
Analysing Time Dependent Security Properties
in CSP Using PVS

Neil Evans and Steve Schneider

Department of Computer Science
Royal Holloway, University of London

Abstract. This paper details an approach to verifying time dependent
authentication properties of security protocols. We discuss the introduc-
tion of time into the Communicating Sequential Processes (CSP) proto-
col verification framework of [11]. The embedding of CSP in the theorem
prover PVS (Prototype Verification System) is extended to incorporate
event-based time, retaining the use of the existing rank function approach
to verify such properties. An example analysis is demonstrated using the
Wide-Mouthed Frog protocol.
Keywords: Authentication Protocol Verification, Automated Theorem
Proving, Timed Behaviour, CSP, PVS.

1 Introduction

There are many methods that model and analyse security policies of distributed
systems. Typically, the policies concerning communication are achieved using
security protocols in which the agents of a system are trusted to provide a
degree of secure communication across the system’s network.

The complexity of security protocols and the size of distributed systems have
often been too great for analyses without a great deal of abstraction. This can
lead to over-simplification and the possibility of missing some size-dependent
flaws. This is prevented in analyses in which a (potentially infinite) number of
agents can engage in arbitrarily many (possibly concurrent) runs of a security
protocol.

Model checking, via highly automated tools, has proved to be an invaluable
ally to those who wish to analyse protocols by searching for attacks. However,
justifying the correctness of a protocol from a model checking analysis is more
difficult because it is usually impossible the explore the entire state space. In-
deed, to explore any reasonable amount of state space, one is often required to
approximate the model by considering individual runs of the protocol with the
minimal number of agents.

Theorem proving, on the other hand, does not suffer from the state space
problem. It is easier to justify protocol correctness, via a successful proof, than it
is to extract an attack from an unsuccessful proof. Assuming that the protocols
of the future will not fail as readily as current protocols, these are obviously
desirable qualities. The main disadvantage of theorem proving is the need for

F. Cuppens et al. (Eds.): ESORICS 2000, LNCS 1895, pp. 222–237, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

Analysing Time Dependent Security Properties in CSP Using PVS 223

intense user intervention. Current tool support technology for theorem proving
provides relatively little automation, though the situation is improving. Two
general purpose theorem provers that have been used in the context of security
protocol analysis are Isabelle [10], and PVS [9]; in this paper we will use the
latter.

In these analyses, time is often abstracted from the protocol descriptions and
from the properties that are proven about them. However, there are situations in
which sensitivity to time is required for an appropriate analysis, either because
the protocol exhibits some time-dependent behaviour (for example comparing
a received value of a timestamp with the current time, or using timeouts and
delays in its flow of control) or because the required property is concerned with
time (for example, that a ticket accepted by an authorising agent has not yet
expired).

Introducing time into a protocol analysis framework brings complications.
The use of explicit time increases the state space of the system by a signifi-
cant factor, which means that for model-checking either even simpler versions
of the protocol need to be analysed, or else more powerful computers or larger
time-scales are required to perform an appropriate analysis. The introduction of
explicit time in theorem-proving approaches generally introduces time as an ad-
ditional data-type, but the special nature of time imposes restrictions on its use,
and requires that care should be taken to ensure that it is modelled in sensible
and realistic ways. This is feasible when it is used in simple ways (such as simply
providing timestamps and checking if they are recent) but the more complex the
time-dependent behaviour, the less confidence we can have in ad-hoc approaches
to introducing time.

In this paper, we shall introduce event-based time into the process modelling
language CSP, and we shall extend the corresponding embedding of CSP in the
theorem prover PVS [5] to incorporate this approach to time. One benefit of the
CSP approach is that the theory of timewise refinement [12] allows results to be
translated between the untimed and timed models, enabling verifications to be
carried out at their most appropriate level of abstraction and then combined if
necessary from different models. The timed model will be illustrated by proving
a time dependent property of the Wide-Mouthed Frog protocol [2].

The next section gives a review of the CSP embedding in PVS, a descrip-
tion of the general model of the network, and the message-oriented approach
to authentication. We then extend the model by allowing tock events on which
all agents (including the enemy) must synchronise. We then give an example
analysis of a protocol that uses timestamps.

2 Review of Previous Work

2.1 Communicating Sequential Processes

CSP is a modelling language that allows the description of systems of interacting
processes by means of a few language primitives. Processes execute and interact

224 N. Evans and S. Schneider

by means of performing events drawn from a universal set Σ. Some events are
of the form c.v , where c represents a channel and v represents a value being
passed along that channel. This allows messages to be communicated between
processes.

The process Stop is a stopped process—it can perform no events. The process
RUNA is the process that will repeatedly be able to perform any event in the
set of events A. The process a → P is initially willing to perform the event
a, and then behave subsequently as P . The input process c?x → P(x) will
accept a value x along channel P and then behave subsequently as P(x); The
output process c!v → P will output v along channel c and then behave as P . In
general, communications and channels can have any number of message fields.
For example, rec.a.b.m can represent a channel rec.a carrying a message b.m.

The choice P 2 Q offers the choice between processes P and Q . P |[A]|Q
executes P and Q in parallel, where they must synchronise on all events in the
set A—this is how processes interact with each other. Processes may also be
defined by means of recursive definitions.

Each CSP process description is identified with its set of traces: the sequences
of events that it can perform. For example, the process in?x → out !x → Stop
has 〈in.3, out .3〉 as a possible trace, but not 〈in.3, out .5〉: it cannot output 5
after inputting 3.

A specification S (tr) is a predicate on traces. A process P satisfies a spe-
cification, written P sat S (tr), if all of its traces meet the predicate. Trace
specifications are used to capture safety requirements on processes: they require
that all executions should be of a particular form, and hence that no execution
should violate the specification.

2.2 Embedding CSP into PVS

A PVS ascii syntax is provided for the required CSP operators. This is shown in
Figure 1. Since we are interested in safety properties of security protocols, a CSP
process is represented by its trace semantics in PVS. That is, given a fixed set,
Σ, of all possible events, a process is represented by the set of traces of events
from Σ that could be observed at the process interface. Recursive definitions
are also possible by defining a monotonic functional, H, and then using the fixed
point operator, mu, to generate its least fixed point, mu(H). A type-correctness
condition (TCC) is generated by PVS requiring a proof of H’s monotonicity.
This is straightforward as all the CSP operators described above are monotonic
with respect to their operand processes. (The ordering on processes is the subset
ordering of their corresponding sets of traces.)

PVS support is provided in the form of theory files for general CSP trace
semantics as follows:

– Traces
– Fixed point theory
– CSP operators
– specification and the sat relation

Analysing Time Dependent Security Properties in CSP Using PVS 225

Operation CSP PVS

Stop Stop Stop

Prefix a → P a � P

Choice P 2 Q P \/ Q

2
i ∈ I

Pi Choice! i: P(i)

Parallel P |[A]|Q Par(A)(P, Q)
Composition P ||| Q P // Q

|[A]| i ∈ IPi Par(A)(lambda (i:I) : P(i))
|||i ∈ I Pi Interleave! i: P(i)

Fig. 1. The PVS syntax for the CSP operators

2.3 Analysing Security Protocols

A protocol is described in CSP in terms of the activity required of the parti-
cipating agents, which may include servers and trusted third parties as well as
parties that want to communicate. They are described in terms of the messages
they send along trans channels, and receive along rec channels, and the manipu-
lations they carry out on those messages. For example, the protocol which has
user A signing a nonce challenge with a signature key sA would be described by

USERA = rec.A?j ?n → trans.A!j !{n}sA → Stop

In this description, USERA receives a nonce n, apparently from j , on its receive
channel rec.A. It responds by transmitting {n}sA back to j along its transmit
channel trans.A, and finishes. We use {m}k to denote message m encrypted with
key k .

To analyse the protocol in the context of a possibly hostile environment, we
use the Dolev-Yao model of a network [4]. In this framework the set of agent
processes communicate with each other only by passing messages on the trans
and rec channels to an ‘enemy’ that is in full control of the communications
medium. He has the potential to block, re-direct, duplicate or fake messages on
the medium. When cooperating with a user, the enemy accepts messages on the
agent’s transmitting channel trans and passes the message to the appropriate
agent’s receiving channel rec. This architecture is depicted in Figure 2.

To capture the enemy’s ability to produce new messages, a ‘generates’ re-
lation, `, is defined allowing a new message, m, to be generated from a set of
messages, S , already known. This is written as S ` m. This model of commu-
nication is defined in CSP by allowing agents to communicate with the enemy
using transmission and reception events only: trans.i .j .m is interpreted as agent
i attempting to send message m to agent j , and rec.i .j .m means agent i receives

226 N. Evans and S. Schneider

ENEMY

USER

rec.A

USER

USER

A B

C

trans.A trans.B

rec.C

trans.C

rec.B

Fig. 2. Communication in a hostile environment—the Dolev-Yao model

message m apparently from agent j . The enemy is defined as a CSP process that
is willing to synchronise with all agents on trans and rec events. Any message re-
ceived by the enemy (a trans event) is added to his set of knowledge. Any message
the enemy intends to send (a rec event) must have been generated from his set
of knowledge using the relation `. This is defined in the PVS embedding by the
process enemy, defined recursively by the function F : enemy(S) = F(enemy)(S)

F(X)(S) : process =
(Choice! i, j, m : trans(i, j, m) >> X(add(m, S)))

\/ (Choice! i, j, (m | S |- m) : rec(i, j, m) >> X(S))

enemy : [set[message] -> process] = mu(F)

In [11], the network is defined as a CSP process, NET which is the parallel
combination (synchronising on trans and rec) of the enemy together with all of
the protocol agents and their possible communication partners. In PVS this is
expressed as follows:

network : process =
Par(trans? OR rec?)(enemy(INIT), Interleave(USER))

where USER : [Identity -> process] is the function defining the behaviour
of all agents running the protocol, and INIT is the enemy’s initial knowledge set.

Having defined the protocol in the worst possible environment, it is now
possible to analyse the traces of this system and investigate whether certain
properties relating to authentication hold.

2.4 Authentication Properties

We take an event-based approach to authentication in order to enable a formal
analysis. We say that one set of events T authenticates another set of events

Analysing Time Dependent Security Properties in CSP Using PVS 227

R if an occurrence of an event in T guarantees that some event in R occurred
previously. This is easily expressed as a property on traces: if a trace contains
an event in the set T , then it should also contain a previous event in the set R.

By choosing appropriate T and R, we can express properties on the entire
system NET that give various flavours of authentication. For example, if T =
{rec.B .A.m} and R = {trans.A.B .m}, then for NET to meet this property it
must be the case that whenever USERB receives message m apparently from
A, then USERA did indeed earlier transmit this message to user B . Clearly this
will not be true for arbitrary messages, since if the enemy can generate m then
he can pass it to USERB as if it had come from user A. So an authentication
protocol designed to provide this property will have to design the authenticating
message m appropriately.

A significant body of theory [11] has been developed on top of CSP trace
theory for verifying properties of this type. This is based around finding a rank
function, which assigns an integer value to each possible message, in such a
way that all messages that might ever appear in a protocol run have positive
rank, and only messages that can never appear have non-positive rank. Thus the
enemy can only ever generate positive rank messages if it only ever has positive
rank messages; and protocol agents must be shown to preserve positive rank,
never introducing non-positive rank messages if they are never provided with
them. If all occurrences of R within the system are blocked, then we aim to
find a rank function where all messages in T have rank 0, establishing that they
cannot occur in the restricted system. Thus for any T to occur, R must occur
previously.

This body of CSP theory has also been provided and verified within PVS [5],
in the following PVS theories:

– authentication properties
– rank function properties
– enemy definition
– network definition and authentication theorem
– event datatypes
– rules for restricted parallel combinations (implemented from [11])
– rules for maintaining positive rank (implemented from [11])

The way PVS is used in practise is to find rank functions (where they exist)
by carrying out a proof for the protocol in question providing only a ‘blank’
rank function, and then reducing all of the proof obligations on the correctness
of the protocol to requirements on the rank function. These requirements often
point the way to construction of a rank function, or alternatively they might be
shown to be contradictory if the protocol is flawed, and might point the way to
an attack.

The entire body of theory described thus far does not provide any general
theoretical framework for handling time in the protocol descriptions or in the
properties the system should meet. The contribution of this paper is the exten-
sion of the framework to include time.

228 N. Evans and S. Schneider

3 Event-Based Time

Time can be introduced into CSP in a number of ways. The most natural way,
from the theoretical point of view, would be to use the approach of Timed
CSP [13], which is a mature modelling language in its own right. This approach
integrates real-time in the form of the real numbers into the CSP language, and
results in a sophisticated but complex semantic model which would require much
of the PVS framework to be redeveloped.

The other main approach (which is preferred in model-checking approaches
because of the discrete nature of time) is to introduce a new special event tock
into the alphabet of all processes. The resulting language is called tock-CSP.
The event tock is used to represent the passage of one unit of time, and must be
synchronised on by all processes in the system to reflect the fact that time passes
at the same rate in all processes. Delays are introduced by requiring a number
of tock’s to occur, and other time-sensitive behaviour such as a timeout is also
modelled easily in this framework. For example a fragment of a process which
is repeatedly awaiting input but which will timeout and retransmit a value v if
input is not received within one time unit might be described as

P(v) = in?x → Q(x) 2 tock → out !v → P(v)

A detailed account of event-based time with illustrative examples can be found
in [13].

By using an explicit event to mark the passage of time it is easier to integrate
the handling of time into the existing PVS framework for CSP, which is based
purely on events.

The modelling of time using this special event introduces some features that
must be treated carefully. Care must be taken when defining processes in a timed
environment. A process with no tock events does not mean that it is indifferent
to the passage of time, but rather that it does not allow the passage of time.
In our setting, all agents must synchronise on tock and none of them should
have the power to impede time. Therefore, process definitions that prevent tock
events suggest a flaw in the network model.

The urgent events of a process are events that occur before any tock event is
possible. (They are urgent because they must be performed immediately). It is
essential that urgent events are not blocked: an uncooperative environment that
blocks an urgent event would prevent the occurrence of any tock events. When
using CSP to describe a process, it is therefore essential to include sufficient tock
events to ensure such blocking does not occur, and that only events which should
be urgent are indeed modelled in this way.

For example, the one-pass copy process described in CSP as

OPC = in?x → out !x → Stop

does not allow any time to pass at all, since it has no tock events in its description.
Since in should not be urgent, it should allow any number of tock’s to occur

Analysing Time Dependent Security Properties in CSP Using PVS 229

before in. If out is also not urgent, then the appropriate description in tock-CSP
would be:

TOPC = in?x → TOPC (x)
2 tock → TOPC

TOPC (x) = out !x → RUNtock

2 tock → TOPC (x)

Conversely, if the message should be passed on as soon as it is received (so out
is urgent), then the description should be

TOPC ′ = in?x → out !x → RUNtock

2 tock → TOPC ′

Once in occurs, then out must occur before any more time passes. It is essential
that the rest of the system does not block out , or else the model will contain a
timestop state.

The translation mechanism, Ψ , from [13] provides a systematic way of trans-
lating CSP processes P into tock-CSP processes Ψ(P), so that all of the events
are non-urgent. The resulting process can either perform one of the enabled
events, or else it can perform a tock event and remain in the same state. For
example, Ψ(OPC) = TOPC . This mechanism allows processes without time-
critical behaviour to be described in CSP and then translated naturally into
tock-CSP.

Adding event-based time to the PVS embedding of CSP causes no problems
because all of the theories concerning this embedding are parameterised by the
event type. Only two changes were made to the original set of theories defining
the embedding. Firstly, a tock constructor was added to the abstract data-type
defining the CSP events in PVS. Secondly, a PVS definition of the RUN process
(as used in the translation mechanism above) was added allowing it to be viewed
as a primitive process in a timed setting in the same way that Stop is viewed in
an untimed setting.

3.1 The Timed Network Model

We retain the Dolev-Yao model of the network in which the enemy is in full
control of the communications medium, and the agents continue to communicate
with each other via the enemy. The revised enemy is simply the original enemy
with time added by means of Ψ : the most general enemy has no time-critical
behaviour.

However, protocol agents’ behaviour can be sensitive to time for a number
of reasons:

230 N. Evans and S. Schneider

– The values they produce (e.g. timestamps) can depend on the current time,
and so the agents will have to be described explicitly in tock-CSP rather
than as untimed CSP descriptions translated through Ψ . In fact they will
need to keep track of the current time, and increment it on every tock.

– The response to a particular message might depend on the relationship bet-
ween the current time and a time value within the message (usually to check
that it is recent enough).

– The implementation of the protocol might include time-dependent behaviour
such as timeouts or explicit delays.

In such cases, the CSP description of the protocol cannot be given purely as an
untimed process translated through Ψ . Instead the timed behaviour will have to
be described explicitly as a tock-CSP process. Section 4 gives an example of how
this is done.

Furthermore, time can be introduced into the authentication properties that
need to be checked. It may be necessary to check that a message received was in
fact sent relatively recently; or perhaps that an entire protocol run has taken no
more than a certain amount of time. If timestamps appear in the messages then
such properties can be expressed within the existing framework of using one set of
events T to authenticate another set R. For example, if m is a message and l is a
timestamp, then {rec.B .A.m.l} might be used to authenticate {trans.A.B .m.l ′ |
l − d 6 l ′ 6 l}: that the message was sent with a timestamp l ′ between l − d
and l .

Since the central rank function theorem remains true in the timed frame-
work (as has been proved in PVS), this means that the existing rank function
approach can be applied to verify that a time-sensitive protocol satisfies a timed
authentication property expressed in this way.

4 An Example Analysis

The Wide-Mouthed Frog protocol is a simple protocol that uses timestamps. Its
aim is to send a session key from one agent to another, via a server, using shared
key cryptography. Timestamps indicate how recently a message was sent. The
informal definition (taken from [2]) is stated as follows:

(1) A → S : A, {B ,Ta,Kab}Kas

(2) S → B : {A,Ts,Kab}Kbs

where Ta and Ts are timestamps, Kas is the key that A shares with S , Kbs is
B ’s shared key, and Kab is a new session key generated by A. Both the server,
S , and the receiver of message 2, B in this case, check that the timestamps
lie within a specified range. If either message is too old then the session key is
ignored.

From this description we gather information about the types of messages
involved, the capabilities of the enemy, and the definition of the agents.

Analysing Time Dependent Security Properties in CSP Using PVS 231

4.1 The Agents

In general, an agent i can either initiate a protocol run with another agent (via
the server), or he can respond to an agent who chooses to initiate a run of the
protocol with i . In this case, the word ‘respond’ is somewhat misleading because
the agent receiving the message in a protocol run does not give any response.
However, we shall continue to use it to distinguish between the roles of the agents
and to be consistent with the terminology of examples in the literature. The
server does not behave like an initiator or a responder and, therefore, requires a
separate process definition.

We allow an agent to initiate and respond to arbitrarily many runs of the
protocol. UINIT and URESP describe an initiator and a responder run res-
pectively. The numeric arguments of SERVER, UINIT, and URESP represent the
current time - i.e. we can view the agents as having synchronised clocks. These
values are incremented for each tock event.

The definitions of UINIT and URESP are straightforward. Each deals with one
non-urgent message, and so follows the style of the Ψ translation in ensuring
that tock is always possible. For example, UINUT (i , j , k)(l) representing a user
i at time l wishing to send key k to user j (via the server S) is defined in CSP
as follows:

UINIT (i , j , k)(l) = trans.i !S !(i , {j .l .k}kis) → RUNtock
2 tock → UINIT (i , j , k)(l + 1)

This is expressed in PVS explicitly as the fixed point of the function FUINIT.
The responder is expressed in a similar style. We use E(k,m) to denote in ascii
form the encrypted message {m}k .

Y : VAR [nat -> process[event]]

FUINIT(i, j, k)(Y)(l) : process =
(trans(i, s, conc(user(i),
E(shared(i), conc3(user(j), time(l), session(k)))))
>> RUN(tock))

\/
(tock >> Y(l + 1))

UINIT(i, j, k) : [nat -> process] = mu(FUINIT(i, j, k))

FURESP(i)(Y)(l) : process =
(Choice! j, k, (l1 : nat | l >= l1 AND l1 >= l - d) :
(rec(i, s, E(shared(i), conc3(user(j), time(l1), session(k))))
>> (RUN(tock))))

\/
(tock >> Y(l + 1))

URESP(i) : [nat -> process] = mu(FURESP(i))

232 N. Evans and S. Schneider

Note that in FURESP we use PVS’s dependent type capability to capture the
notion a ‘recent’ message: the responding agent is willing to accept any message
(apparently from the server s) whose timestamp value l1 lies between the current
time l and the time l - d for a delay constant d.

The definition for SERVER requires the response to the receipt of a message
to be urgent, and hence prevents a tock from occurring until the trans event
has occurred. The server also performs the same check as the responder: that
the timestamp l1 on the received message is no older than d units of time.

FSERVER(Y)(l) : process =
(Choice! i, j, k, (l1 : nat | l >= l1 AND l1 >= l - d):
(rec(s, i, conc(user(i),

E(shared(i), conc3(user(j), time(l1), session(k))))) >>
(trans(s, j, E(shared(j), conc3(user(i), time(l), session(k))))
>> (RUN(tock)))))

\/
(tock >> Y(l + 1))

SERVER : [nat -> process] = mu(FSERVER)

It is appropriate to make the trans event urgent because the server has
control over when the messages are sent. The enemy never blocks trans events,
so no timestop will occur. On the other hand, rec events should not be urgent,
since this would imply that the agent controls the time that messages must be
received.

4.2 The Authentication Property

The property that we shall analyse is the following: if agent b ‘responds’ to a
message containing timestamp value t then the protocol run was initiated at
or after a time t - d, where d is the delay constant. Note that t would be the
timestamp generated by the server. This is achieved by defining the sets T and
R as:

T : set[mevent] =
{ e | e = rec(b, s, E(Kbs, conc3(A, time(t), Kab))) }

R : set[event] =
{ e | EXISTS (l : nat | t >= l AND l >= t - d) :

e = trans(a, s, conc(A, E(Kas, conc3(B, time(l), Kab)))) }

The theorem that we want to prove is:

authenticated : THEOREM network(enemy(INIT), USER) |> auth(T, R)

Now we have everything we need to perform the analysis except a definition
for the rank function, rho, if one exists. In the usual way, we shall initially
declare rho as an uninterpreted function, and then use the PVS theorem prover

Analysing Time Dependent Security Properties in CSP Using PVS 233

to extract the conditions that rho must satisfy. It is from these conditions that
we can either build a rank function to complete the proof, or show, because of
a contradiction in the conditions, that no rank function exists (indicating the
possibility of an attack).

In fact, in attempting to construct a rank function, we find that the following
derived condition is required:

authenticated.3.1.2.1.2.2.2.4 :

[-1] t >= l1
[-2] l1 >= t - d

|-------
[1] l1 = t

This is true only when d is 0. The problem is caused by the similarity in the
messages that the server receives and the subsequent messages he transmits.

When d > 0 we can prove that the conditions required of the rank func-
tion are contradictory, and so we can conclude that no rank function can be
constructed. From these derived conditions, it is possible to see the attack:

A → S : A, {B ,Ta,Kab}Kas
S → I (B) : {A,Ta + d ,Kab}Kbs
I (B) → S : B , {A,Ta + d ,Kab}Kbs
S → I (A) : {B ,Ta + 2d ,Kab}Kas
I (A) → S : A, {B ,Ta + 2d ,Kab}Kas
S → B : {A,Ta + 3d ,Kab}Kbs

In fact, this is an instance of an attack on the Wide-Mouthed Frog protocol
given in [3]: the enemy can intercept a message sent by the server and, after
prefixing the appropriate user identity to the message, send it back to the server
as an initiator message. He can repeat this more than once providing that each
interception occurs within the time delay, d. The effect of this is to keep the
message’s timestamp recent even though the age of the message could be more
than the acceptable delay, d. This delaying tactic makes it possible for b to
receive the message containing the key kab with timestamp Ta+3d (i.e. the event
in T) even if the events in R (i.e. a transmitting with a timestamp between Ta+2d
and Ta+3d) are blocked, since the original transmission with timestamp Ta is not
blocked. If, as is implied by our problematic subgoals, d is set to zero then the
problem does not arise because the enemy would have to act immediately and
the message would not age. However, setting d to be zero would be an unrealistic
assumption.

The alternative solution to this problem is to add an extra field to the en-
crypted part of the messages to distinguish between the initiator and responder
messages. That is, the modified protocol becomes:

(1) A → S : A, {B ,Ta,Kab, initiate}Kas
(2) S → B : {A,Ts,Kab, respond}Kbs

The corresponding modification to our PVS definition confirms this: re-running
the proof easily yields a rank function which successfully verifies the amended
protocol.

234 N. Evans and S. Schneider

5 Discussion
Introducing Time

This report has documented the generalisation of the PVS embedding of CSP
(presented in [5]) by implementing event-based time. This allows the analysis of
protocols that use timestamps in order to fulfil one or more security properties.
In our example, the intended property is the freshness of a session key. However,
it is still possible to analyse security protocols that have no time critical features,
and existing proofs of authentication properties for untimed protocols have been
repeated in the timed setting without modification.

The strength of the framework is that it will also allow more complicated
time-dependent behaviour of the protocol agents to be expressed naturally, and
analysed. Protocols, when modelled for analysis, are generally (implicitly) con-
sidered to halt if they do not make progress. Yet their implementations may
use a timeout mechanism which triggers retransmission of a message a number
of times before eventually giving up on the protocol. Such mechanisms might
have a bearing on protocol correctness, particularly where timestamps are in-
volved, and a framework for describing and analysing them will be of benefit.
Investigation of such examples is the subject of ongoing research.

Other theorem-proving and model-checking approaches such as those descri-
bed in [6], [1], [14], [7] among others do not offer this benefit explicitly, though
it should be possible to extend their work to a general framework for handling
time-critical behaviour of protocols, for example by modelling timeouts by use
of timeout events (which may or may not contain specific time values). However,
the coding up required would make the complex behaviour difficult to under-
stand, and it is preferable to use a language designed to express such real-time
behaviour.

Lowe’s Casper tool [6] allows timed authentication properties to be checked
by including a separate clock process within the model and requiring that every
event involving time should synchronise with the clock to ensure the correct
value. Thus protocol agents are not themselves described as timed processes,
but they treat time values as they do other data values and use the clock as the
time server. Similarly, Paulson defines the timestamp provided on a message in
terms of a function of the events that have already occurred, which is akin to
Lowe’s approach, in the sense that the time value is obtained from some source
external to the protocol. Again, time values are considered as data values, and
time-critical behaviour such as timeouts are not expressed within this framework.
Strand spaces [14] can handle timestamps, but would need times associated
with all messages (even those without timestamps) in order to handle time-
critical agent behaviour. The NRL Protocol Analyser does not currently handle
timestamps, though they can (and will) be introduced by means of coding up
what is essentially a global clock [8].

Analysing Time Dependent Security Properties in CSP Using PVS 235

PVS

The PVS type system is very expressive and makes theory definitions more suc-
cinct. We have used subtyping to generalise the set of events in our CSP embed-
ding. Events are now either value passing (trans and rec are events that enable
the exchange of messages) or pure synchronisations (such as tock events). Our
example analysis has demonstrated the use of dependent types in process defi-
nitions. Recall that messages containing a timestamp were received only if their
timestamp values were ‘recent’ according to a numeric argument representing
the current time.

Altering the features of an existing PVS theory can be a nontrivial, time
consuming exercise. Changes that are made to theories at the lower levels of
a theory hierarchy can have a detrimental effect on the established proofs of
theorems higher up the proof chain. The use of PVS’s status-proof commands
helps to indicate which proofs are affected. If, after the change, a lemma’s sta-
tus becomes unfinished then one can deduce that the change has had a direct
effect on the lemma. Otherwise, if its status becomes proved-incomplete then
there is an indirect effect on the lemma (the proof still works but refers to other
unfinished lemmas). In our case, the addition of tock events has an (indirect)
impact on the PVS implementation of the central authentication theorem. Ho-
wever, this work on the underlying theory needs to be done only once, and the
payoff is a more general approach framework for analysing more classes of aut-
hentication protocol. In particular, a PVS proof shows that the central rank
function theorem remains true in the more general semantic framework.

Figure 3 gives an approximation of the hierarchy of the theories that are
influenced by the modification of the event data-type. This is just a small part
of the total hierarchy because the theories that occur lower down (such as the
definitions of the CSP trace semantics) are unaffected by changes to event. (In
fact, they are polymorphic with respect to events.)

The PVS environment also provides some features that have assisted the
development of this project. In particular, the proof status commands are a
useful source of information.

The theorem prover is used in an analysis to derive the conditions that must
be satisfied by a rank function prior to its construction. These conditions are
the leaves of the open branches of the proof tree. Our analysis has shown that a
set of conditions can be inconsistent, signifying that no such rank function can
be constructed. We have also shown that once a rank function has been defined
it can be used to close the branches of the proof tree. The PVS strategy GRIND
can be used to close such branches. However, it is common for GRIND to generate
multiple subgoals from one condition, and closing these branches can be very
tedious.

Future Work

Investigation of this framework will benefit from a more significant example
in which protocol agents exhibit time-critical behaviour. This does not require

236 N. Evans and S. Schneider

event datatype

Network definition
and authentication
theorem

enemy
definition

assignment of each
agent’s local events

rank function
properties

general properties
of event traces

Fig. 3. The theory hierarchy

analysis of new protocols, but rather analysis of existing protocols in which the
real-time behaviour of agents such as retransmission on timeout is modelled
explicitly, rather than abstracted away. We need to understand the impact these
implementation issues can have on protocol correctness, and may be able to
obtain some general results about timing mechanisms.

As a tool for protocol analysis, this approach is not user friendly. The whole
approach could benefit from a Casper-style interface [6] that allows a refined
level of interaction. The construction of more specialised strategies that hide in-
dividual steps of a proof whilst allowing the user to intervene when some security
or rank function expertise is needed. This automates the process and makes it
more amenable to those with limited PVS knowledge by allowing communication
at a level higher than primitive prover commands.

Acknowledgements. The authors would like to thank the anonymous referees
for their comments, and are grateful to the UK EPSRC for funding under grant
GR/M33402.

References

1. G. Bella and L.C. Paulson. Using Isabelle to prove properties of the kerberos
authentication system. In DIMACS Workshop on Design and Formal Verification
of Security Protocols, 1997.

2. M. Burrows, M. Abadi, and R. Needham. A logic of authentication. ACM Tran-
sactions on Computer Systems, 8, 1989.

3. John Clark and Jeremy Jacob. On the security of recent protocols. Information
Processing Letters, 56(3):151–155, November 1995.

Analysing Time Dependent Security Properties in CSP Using PVS 237

4. D. Dolev and A. C. Yao. On the security of public key protocols. In IEEE Tran-
sactions on Information Theory, volume 29(2), 1983.

5. B. Dutertre and S. Schneider. Embedding CSP in PVS. an application to authen-
tication protocols. In Elsa Gunter and Amy Felty, editors, Theorem Proving in
Higher Order Logics: 10th International Conference, TPHOLs ’97, volume 1275 of
Lecture Notes in Computer Science. Springer-Verlag, 1997.

6. G. Lowe. Casper: A compiler for the analysis of security protocols. In Proceedings
of the 10th IEEE Computer Security Foundations Workshop, 1997.

7. C. Meadows. Language generation and verification in the NRL Protocol Analyzer.
In Proceedings of the 10th IEEE Computer Security Foundations Workshop, 1996.

8. C. Meadows. personal communication, 2000.
9. S. Owre, J. M. Rushby, and N. Shankar. PVS: A prototype verification system.

In Deepak Kapur, editor, 11th International Conference on Automated Deduction
(CADE), volume 607 of Lecture Notes in Artificial Intelligence, pages 748–752,
Saratoga, NY, June 1992. Springer-Verlag.

10. L. C. Paulson. Isabelle: A Generic Theorem Prover. Springer, 1994.
11. S. A. Schneider. Verifying authentication protocols in CSP. IEEE Transactions

on Software Engineering, 1998.
12. S.A. Schneider. Timewise refinement for communicating processes. Science of

Computer Programming, 28, 1997.
13. S.A. Schneider. Concurrent and Real-time Systems. Wiley, 1999.
14. J. Thayer, J. C. Herzog, and J. D. Guttman. Strand spaces: Proving security

protocols correct. Journal of Computer Security, 1999.

	Introduction
	Review of Previous Work
	Communicating Sequential Processes
	Embedding CSP into PVS
	Analysing Security Protocols
	Authentication Properties

	Event-Based Time
	The Timed Network Model

	An Example Analysis
	The Agents
	The Authentication Property

	Discussion

