
C. Linnhoff-Popien and H.-G. Hegering (Eds.): USM 2000, LNCS 1890, pp. 68-80, 2000.
© Springer-Verlag Berlin Heidelberg 2000

A Scheme for Component Based Service Deployment

Steve Rudkin and Alan Smith

Distributed Systems Group, BT Laboratories,
Adastral Park, Martlesham Heath,

Ipswich, IP5 3RE, England
{srudkin, asmith} @jungle.bt.co.uk

Abstract. A dynamic and open service market should be characterised by the
frequent appearance of new and diverse services. But in the internet environ-
ment, where a significant proportion of the functionality of new services is sup-
ported by Customer Premises Equipment (CPE), deployment can be an issue.
How can such a diverse range of new services be easily deployed - particularly
in a heterogeneous environment, like the internet, where different users have
different terminal capabilities, and access bandwidths. This paper describes how
the delivery, to the CPE device, of a recipe for dynamically building an applica-
tion on the CPE device may be used to simplify the deployment of new services.
In particular it shows how IBM’s Bean Mark Up Language, an XML-based
scripting language for describing a configuration of JavaBeans, can be used.

Keywords: Component, service creation, service deployment, session
description, XML, BML.

1 Introduction

The ever increasing growth of the Internet is rapidly realising the most basic require-
ment of a universal service market – namely universal connectivity. At the same time,
the end to end design principle of the Internet [1] is driving service intelligence to the
edge of the network, and often to the customer premises equipment (CPE). As the
capabilities of CPE devices (e.g. PCs, mobiles, set-top boxes) grow, we can expect a
significant proportion of the functionality of new services to be supported by the CPE
device.

In this paper, we regard a service as a function delivered to users through the exe-
cution of software components on one or more CPE devices, on an IP network and on
a number of servers. We refer to the configuration of components on a particular ma-
chine (especially the CPE device) as an application. As our focus is on real-time
services, we use the term session to refer to a particular instance of some real-time
service (such as a conference, game, or TV program).

Many services share a great deal of functionality in common – both on the CPE de-
vice and on remote servers. For a number of years there has been increasing interest in

A Scheme for Component Based Service Deployment 69

the application of Component Based Software Engineering techniques to support the
reuse of common software components in the development of new applications [2].
We are interested in the application of these techniques in the creation of new serv-
ices. The creation of services should be a matter of describing the relationships be-
tween pre-existing components and adding session specific information such as: Inter-
net addresses and media content. The creation of service instances should not be in the
hands of specialist programmers, but rather the domain of service providers.

In a dynamic and open service market, we would expect to see the frequent appear-
ance of new and diverse services. But, each new service may bring with it a deploy-
ment problem – how to distribute the necessary functionality to each CPE device?
Whilst the new services would typically share some functionality with previously
deployed services, we can also expect many differences. The heterogeneity of the
Internet further complicates deployment. With varying terminal capabilities, access
bandwidths, and intermittent connectivity, different service capabilities may be needed
to suit the circumstances of different users.

This paper describes how the delivery, to the CPE device, of a recipe for dynami-
cally building an application on the CPE device may be used to simplify the deploy-
ment of new services.

Previous work [3] describes how the Session Description Protocol (SDP) [4] can be
used as a simple recipe for building a real-time application. For example it shows how
the media fields could be used to select appropriate media processing components for
configuration within the overall application. In this paper we extend this idea in a
number of ways.

Our first extension is conceptual. We now consider a session description to be a de-
scription of an instance of a real-time service used by a service provider to advertise
the associated service. For example an on-line training company might advertise a
particular training session using a session description. The result is that a service crea-
tion environment can be split into a service definition environment (at the service
provider) and a service instantiation environment (on the CPE device). The session
description generated by the service definition environment is passed to the service
instantiation environment, where it is used as a recipe for building the application.

Our second extension concerns the introduction of remote component services.
Component services may be server-based (e.g. payment gateways, key distribution
servers and media servers) or network-based (e.g. multicast or network QoS). We
assume that a service may be composed from a number of component services as well
as some functionality that resides on the CPE device (which partly acts to pull the
various component services together into the overall service). Each component service
may be offered by any service provider. In this way we seek to go beyond the retailer
model [5] developed for TINA in order to produce a more open market place.

Our third extension, and main topic of this paper, concerns implementation. We
show how we can use IBM’s Bean Mark Up Language [6,7] as a way of defining the
configuration of components that make up the application on the CPE device.

70 S. Rudkin and A. Smith

The paper is structured as follows. Section 2 discusses session descriptions. Section
3 sets the context for the work described in this paper by outlining the process we
expect to see for creating and deploying new real-time services in an open market.
Section 4 outlines the approach we have taken for dynamically building applications
on the CPE device. Section 5 describes an example. Section 6 describes future work
and section 7 concludes the paper.

2 Session Descriptions

On the Internet Mbone1, a session directory tool (e.g. Session Directory Rendezvous
(SDR) [8]) is used to advertise and discover multimedia sessions. The sessions are
described using the Session Description Protocol (SDP). An SDP session description
is entirely textual and consists of a number of lines of text of the form
<type>=<value>. The type is always exactly one character and is case-significant, the
value is a structured text string whose format depends on the type. An example of an
SDP session description is given below. Note that the text in brackets are meant as
explanations and should not appear in the actual description.

v=0 (protocol version)
o=srudkin 2890844526 0 IN IP4 132.146.107.67 (owner,
session identifier, version, network type, address
type, address)
s=SDP Seminar (session name)
i=A Seminar on the session description protocol (ses-
sion information)
u=http://www.labs.bt.com/people/rudkins (URI of de-
scription)
e=srudkin@jungle.bt.co.uk(email address)
c=IN IP4 224.2.17.12/127 (network type, network ad-
dress/TTL)
t=2873397496 2873404696 (start and stop time)
a=recvonly (media attributes set to receive only)
m=audio 3456 RTP/AVP 0 (media type, port number, trans-
port, media format)
m=video 2232 RTP/AVP 31
It can be seen that an SDP session description both identifies the application and

defines the session specific parameters such as IP addresses to be used by the applica-
tion. SDP uses the media field to declare the relevant media types and formats, and
thereby implicitly identifies the application that should be used to participate in the
associated session. In the case of the above example, SDR would launch the Mbone
applications vat (for audio conferencing) and vic (for video conferencing). SDR can
do this since it knows they support the specified formats.

1 The Mbone is the part of the Internet that supports IP multicast which permits efficient many-

to-many communication.

A Scheme for Component Based Service Deployment 71

We are investigating replacing SDP with an XML [9] based session description
framework. We believe that XML can be used to define a wider range of session spe-
cific parameters including QoS, charging and security policies. Moreover we show, in
this paper, how the media fields of a session description can be replaced by a BML
specification of the application(s) that are to be dynamically configured. BML is an
XML-based scripting language developed by IBM for describing structures of nested
and interconnected JavaBeans [10]. BML is directly executable, that is to say, proc-
essing a BML script results in an application program configured according to the
script.

3. The Service Creation and Deployment Process

This section briefly describes the process of creating and deploying a new service.
Figure 1 illustrates the main elements and their role in this process.

SIE

SDE

Session
Dir

Service
Dir

2

43, 5

6

8
7

9

Impl. Rep.

9

1

Component Service Providers

3,5

Provider
of New Service

TTP

User

Component
Services

Figure 1: The process of creating and deploying a service

3.1 The Main Elements

Service Directory: A service directory is used by component service providers to
advertise their component services to other service providers. It also allows users to
download any client components which are needed as part of a third party service to
interact with the component service. The service directory is outside the scope of this
paper.

72 S. Rudkin and A. Smith

Implementation Repository: The implementation repository is a store of components
that may be used in the implementation of applications that reside on the CPE device.
These are components that are not part of an actual service, but which offer function-
ality in their own right (e.g. codecs, GUI elements, etc.). The implementation reposi-
tory is outside the scope of this paper.
Service Definition Environment (SDE): This comprises an Application Develop-
ment tool (for example supporting drag and drop development of components) com-
bined with a tool for adding session specific characteristics (such as title of the ses-
sion, purpose of the session, details of the session owner, IP addresses of the different
media channels etc.) The practical use of the approach described in this paper depends
on the existence of an Application Development tool that generates a suitable applica-
tion description based on BML. In the absence of such a tool we have simply hand-
written the BML for a number of component-based applications we have previously
developed.
Session Directory: The session directory allows users to view details of current and
future sessions and allows users and service providers to announce sessions. Currently
we have implemented a complete multicast session directory that handles SDP session
descriptions, and a very basic web-based session directory that handles the simple
XML-based session descriptions described in this paper.
Service Instantiation Environment (SIE): This is resident on the User’s CPE device.
It is used by the Third Party Service Provider to build the required application and to
launch it with the specified session parameters. The Service Instantiation Environment
is the subject of section 4.
Trusted Third Party (TTP): It is the role of a Trusted Third Party to dynamically
establish sufficient trust between two or more parties to give them the confidence to
transact business. The Trusted Third Party issues and revokes certificates which are
statements signed by the TTP about the certificate subject. Typically these statements
include the subject’s public key and identity, but they may also include higher value
statements such as the subject’s credit rating [11].

3.2 The Process

The process of creating and deploying a new service involves the following steps:

Bootstrap

1. The various parties obtain certificates from the Trusted Third Party.
2. The component service providers register their services with the Service Direc-

tory. This involves generating service offers describing the service itself, and any
obligations on the users of the service (including for example payment details).
The client components are passed to the Service Directory. It is a decision of the
component service provider as to how much functionality is implemented in the
client component and how much should be accessed remotely.

A Scheme for Component Based Service Deployment 73

Service Definition

3. The Third Party Service Provider uses the Service Directory to find appropriate
component services that may be used to support a new service they wish to offer.
It also uses the Implementation Repository to find any functionality which will re-
side solely on the CPE device (e.g. codecs).

4. The Third Party Service Provider verifies, that the component service providers
and the providers of components found in the implementation repository can be
trusted, by obtaining the relevant certificates from the TTP.

5. The Third Party Service Provider downloads the client components for the com-
ponent services, downloads any required components for the implementation re-
pository and checks they are all correctly signed (using the public keys from the
certificates that have just been obtained from the TTP).

6. The Third Party Service Provider builds an appropriate CPE application (using a
suitable application development environment) and generates a BML application
description (currently we are using conventional development and test to ensure
the components work together). The Third Party Service Provider defines the
necessary session specific parameters and advertises the whole session description
(including the application description and session specific parameters) in the ses-
sion directory.

Service Instantiation

7. The Customer downloads a session description from the Session Directory.
8. The Customer verifies with the TTP that the component service providers can be

trusted.
9. The Customer downloads the relevant client components from the Service Direc-

tory and any other components from the Implementation Repository, checking
they are correctly signed. The application can then be built on the CPE device and
the relevant session specific parameters are instantiated. Service Instantiation is
discussed in detail in the next section.

4 Service Instantiation Environment

Figure 2 shows the process for building applications dynamically on the CPE device;
this is the Service Instantiation Environment. It also shows the inputs into the process.
The inputs and the process are discussed in turn below.

74 S. Rudkin and A. Smith

Available
Components

Application
Description

Session
Description

Terminal
Characteristics

User
Profile

Component
List

Application
Description
Transformer

Application

Builder Application

SDP, XML & BML

Bean
Markup

Language

JavaBeans,
COM

XML

XML

XML

Java/C++,
XSL

BML Player,
BML Compiler

Network

Figure 2: Dynamic application building process

4.1 Inputs into Application Building

There are several inputs into the application building process. All of these can be im-
plemented in XML.
Session Description: The base input is the Session Description. A session description
comprises user directed information (e.g. session owner, purpose of the session), ses-
sion parameters (e.g. IP addresses) and an application description (in BML).
User Profile: This contains user preferences. For example, in the case of an aurally
impaired user a preference may be to omit the audio component from an application
and instead receive sub-titles. Whilst someone with unimpaired hearing might elect to
receive the audio, but ignore sub-titles.
Available Components: Components can be stored on a user’s own machine, or they
can be downloaded from the network. Using components stored locally could offer the
benefit of reducing time to start the application. Also, a local component may already
have been paid for, whereas one to be downloaded may have to be rented (how com-
ponents are charged for has not yet been addressed).
Terminal Characteristics: This has a critical influence on the application building
process. A low resourced device is less able to show certain media-types. A mobile
device will probably not be capable of displaying high resolution video. In the case of

A Scheme for Component Based Service Deployment 75

a session containing audio and video the mobile device could still join the session, but
would only instantiate an audio component.

Network Characteristics: This has a very similar effect to the terminal character-
istics. For example, a GSM network is not capable of relaying high resolution video

4.2 Dynamic Application Building Process

The process starts with a user browsing a list of available sessions using a Session
Directory tool. Once the user has decided to join the session the session is passed to
the Application Description Transformer for the application building to start.
Application Description Transformer: This takes the Session Description as pri-
mary input. As described above the Session Description will contain details of the
media-types that make up the session, connection information, QoS data, charging
data, etc. In order to adapt the application, this process may also use the other inputs
described in section 4.1 namely user profile, available components and terminal (and
network) characteristics. There are currently a number of different options for imple-
menting this process. The choice is basically between XSL transformations or code
written in a conventional programming language. Currently implementations have
been tried using XSL and Java. The output of this process is an Application Descrip-
tion.

The application description uses IBM’s Bean Markup Language (BML) from
IBM’s Alphaworks programme. BML is itself an instance of XML. It is used to de-
scribe the structure of a set of nested and interconnected beans. It is a language whose
only functions are to describe how components relate to one another and how each of
those components is configured. In fact Bean Markup Language is a bit of a misnomer
as any Java classes can be included in the BML. It is just that special consideration is
given to JavaBeans.
Application Builder: Once an application description has been produced it must be
turned into a running application. For this stage we have used IBM’s BML Player and
compiler. The BML Player takes a BML script and produces a running program from
it. The BML Compiler will compile a BML file into a class file which can then be run
like a normal Java program.

4.3 Adaptation

Section 4.1 detailed the inputs to the application building process. The simplest form
of adaptation will be to include or exclude particular media-types from the session and
which components are selected in order to display those media-types. Examples in-
clude not selecting a media-type because of user preference or because of the type of
terminal being used. Here the media-type will be removed from the BML. Presenta-
tion characteristics such as style of window objects used are also determined by the
user profile. The session description could be extended to include alternative sources
for data such as video at different bandwidths. A low resourced machine would select
the video at the lower bandwidth.

76 S. Rudkin and A. Smith

5 An Example Implementation

Figure 3 Audio-video-chat Application

As an example application we will describe an integrated chat and audio-video appli-
cation (Figure 3).

This example combines two major components, namely chat and a JMF (Java Me-
dia Framework) implementation of Real Player. The Real Player component is used to
access a remote component service streaming audio and video. There are a number of
smaller scale components representing the GUI components, e.g. buttons and frames.
The chat and the audio-video components have been used in other applications where
they provide the sole functionality.

In the example implementation the only input to the Application Description Trans-
former is the Session Description; the other inputs remain to be implemented.

5.1 Session Description

<?xml version=”1.0”?>

<session>

<title>Adverts</title>
<media-type id=”audio-video”>

<address>sherekhan.jungle.bt.co.uk</address>
<port>1545</port>

</media-type>
<media-type id=”chat”>

<address>ferao.jungle.bt.co.uk</address>
<port>1546</port>

</media-type>
<application-description>

<url>http://www.jungle.bt.co.uk/projects/internet-

A Scheme for Component Based Service Deployment 77

middleware/bml/audio-video-chat.bml</url>
</application-description>

</session>

In this example a session description consists of two media-types audio-video and
chat. Each media-type information includes the address of the server and the port
number (other location information such as a URL could be provided instead). The
media-type tags serve to scope the address data so that they can be matched with the
appropriate placeholders in the BML. In practice the media-type information would
include other data such as QoS parameters and user directed information. QoS pa-
rameters would be used in order to adapt a session, e.g. by excluding a particular me-
dia-type because the terminal is incapable of meeting the QoS requirements. The user
directed information would include such things as the owner of the content or com-
ments, e.g. that the audio-video is the directors cut.

The application-description tag includes an address where a BML file representing
a description of the application can be found. Note that the BML file is generic de-
scription for a class of applications that implement a combined real player and chat. It
does not include session specific information. These generic BML files can be stored
in a cache so that they only need to be downloaded when first needed.

We have produced a Session Description Parser in Java. The parser takes the input
session description in XML and creates a session description object. This is used to
display user oriented content to the user. This parsing is done using the XML for Java
parser from IBM. A DOM (Document Object Model) tree is created then a separate
Java object is instantiated to handle each tag and transfers the data from the tag to the
session description object. The user is then presented with the title of the session and a
list of media-types in the session.

5.2 BML

The BML represents a class of application. The BML produced at application creation
time includes place-holders for the session parameters. Rather than show the entire
BML script, excerpts will be used to illustrate key points

<?xml version=”1.0”?>

<bean class=”java.util.Vector”>
<add>

<bean class=”java.awt.Frame” id=”mainFrame”>
<property name=”title”>

<SD-session-name/>
</property>
<property name=”background”>

<field target=”class:java.awt.Color”
name=”lightGray”/>

</property>

78 S. Rudkin and A. Smith

At the topmost level of BML there is a Java Vector which contains all the JavaBean
components in the application. The first of these is a Java Frame class. There follow a
number of property setters. The second of these is standard BML; the background
colour of the frame is set to light grey. The first property setter has a place holder for
the session name; identified by the tag <SD-session-name>. This must be filled in with
details taken from the session description.

BML Bindings
<bean source=”chatFrame”>

<event-binding name=”window” filter=”windowClosing”>
<script>

<call-method tar-
get=”chatClient” name=”quit”/>

</script>
</event-binding></bean>

JavaBeans in BML are connected together via event-bindings. An event from one
component is mapped to call a method or set a property on another. In this simple
example the chatClient component responds to a windowClosing event from the chat-
Frame component by closing.

5.3 Application Description Transformation

If the user elects to join the session, then the BML is retrieved from either the cache or
from the address specified in the session description. The BML is then parsed and the
place-holder tags replaced by the session specific data. This is again achieved using
XML for Java. The “Element Handler” event based parser is used. An element handler
is associated with each placeholder tag in the BML. Each time the placeholder is en-
countered the element handler is called. The placeholder tag is replaced by data from
the session description object.

A local component cache is checked to see if the components are already loaded
onto the user’s terminal. If not, they are downloaded over the network. Currently the
version is not checked. In the future a scheme such as COM GUIDs could be used.

The initial three applications (chat, audio-video and the combined application) have
been extended to include a payment component. If the session creator specifies that
payment is required, then a payment component will be included by the application
transformer. The amount to be charged for the session and the location of the payment
gateway is taken from the session description and passed to the payment component.
The user is then presented with the amount to pay and requested to provide credit card
details. The payment component contacts a payment server for authorisation. Only
when payment has been authorised will the other application components start.

A Scheme for Component Based Service Deployment 79

We have also implemented an Application Writer using an XSL (XML Style Lan-
guage) style sheet. The XSL processor (Lotus XSL) takes the session description
XML file and XSL style sheet as inputs and outputs the complete BML file. The XSL
style sheet contains snippets of BML which are output to the final BML file.

6 Future Work

Probably the most important task to complete is the definition of a session description
DTD that is flexible enough to address a range of application types and service poli-
cies. The session directory will need to be adapted to handle these new session types.
We are seeking to broaden the approaches to wiring giving alternative methods to
BML.

On the server side, service creation would be improved if existing application de-
velopment tools were securely coupled with the service directory, and implementation
repository. Application developers should be able to securely drag and drop client
components from the service directory and implementation repository and automati-
cally generate BML describing the CPE application. It should be a simple further step
for service providers to add session parameters and advertise the session description .

In the longer term we wish to explore the possibility of selecting and configuring
components based on high level declarations of requirements of the kind described in
a Taxonomy of Communication Requirements [12].

7 Conclusion

The use of a session description containing a recipe to dynamically build the CPE part
of a new service offers a number of benefits.

� By using a session announcement to “deploy” a recipe for building the applica-
tion, barriers to deployment are reduced.

� By overcoming deployment barriers, it becomes easier for service providers to
offer innovative new services.

� By dynamically building the application from components on the client, only
those components that are not available locally need to be downloaded.

� During dynamic construction, the application can be adapted to suit the local
environment.

80 S. Rudkin and A. Smith

Acknowledgements

The authors would like to thank Ian Fairman for the contribution of his ideas to this
work. We would also like to thank Kashaf Khan and Luca Tavanti for their imple-
mentation of components (under Eurescom project P925: Internet Middleware).

References

[1] B. Carpenter, Editor, Architectural Principles of the Internet, IETF Network Working
Group RFC1958, June 1996, ftp://ftp.isi.edu/in-notes/rfc1958.txt

[2] Clemens Szyperski, Component Software - Beyond Object-Oriented Programming,
Addison-Wesley; ISBN: 0201178885

[3] Sarom Ing, Steve Rudkin. Simplifying Real-Time Multimedia Application Develop
ment Using Session Descriptions, IS&N 99, Barcelona, Spain, April 1999

[4] M. Handley. and M. Jacobson, SDP: Session Description Protocol. IETF MMUSIC
Working Group RFC 2327 (1998). ftp://ftp.isi.edu/in-notes/rfc2327.txt .

[5] M. Bagley, I. Marshal, et al, The Information Services Supermarket - a trial TINA-C
Design, TINA Conference, Melbourne Australia. Feb 1995

[6] Mark Johnson, ”Cover Story: Bean Markup Language, Part 1”,
http://www.javaworld.com/javaworld/jw-08-1999/jw-08-beans.html .

[7] Mark Johnson, “Cover Story: Bean Markup Language, Part 2”,
http://www.javaworld.com/javaworld/jw-10-1999/jw-10-beans.html .

[8] M. Handley, The Session Directory Tool (SDR) http://mice.ed.ac.uk/archive.srd/html
[9] Extensible Markup Language (XML) 1.0. W3C Recomm. http://www.w3.org/XML/
[10] JavaBeans, http://web2.java.sun.com/beans/docs/beans.101.pdf .
[11] T. Rea, High Value certification - trust services for complex eCommerce transactions,

BT Technology Journal Vol 17 No.3 July 1999.
[12] P. Bagnall, R. Briscoe, A. Poppitt, A Taxonomy of Communication Requirements for

Large Scale Multicast Applications, IETF Large Scale Multicast Applications Work-
ing Group RFC2729, December 1999, ftp://ftp.isi.edu/in-notes/rfc2729.txt .

ftp://ftp.isi.edu/in-notes/rfc1958.txt
ftp://ftp.isi.edu/in-notes/rfc2327.txt
http://www.javaworld.com/javaworld/jw-08-1999/jw-08-beans.html
http://www.javaworld.com/javaworld/jw-10-1999/jw-10-beans.html
http://mice.ed.ac.uk/archive.srd/html
http://www.w3.org/XML/
http://web2.java.sun.com/beans/docs/beans.101.pdf
ftp://ftp.isi.edu/in-notes/rfc2729.txt

	Introduction
	Session Descriptions
	The Service Creation and Deployment Process
	The Main Elements
	The Process

	Service Instantiation Environment
	Inputs into Application Building
	Dynamic Application Building Process
	Adaptation

	An Example Implementation
	Session Description
	BML
	Application Description Transformation

	Future Work
	Conclusion

