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Abstract. The convergence of the telecommunications and computer industries
is nearing a reality leading to service-based business models. The ability to
provision services efficiently and quickly will be a competitive differentiator
between service providers. This paper describes recent efforts to evaluate
performance and predict the scalability of software architectures for
provisioning services to end-users. We focus on network services that require
the establishment of a Virtual Private Network. An analytical performance
model for the service creation process is described. It expresses the high-level
performance characteristics of the different subsystems involved in service
provisioning. We study the effects of increasing numbers of network elements,
end users, and autonomous systems on service provisioning infrastructure.

1. Introduction

The convergence of the telecommunications and computer industries [13] is nearing a
reality. Service providers are able to use, rent or trade each other’s resources and
services. In such an environment, the competitive differentiator between service
providers will be determined by the ability to provision well-performing services
efficiently and quickly [11]. Service level management requires technical (e.g.
performance) models [6] of the infrastructure of computer networks. This paper
presents a modeling approach for such systems.

Service provisioning is of growing importance. For example, in 1998, the CMI
corporation projected that the revenues from the provisioning of Virtual Private
Network (VPN) services will be US$3 billion in 1999, US$10 billion in 2004, and
US$47 billion in 2010. Corresponding provisioning systems must be designed to
support increasing user loads and the growth in networks in general.

Service provisioning has two main functions:

1. Service creation: allocating network resources, establishing network
connections, adding QoS features, and linking the service logic to control data
flows.

2. Service management: operational support for accounting, billing, and
managing Service Level Agreements (SLA).

This paper focuses on service creation. A model is developed and used to study
how a service provisioning system performs as its managed network evolves.
Network evolution is characterized by the number of autonomous systems, the
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number of network elements per each autonomous system and the rate of requests for
services.

We consider the following questions: a) How will the increase in demand for the
standardized broadband network services affect the performance of the service
provisioning system? b) What is the impact of increasing the number of autonomous
systems and the network elements they manage on performance?

We are not aware of similar work to study the scalability of service provisioning
systems. However references are made to related scalability studies in the distributed
system and software performance engineering literature.

Section 2 describes network services in more detail and the ITU effort to
standardize their performance measures. A performance modeling approach is
introduced that is used to model and predict the service provisioning system’s
performance measures. Its relevant features are described. Section 3 describes the
service-provisioning environment considered in this paper and an example network
topology. A scenario for service provisioning is introduced. Section 4 describes the
corresponding predictive model. Section 5 gives results from the study along with
concluding remarks.

2. Network Services and Their Performance Metrics and Models

Standardization bodies, for example the IEEE and ITU, have set standards for
measuring and evaluating the performance of network services. Sections 2.1 and 2.2
explain the relationship between these efforts and our work. This is followed by a
brief description of the method and tool we used to model the performance of creating
a service.

2.1 Network Services

The word service is often used as a synonym for the word function and consequently
is used differently in different contexts [9]. The following taxonomy for services is
provided by the IEEE Project 1520 for standardizing programming interfaces for
network resources.

1. Application services that are provisioned in response to a request from application
services by Service Providers (SP). These services include services that are defined
in ITU recommendation I.211 [1] and are categorized into two main categories: a)
Interactive services such as retrieval, messaging and conversational services; and
b) Distribution services that include distribution services with or without user
individual presentation control. Other types of these services include value-added
VPN services such Intranet, Extranet, and remote dial-in VPNs.

2. Value-added communication services that are used by a service provider to
enable the provisioning of broadband services. Examples of such services include
policy, Service Level Agreement (SLA) management, security, location and
mobility management, and Virtual Private Networks (VPN) services. They also
include operational support services such as billing and reporting.
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3. Basic communication services that are provided by the network provider (i.e. the
carrier). These services span:
�  Access networks: such as dial-in, cable, wireless, and TDM access services.
�  Backbone network: such as optical networks, Frame Relay, ATM, and VPN

services.
Our focus is on provisioning application services to end-users. Of these services we
will study services that require the establishment of a Virtual Private Network (VPN)
between end users. We call such services VPN-based Application Services. Such
services include: media on demand services, video/audio conferencing, tele-
education, and Intranet and Extranet services.

2.2 Performance Metrics

The levels of Quality of Service (QoS) are defined in the ITU recommendations
E.800 [2]. Basically, they are categorized into service support, operability,
serviceability, and security performance metrics. Serviceability is our focus in this
paper. We are concerned with the mean response time of the service creation process
as a performance measure. The response time of the process belongs to the service
accessibility performance metrics that is a subset of the service serviceability metrics.
The response time includes the response time of the network and of the software
processes that participate in the service.

2.3 Performance Models

There are two widely applied approaches to predict a system’s behavior: a) use
performance measurements from a controlled testbed, or b) use predictive models.
Measurements techniques usually consume more time and costs, and presume that the
system or a substantial prototype exists. Estimates from performance models can
often reveal performance blunders [15] and provide feedback for making system
design decisions even before prototypes exist. We follow the latter approach.

To study the system we develop a Layered Queuing Model (LQM) [4], [8], [7],
[10]. LQMs describe the request scenarios submitted to a system and the resources
they consume. Requests pass through layers of software processes, consuming
network, processor, and disk resources. The layered model is decomposed into a
series of queuing network models that are solved iteratively, using Mean Value
Analysis (MVA), to provide performance measures for the system as a whole [10].

An LQM is characterized by the:

� The mix and rate of request scenarios by end users
� The resource demands of requests (CPU, disk, network) as they pass through

processes
� The nature of interactions between processes: for example whether they are

synchronous or asynchronous
� The number of instances of each process and their maximum permitted level of

concurrency (they are queuing centers)
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� The allocation of software processes to server nodes and the resulting loads on the
networks connecting them

The MoL tool implements the Method of Layers algorithm [7], [10]. It has a
system description language that defines server nodes and their CPU and I/O rates,
the underlying network infrastructure, software processes, their objects, methods, and
concurrency characteristics, sequences for the flow of control of scenarios, and
workload intensity and mixes of the sequences. It also supports the design of full-
factorial experiments through the definition of factors and levels for different
parameters in the model. The tool provides fast analytic performance estimates
including: estimates for the utilization, mean response time, and average queue length
of software processes and for the mean response time of requests. These predictions
include contention for both device and logical software process resources.

3. Service Provisioning

Typical service provisioning environments consists of a carrier’s core network, an
access network and service provider systems. Such an environment is shown in Figure
1.

Users use an access network to dial in and get connected to the service provider.
Usually, users dial in to a Point of Presence (PoP) of the service provider. Access
networks deploy technologies such as Subscriber Digital Lines (SDL). The service
provider systems consist of policy and service management servers. These servers are
responsible for enforcing the policies of the service provider, creating service
instances in response to user requests, maintaining service levels as agreed upon with
users in accordance to the Service Level Agreements (SLA), and billing the users.

The carrier’s network consists of many Autonomous Systems (AS). Each of them
embraces a number of network elements (i.e. routers or switches). An AS usually uses
a specific technology to transport packets for example IP, ATM, or Frame Relay.

The number of AS and the number of network elements each embraces
characterize the number of network elements that participate in service provisioning.

3.1 Service Provisioning Scenario

This paper describes an example scenario for creating a broadband service for a
hypothetical service provisioning system. The scenario considers the fundamental
features of such a scenario and system and is used to guide the development of the
corresponding performance model. The scenario is a best-case scenario that assumes
no faults or exceptions. The scenario, shown in Figure 2, is as follows:

1. A user logs in to the Access Server, using his login name and password.
2. The Access server consults the Remote Access Dial In User Service (RADIUS)

server for Authorization & Authentication.
3. The user ID is returned to the Access Server.
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4. The Access Server issues a login event that is load balanced across a pool of
servers capable of servicing the event. The event is then directed to the appropriate
Policy Server (manager). In the example system presented in this paper, a layer-4
router acts as a load balancer dividing requests equally across pools of identical
policy and service processes.

5. The Policy Manager consults the policy directory for policies assigned to the user.
6. The SLA corresponding to the user-application combination is returned to the

Policy Manager that invokes the Service Manager.
7. The Service Manager gets the requested service template from a service model

database (DB), and determines the network resource requirements of the service.
8. The Service Manager allocates the required network resources by invoking

Bandwidth Brokers (BB).
9. The BB discovers resource availability via Topology and resource DB’s.

Fig. 1. A typical service provisioning environment.

10. If the service requires resources that span many Autonomous Systems (AS), Intra-
BB negotiation takes place.

11. The service Manager is notified as the resource allocation process is completed to
admit the service request and start administrative processing.

12. The service Manager downloads any required software components (a.k.a. filters)
from a repository.

13. The controlling software components are uploaded to the different Edge Routers;
enforcing the policies of the service provider.

14. Data packets flow and billing starts.
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4. System Modeling for Performance

The MoL tool was used to document that scenario and obtain performance estimates
for the scenario/service provisioning system documented in Figure 2.  The tool has
two distinctive characteristics. First, it is representationaly efficient. It permits the
organization of system components (hardware and software) into hierarchical
packages. These packages can be replicated. For example a policy server and its
underlying hardware can be a package. As the workload for a system increases we can
increase the number of replicates of this server’s package. The visits to the server are
divided equally across the replicates. This reflects the behavior of a load balancing

Fig. 2. Service provisioning scenario.

router in the model. The tool is also computationally efficient. Increasing the number
of replicates does not increase the size of the model to be solved [7].

Figure 3 shows how the service provisioning system is modeled as a set of
packages for the LQM. The figure shows also the number of requests for services
each process issues for services offered by other processes. These are the processes
involved in the scenario described in Section 3.
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The model consists a parent package, service_package that groups all other
packages. It contains the service_server_package for modeling the service provider
environment, the carrier_network_package for modeling the network of autonomous
systems, and user_node for modeling the behavior of the users and the rate they
request services.

The service_server_package contains the policy_servers package that manages
service policies and the service_mgmt_node package that creates a service instance
and vpn_mgmt_node that instantiates a VPN. The policy and service servers
communicate through a network that is modeled by the net1 network component. The
Replication Factor (RF) represents the number of each of the nodes.

The carrier_network_package consists of many autonomous_system_package
communicating with each other via the WAN2 network component. Within an
autonomous system, there is the b_w_broker_node, resource_db and the
net_element_nodes packages that represent the different components of physical
autonomous systems. The interaction among the user, service_server_package, and
carrier_network_package is carried via Wide Area Network represented by the
WAN1 component of the model.
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 Fig. 3. A layered-queuing performance model.

Each of nodes contains processing entities that are characterized in terms of the CPU
processing speed and the speed of Input/Output operations. Also, each one contains a
running process that carries out the function of the package. The process has an
average service demand for the scenario. The CPU and IO demands are estimates.
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They express the relative costs of different processes and requests and permit us to
present the proposed modeling approach.

Visits between processes are synchronous, except for calls from the
vpn_mgmt_node to different bandwidth brokers and calls from a bandwidth broker to
the different elements_mgmt processes within the same autonomous system. These are
represented in the model using asynchronous interactions followed by a join
operation. For example, the broker issues asynchronous resource allocation calls to all
network elements that will be traversed in VPN connections within that autonomous
system. Consequently, as the number of network elements increases, the number of
methods the broker waits for increases.

The performance modeling experiments estimate performance and predict the
scalability [14] of the system as the network evolves. As mentioned above the two
parameters characterizing that evolution are: the number of network elements and the
number and type of user requests for services. The average total number of network
elements is the product of the average number of autonomous systems traversed by a
VPN and the number of network elements per autonomous system. For the sake of
simplicity we assume that all autonomous systems have the same number of network
elements and statistically identical behavior.

Each experiment provides an estimate for the mean time taken by the system as a
whole to create a service instance. This is known as the service creation response time
and it is the sum of the (blocking) response times of each of the different subsystems;
namely, the policy servers, the service management servers, the VPN management
servers, and the processing that takes place within an autonomous system.  The results
also help to identify system bottlenecks. A bottleneck, software or hardware, is the
resource that limits throughput and contributes most to increases in service creation
response time. The effect of the delays caused by network latencies for
communication among the subsystems is also taken into consideration.

The following factors and their levels are considered:

� The number of autonomous systems (AS): 3, 6, and 9
� The number of elements per AS: 20, 30, and 40
� The average number of end user requests per unit time: 10, 50, and 100

The MoL tool conducts a full-factorial experiment to calculate the effect of the
experiment factors on different parts of the model. These changing factors reflect the
evolution of the network. In our experiment, we assumed an autonomous system to be
a domain for Open Shortest Path First (OSPF) protocol. The OSPF specification does
not recommend an OSPF domain to embrace more than 50 network elements.

The resource demands of the various subsystems depend on the above factor
levels. We assumed and reflected the following relationships in the model:

� The response time of the policy_mgmt_node depends on number of users, amount
of data per user representing the profile of the user, service level agreements with a
user, and number of service provider’s policies. Only the arrival rate of requests
affects response times at this node in our experimental design.

� The response time of the service_mgmt_node depends on the response time of the
service model database that is a function of the product of the number of services
and the number of templates for each service. Another component that contributes
to this time is the service instance database that maintains a list of the instances in
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operation. Only the arrival rate of requests affects response times at this node in
our experimental design.

� The response time of the vpn_mgmt_node is the solution time needed to discover
tentative paths across all autonomous systems to establish a VPN. This depends on
Dijkstra’s shortest path algorithm. Its solution time is of order O(N2) where N is the
number of AS in the system. A multiplier of N2 is used to inflate service demands
on this node as the number of AS increases. The solution time also depends on the
topology of the network and the IP addresses of source/destination nodes that will
be connected via the VPN to use the service. However we do not yet reflect these
aspects in this high level model and consequently we’ve assumed that the average
number of autonomous systems spanned for each requests is equal 3.

� The response time of the broker_node is the summation of the time taken to find
the shortest path within an AS, the time taken to allocate and reserve resources of
different elements, and the time taken to enforce the policies of the server provider
along that path. The time to find a shortest path is of O(N2) where N is the number
of network elements per autonomous system. A multiplier of N2 is used to inflate
service demands on this node as the network topology changes. The time taken to
allocate resources and enforce policies depend on the number of network elements
within an autonomous system and the performance of the network connecting the
broker and the elements within an autonomous system

5. Results and Conclusions

The mean response time estimates for the four main sub-systems are shown in Figures
4, 5 and 6.
Figures 4, and 5 show the response time for 20, and 100 requests/ unit time for
services issued by end user, respectively. The mean response time for the service
creation process as a whole is dominated by the response time of the VPN manager
process.  As we increase the request rate to 200 requests/ unit time, the number of
elements to 40, and the number of AS from 3 to 9, the VPN process gets fully utilized
(utilization of 0.98, 0.96, and 0.97 as number of AS changes from 3, to 6, and 9). This
is shown in Figure 6 and illustrates the high response times for the service creation
process. Consequently, the VPN manager process is the main performance bottleneck
in the system.

The other processes do not contribute much to the service creation response time.
Their response times are almost constant with respect to our factors levels. In the
model, they are only sensitive to the end user requests rate.

The response time of the VPN process depends a great deal on the number of
network elements in the network. This is not a big surprise since its resource demands
is a function of the square of the number of network resources considered (due to
Dijkstra’s algorithm). As the resource demands grow, increasing arrival rates of
requests cause dramatic increases in queuing for physical and logical resources
leading to very large response times (e.g. Figure 6). The performance models help to
illustrate how catastrophic such combinations can be for service performance.
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Moreover, performance models allow us to study how we can solve the problems
arising from software bottlenecks. An obvious solution is to increase the number of
the software processes/nodes causing the bottleneck. We have increased the number
of VPN and bandwidth brokers nodes from 1 to 10 and studied the impact on the

response time of service creation. We
have assumed these 10 processes operate
independently and consequently we
have not included overhead for
synchronization; such overheads may be
included in the future. Table 1 shows the
results. There is little impact under low
loads. For the case with 20 requests per
unit time, 9 AS and 40 elements/AS, the
mean response time decreases slightly as
we increase the number of bandwidth
broker and VPN management nodes.

The response times decrease by half.
However, the effect of replication is

more significant as we increase the
load on the system. For example, for

200 requests per unit time, 9 autonomous systems and 40 elements/AS, the response
time decreases by a factor of 20. This motivates the need for the parallel processing of
requests.

This study demonstrates that it is important for a corresponding implementation of
this design to support replication of processes and their corresponding nodes. Such
replication is more important for the bandwidth broker and VPN management nodes
than for other nodes.

Fig. 5. Response time for 100 request/unit
time

Fig. 6. Response time for 200 requests/unit
time

Performance modeling is an important tool for those designing such systems. In our
future work we plan to introduce further detail into the models and investigate the
performance of the different techniques for creating and deploying VPNs. This will
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help to determine which methods are best for various workload mixes and network
configurations.

Furthermore, we believe this work complements programmable network research.
It offers a framework that could be used to reflect and predict the impact of
programmed network changes on a system as a whole.

Table 1. Response Time (based on units) for processes at different replication levels

1 VPN_mgmt and 1
broker processes

1 VPN_mgmt and 10
brokers processes

10 VPN_mgmt and
10 brokers processes

#users#AS
#element
s per AS

VPN
mgmt.

Service
creation

VPN
mgmt.

Service
creation

VPN
mgmt

Service
creation

20 3 20 53 71 52 70 52 69
20 3 30 74 84 72 83 72 80
20 3 40 101 103 97 101 97 96
20 6 20 63 77 62 77 62 75
20 6 30 83 90 82 90 82 87
20 6 40 109 109 107 108 107 102
20 9 20 80 88 79 88 79 85
20 9 30 99 102 99 101 99 97
20 9 40 125 121 124 120 124 112

100 3 20 59 87 53 80 53 72.
100 3 30 84 118 73 102 73 84
100 3 40 123 191 99 142 99 101
100 6 20 66 94 63 91 63 78
100 6 30 87 123 82 115 82 90
100 6 40 118 181 108 159 108 107
100 9 20 81 114 79 111 79 89
100 9 30 102 147 99 141 99 101
100 9 40 131 215 125 197 125 118
200 3 20 69 140 54 100 54 74
200 3 30 101 426 74 159 74 88
200 3 40 145 3823 101 423 101 107
200 6 20 70 143 63 122 63 80
200 6 30 94 308 83 206 83 94
200 6 40 129 2072 109 654 109 113
200 9 20 84 213 80 188 80. 92
200 9 30 106 550 99 387 99 106
200 9 40 137 2876 125 1717 125 125
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