integration of load balancing for middleware platforms with an inter-
face definition language is proposed for the distribution of load in a heterogeneous
distributed system. The stub generated from the interface definition is enhanced by a
sensor component. This sensor transmits load information to a local load balancer,
which propagates all information to the other local balancing components to achieve
an overall view of the system load. A naming service uses a local load balancer if a
client requests a service. This concept has some disadvantages, too. A naming service,
as opposed to a trader, is used here, which is a less powerful approach. The stub mani-
pulation is inadequate because the source code must be known, and no transparent
integration into servers is achieved.

3 Architecture of the Enhanced Trading System

For our enhancement of a trader with a load balancing mechanism we specified some
design issues [9]. It must be possible to use the trader in the normal way, without
making a load distribution, as well as to combine the ordering of the services made by
the client’s constraints with the ordering of servers with respect to their load. The load
distribution process has to be transparent for the user, but he should have the option to
influence the process, e.g. by defining special service properties. Such properties could
refer to the information if load balancing should be performed at all, or which influ-

46 D. Thiflen and H. Neukirchen

ence the load parameter should have compared to the service quality. The load bal-
ancer should be integrated into the trader to achieve a synergy effect by exchanging
knowledge between trader and load balancer. Furthermore, the load balancer should
be flexible to enable the use of several load balancing strategies and load meanings.

Service usage

Client host

Trader host

Server host

Server

Send load information

Fig. 1. Architecture of the trader-load balancer system

Service import Service export

Balance load

Load Balancer

Exchange of
management data

The architecture of the enhanced trading system is shown in figure 1. On each
server host a monitor is installed to observe all local servers. The monitor is connected
to the load balancer, which is located on the trader host. A client imports a service
from the trader and uses the selected server. The work described in the following is
based on a trader implementation done in our department using IONA’s middleware
platform Orbix 2.3.

3.1 Sensors

Service usage can be determined using a variety of metrics, e.g. the CPU load, the net-
work load, or the load caused by i/o operations. Initially, we only considered the CPU
load. To determine this load, the servers’ queue length, the service time, and the re-
quest arrival rate can be used. Each participating server is enhanced by a sensor which
collects these information and sends them to a monitor. As most applications used in
our scenario are legacy applications, management wrappers were constructed to en-
hance an application with the necessary functionality [7]. As load information we use
the service time in real time, the service time in process time, the usable CPU per-
formance, and the queue length. The load information is passed to the monitor as a
struct LoadType, see figure 2. This format is used to transfer load information in the
whole system.

interface loadbalancing_types {

enum LoadmetricType {SERVICETIME_REALTIME, SERVICE-
TIME_PROCESSTIME,
PROCESSTIME_REALTIME_RATIO, QUEUELENGTH,
ESTIMATED_TIME_TO_WORK, ON_IDLE, REQUEST_RATE,
USAGE_COUNT, HOST_LOAD, UNVALID };

struct LoadType {LoadmetricType loadmetric; float loadvalue };
};

Fig. 2. Structure for covering load information

Integrating Trading and Load Balancing for Efficient Management 47

3.2 Monitor

A monitor manages a local management information base of load information and
enables the load balancer to access it. It has a list containing all hosted servers together
with their load. As the usage of different load metrics should be possible, all load
information, which are transmitted by a sensor, are stored. The monitor not only stores
the received load values, but also calculates additional, more “intelligent” values. This
includes the computation of a floating average value for the load values mentioned
above as well as an estimation of the time to process all requests in a server’s queue.
This estimation uses the mean service time of the past service usages and the time for
the current request to estimate the time the server has to work on all of its requests. As
no outdated load information should be used by the load balancer, a monitor uses a
caching strategy to update the load balancer’s information at the end of each service
usage. Some values, e.g. the queue length and the estimation of the time to work, are
also sent upon each start of a service use. Based on the access and change rates for
load values, a dynamic switch between caching and polling is possible. This mecha-
nism is shared by load balancer and monitor. In case of the polling strategy, the
monitor knows about access and change rates, thus it can switch to the caching
mechanism. On the other hand, if caching is used, the load balancer has both informa-
tion, and can switch to the polling mechanism.

3.3 Trader

Based on a client’s service specification, the trader searches its service directory.
Services fulfilling the specification are stored in a result list. In a common trader, this
list is sorted relating to the constraints the client has defined, i.e. the most suitable
service is the first in the list. This process can be interpreted as a sorting of the servi-
ces according to the degree of meeting the client’s quality demands. For the integra-
tion of a load balancer this sorting is not sufficient, because the servers’ load must also
have an influence on this order. Thus, we had to introduce some modifications to our
trader. When a new entry is added to the result list, the trader informs the load bal-
ancer about the corresponding server. Yet, the load balancer only knows about load
aspects, thus it can not do the sorting relating to the client’s constraints. To enable the
consideration of both the trader’s sorting and load aspects, the trader must assign a
score characterising the degree to which the client’s requirements are met by each
service offer. To obtain such a score, a method as that proposed in [6] can be used.
When the trader informs the load balancer about a server the quality score for its
service offer is computed and also passed to the load balancer. After searching the
whole service directory, the trader calls the load balancer to evaluate the most suitable
service offer instead of sorting the result list relating to the client’s constraints. To
influence the evaluation, information about the client’s weights regarding quality score
and load is passed to the load balancer as well as the metric to combine both values.
The trader is returned an index identifying a service offer in its list. The object refer-
ence identifying this offer is returned to the client.

48 D. Thiflen and H. Neukirchen

In addition to the load balancer’s mechanisms the trader implements a random
strategy to determine an order for the services found. This can be seen as a static load
balancing strategy.

3.4 Load Balancer

As shown in figure 3, the load balancer manages two tables. The first table contains
the management information for the known servers (ServerMonitorTable). In this
table, each server in the system is listed together with the monitor responsible for
measuring the load, and the load itself. The other table, ScoreTable, is created when
the trader receives a service request. Each service offer found by the trader for this
request is recorded in the table together with the trader-computed quality score.

/ insert service
Load Balancer .
evaluate best service

. Service [Quality| Load
Server [Monitor | Load
Offer | Score | Score
Server, [Monitor,| Load, Service, S| I,
Server, | Monitor,| Load, Service, S, 1,
Server, | Monitor | Load Service S, 1,
ServerMonitorTable ScoreTable /

Fig. 3. Structure of the load balancer

After the trader has searched the whole service directory, the load balancing proc-
ess begins. The approach chosen here consists of two steps. First, the load for all re-
corded servers is obtained from the serverMonitorTable and inserted into the Score-
Table. Getting the load for all service offers at this time implies that no old load in-
formation is used. It also has to be mentioned that the ‘load’ field in the ServerMoni-
torTable does not contain a single value, but a set of load values for all different load
balancing strategies. At this time, three strategies which try to minimise the system’s
load regarding to a particular load metric are implemented:

e Usage_Count only counts the number of requests mediated by the trader to a server
in the past.

e Queuelength considers the current number of requests in a server’s queue.

o FEstimated_Time_to_Work calculates the estimated time a server has to work on the
requests currently in its queue.

The load value given by theses strategies is seen as a score for a server, that is, the

server with the lowest score has the lowest load. The load values corresponding to the

chosen load balancing strategy are copied into the ScoreTable. The second step com-

bines the score obtained by the load balancer with the quality score calculated by the

trader. Metrics like the euclidean metric are used to calculate an overall score for each

service offer, see figure 4.

Integrating Trading and Load Balancing for Efficient Management 49

Trader Load Balancer

service offers: quality scores service offers: load scores

Sy S,

n

score, = ((load_weigth, * 1)? + (quality_weigth, * s,)2)"

index = min(score;)

selected service offer

Fig. 4. Combination of quality score and load score

The client can influence the combination by specifying weights for quality and load
score. For each service in the ScoreTable, an overall score is computed and registered
in the scoreTable. After all scores have been computed, a minimisation of these val-
ues gives the best suited service offer. The load balancer passes an index back to the
trader, which identifies the corresponding entry in its result list.

4 Evaluating the Enhanced Trading Approach

To evaluate our approach, measurements were performed to analyse the effects on
server utilisation, response times, and service selection time. To approximate a real
scenario, a request sequence was generated by using a random number generator to
place requests in a given interval. One restriction was the avoidance of a system
overload, but temporary overload situations were desirable. Thus, the request sequence
contains request bursts and intervals of silence. This sequence was used in all meas-
urements. The service time for the requests varied from 1.1 to 16 seconds. For load
balancing, the strategies Random, Usage_Count (UC), Queuelength (QL) and Esti-
mated_Time_to_Work (ETTW), as described above, were used. To evaluate the new
component, the mean response time of the servers as well as the service selection time
of the trader were measured at the client. The measurements were made in a local
network (10/100 Mb/s-Ethernet). As a sample for a homogeneous system, four Sun
UltraSPARCs with 167 MHz and 128 MB RAM were used. For measurements in a
heterogeneous environment, four different Suns with clock rate between 110 and 167
MHz and RAM between 32 and 128 MB were used. Restrictions to a caching strategy
to avoid communication overhead was made. To evaluate the benefit of the imple-
mented load balancing strategies, the order determined by the trader computing a
quality score, was not considered in the first measurements.

50 D. Thiflen and H. Neukirchen

4.1 Homogeneous vs. Heterogeneous Server Performance

At first, a homogeneous system with four equally equipped servers was used. All
servers had a service time of 1.1 seconds. In figure 5a, the mean response times of the
servers are shown. The usage of the strategies UC, QL and ETTW lead to relatively
equal response times, and for load situations below 50% they almost reach the opti-
mum of 1.1 seconds. For higher load situations, response times go up only slightly,
whereas the random distribution of requests to servers deteriorates dramatically. For
the given scenario, UC achieves the best distribution, since all servers need the same
time to process a request. For a system with homogeneous computer performance and
no server usage without contacting the trader, a good load balancing is only possible
with the trader’s knowledge. This is the same result as in [11].

4

w
w o

g
o

el

Mean response time [s]
~

o
o
Mean response time [s]
o 2N w b O oo N ®

o

05 06 07 08 09 1 o1 02 03 04 05 06 07 08 09 1
Load Load

o

01 02 03 04

o

(a) homogeneous system (b) heterogeneous system

Fig. 5. Mean server response times

The behaviour of the load balancing strategies changes in a heterogeneous envi-
ronment. As a result of the varying computer performance, the servers had service
times of 1.1 to 2.2 seconds. In figure 5b, the mean response times of the servers are
shown. In this case as well the random strategy yields the worst behaviour. However,
in contrast to the homogeneous case, the UC strategy performs poorer than the dy-
namic strategies. This behaviour was to be expected, as in this case, servers with less
performance receive the same number of requests than more powerful ones. The dy-
namic strategies achieve equal request distributions, that is, even in situations of high
load the mean response time for both strategies is only as high as the service time of
the slowest server. To improve the quality of the static strategies, it would be possible
to weight the distribution with regard to the servers’ performance. However, in this
case, the trader would have to know the performance characteristic of all servers in the
system, and this might be impossible in a real open environment.

4.2 Using Different Request Classes

Considering different service request classes, i.e. requests to servers with different
service times, represents a more interesting example of a real environment. In our
analysis, we used four request classes with service times from 0.4 to 8 seconds. The
requests were randomly chosen from these classes. This analysis covered two different

Integrating Trading and Load Balancing for Efficient Management 51

situations. First, the request classes could be considered as requests for different serv-
ice types with varying service times. Second, requests could be made for the same
service type, but the service time is temporarily delayed by a background load on the
server nodes. The mean response times for all request classes can be seen in figure 6.
In case of a homogeneous system, the random strategy yielded the worst request dis-
tribution as could be expected, see figure 6a. Looking at the other strategies, UC is the
worst in high load situations, because it does not consider the service times for the
incoming requests. For lower system loads, UC is more suitable than ETTW. As the
service times vary heavily, errors may occur in the estimation of that strategy, which
than causes a wrong decision for the next request distributions. Only for high load
situations this error is smaller than the misdistribution caused by UC. The error in
estimation is also the reason for ETTW performing poorer than QL. QL only counts
the number of outstanding requests; in this case, doing the distribution without more
information about the requests is better than using potentially wrong information.

16

22
14 20 4
= = 18
12 =
°§’ “g’ 16
é 10 é 14 4
58 5 121
& 2104
L6 <]
c c 8
‘é 4 é 6
2 49
2]
0 0 T
0 01 02 03 04 05 06 07 08 09 1 0 0.1 0,2 03 0.4 05 0.6 0,7 0.8 0,9 1
Load Load
(a) homogeneous system (b) heterogeneous system

Fig. 6. Mean response time using different request classes

The most interesting scenario is the combination of the other ones, i.e., the usage of
heterogeneous server performance and different request classes. The measured re-
sponse times are shown in figure 6b. In this analysis, the static and the dynamic strate-
gies can be clearly distinguished. With the exception of the random strategy, the re-
sults are the exact opposite of those in the first examination. UC is almost as bad as
the random strategy, because to many factors influence the response time of a server,
but none is considered. For the same reasons as above, the results of the dynamic
strategies are equal to the results in the homogeneous case with different request
classes.

4.3 Analysing the Trader

The trader’s order of the service offers based on a client’s constraints was ignored in
the presented analyses to examine only the benefit of the load balancing strategies. As
in a real situation this order denotes the user’s requirements on a service, it cannot be
neglected; both, the service quality described by the trader’s ordering, and the server
load have to be considered. We found that the behaviour of the load balancing strate-
gies is similar to the case without considering the trader’s ranking. Weighting the load

52 D. Thiflen and H. Neukirchen

with 75% and the trader’s ranking with 25%, yields hardly any difference to the for-
mer measurements; the ranking was influenced mostly by the load situation. In case of
reversing the weights, the load was almost neglected, and for load situations of more
than around 20% the mean response time increased heavily, as nearly all requests were
sent to the server which was valued best by the trader. The best result was achieved
with a weighting of 50% for both, load and quality score. In figure 7a, the mean re-
sponse time for the homogeneous case without different request classes is shown as an
example. Yet, weighting the load influence in comparison with the service quality

must be a choice of the user.
4 . 130

. /,' «-ETTW (Polling)
35 w , 120 4| - QL (Polling)
- QL f" x-ETTW (Caching)

w

-+-QL
—UC
——Random

- ETTW (Caching)

— UC (without trader scoring)

i)
@
o

selection time [ms]
>
3
B

Mean response time [s]
I

o
o

0 T T T T T T T T T T 70 T T T T T
0 01 02 03 04 05 06 07 08 09 1 1 2 3 4 5 6
Load Number of service offers
(a) using a compromise (b) mediation time of the trader

Fig. 7. Trader analysis

In a further measurement, we examined the influence on the trader’s service me-
diation time caused by the load balancer, see figure 7b. When using a caching strategy
for obtaining the load values as well as for using UC, the time for service mediation
increased only slightly, as most of the load balancer’s work can be done independently
from the trader. The load scores only have to be copied into the ScoreTable and the
whole list has to be searched for the minimal value. When using a polling strategy,
additionally all load values are obtained from the monitors. This adds a significant
overhead to the mediation time, and should be avoided in most cases. By using the
dynamic switching between caching and polling described in chapter 3, this overhead
can be adapted to a given scenario.

5 Conclusions

In this paper, a combination of a trader and a load balancer was presented. Instead of
using the trader’s dynamic service properties, a load balancer was added to the trader
as an additional component. Thus, the approach is independent of the servers’ charac-
teristics, and is flexible to enhance. Several load balancing strategies, and a concept
for combining the trader’s and the load balancer’s results, were implemented on a
CORBA platform. The implementation was evaluated in several scenarios.

The optimisation of service selection with respect to the servers’ load seems to be a
worthwhile enhancement of the trader. The response times of servers offering a serv-
ice which is available in several places can be significantly reduced. The cost for this
advantage is an increased service mediation time, but this overhead is very small. The

Integrating Trading and Load Balancing for Efficient Management 53

usage of trader-internal knowledge like the number of mediations of a server is only
useful in idealised scenarios. In a heterogeneous environment, it does not help to im-
prove the load situation significantly. For such environments, dynamic strategies are
more suitable. A simple strategy like the trader’s queue length is best for most situa-
tions. The weighting of the load influence in comparison to the service quality must be
the user’s choice, but an equal consideration of both seems to be the best.

In addition to an evaluation of our trader in a bigger and more realistic scale, the
next steps will be to realise a load balancing in a larger system in which trader federa-
tions are used. Obtaining load information and the co-ordinated interworking of trad-
ers in the load balancing process adds new, additional tasks. Additionally, the load
concept has to be enhanced to consider more aspects influencing a server’s perform-
ance. Furthermore, a usage of the load balancer component for other trader types or
existing traders would be interesting. In such a case, the load balancer would need to
encapsulate the trader. As in our approach trader and load balancer are largely inde-
pendent, this approach is a candidate for these studies.

References

1. Dierkes, S.: Load Balancing with a Fuzzy-Decision Algorithm. Informatics and Computer
Science, Vol. 97, No. 1/2, Elsevier/North-Holland, 1997.

2. Eager, D. L.; Lazowska, E. D.; Zahorjan, J.: Adaptive Load Sharing in Homogeneous Dis-
tributed Systems. IEEE Transactions on Software Engineering, Vol. 12, No. 5, 1986.

3. Golubski, W.; Lammers, D.; Lippe, W.: Theoretical and Empirical Results on Dynamic Load
Balancing in an Object-Based Distributed Environment. Proc. 16" International Conference
on Distributed Computing Systems, Wanchai, Hong Kong, 1996.

4. Keller, L.: From Name-Server to the Trader: an Overview about Trading in Distributed
Systems (in German). Praxis der Informationsverarbeitung und Kommunikation, Vol. 16,
Saur Verlag, Miinchen, 1993.

5. Kovacs, E.; Burger, C.: MELODY — Management Environment for Large Open Distributed
Systems. Institute for Parallel and Distributed High-Performance Computers, University of
Stuttgart, 1995.

6. Linnhoff-Popien, C.; Thiflen, D.: Integrating QoS Restrictions into the Process of Service
Selection. In: Campbell, A.; Nahrstedt, K.: Building QoS into Distributed Systems. Chap-
man & Hall, 1997.

7. Lipperts, S.; Thifen, D.: CORBA Wrappers for A-posteriori Management. Proc. 2™ Interna-
tional Working Conference on Distributed Applications and Interoperable Systems, Helsinki,
1999.

8. Milosevic, Z.; Phillips, M.: Some new performance considerations in open distributed envi-
ronments. IEEE International Conference on Communications, New York, 1993.

9. Neukirchen, H.: Optimising the Set of Selected Services in a CORBA Trader by Integrating
Dynamic Load Balancing (in German). Diploma thesis at the Department of Computer Sci-
ence, Informatik IV, Aachen University of Technology, 1999.

10. Schiemann, B.: A New Approach for Load Balancing in Heterogeneous Distributed Systems.
Proc. Workshop on Trends in Distributed Systems, Aachen, Germany, 1996.

11. Wolisz, A.; Tschammer, V.: Performance aspects of trading in open distributed systems.
Computer Communications, Vol. 16, Butterworth-Heinemann, 1993.

	Introduction
	Trading and Load Balancing
	Trading
	Load Balancing
	Combining a Trader and a Load Balancer

	Architecture of the Enhanced Trading System
	Sensors
	Monitor
	Trader
	Load Balancer

	Evaluating the Enhanced Trading Approach
	Homogeneous vs. Heterogeneous Server Performance
	Using Different Request Classes
	Analysing the Trader

	Conclusions

