
The Role of Conversation Policy
in Carrying Out Agent Conversations

Laurence R. Phillips, Hamilton E. Link
Sandia National Laboratories

MS 0445
Albuquerque, NM 87185

{ Irphill, helink) @sandia.gov

JUN 0

Abstract
Structured conversation diagrams, or conversation

specifications, allow agents to have predictable interactions
and achieve predefined information-based goals, but they
lack the flexibility needed to function robustly in an
unpredictable environment. We propose a mechanism that
combines a typical conversation structure with a separately
established policy to generate an actual conversation. The
word ”policy” connotes a high-level direction external to a
specific planned interaction with the environment. Policies,
which describe acceptable procedures and influence
decisions, can be applied to broad sets of activity. Based on
their observation of issues related to a policy, agents may
dynamically adjust their communication patterns. The
policy object describes limitations, constraints, and
requirements that may affect the conversation in certain
circumstances. Using this new mechanism of interaction
simplifies the description of individual conversations and
allows domain-specific issues to be brought to bear more
easily during agent communication. By following the
behavior of the conversation specification when possible
and deferring to the policy to derive behavior in exceptional
circumstances, an agent is able to function predictably
under normal situations and still act rationally in abnormal
situations. Different conversation policies applied to a given
conversation specification can change the nature of the
interaction without changing the specification.

Introduction
A: An argument is a connected series of statements

intended to establish a proposition.
B: No, it isn’t!
A: Yes, it is! It isn ’t just contradiction!

Policy discussion, Monty Python,
Argument Clinic Sketch

Software agents communicate while they pursue goals. In
some cases, agents communicate specifically in order to
accomplish goals. We restrict our interest in this paper to
goals that can be described as information states, that is,
information goals. We discuss agents that intend to
accomplish information goals by communicating.

Although individual speech acts have been well-
characterized, consensus on higher-order structured
interactions has not been reached. There is little or no

discussion in the literature of how to constrain the behavior
of an agent during communication in response to a
dynamic environment.

When a set of communication acts among two or more
agents is specified as a unit, the set is called a
conversation. Agents that intend to have a conversation
require internal information structures that contain the
results of deliberation about which communication acts to
use, when to use them, whom the communications should
address, what responses to expect, and what to do upon
receiving the expected responses. We call these structures
conversation specifications, or specifications for short. We
claim that specifications are inadequate for fully describing
agent behavior during interaction.

Consider two agents who are discussing the location of a
surprise party for a third agent, who is not present. When
that agent enters the room, all discussion of the party
suddenly ceases. The cessation occurs because the first two
agents understand that the third agent cannot receive any
information that such a party is being considered.
Conversely, suppose that the conversation is about a party
in honor of the third agent and all three agents know the
third agent is aware of it. Now, when the third agent enters
the room, the conversation continues.

Are the first two agents having the same conversation in
both cases? We claim the answer is “Yes, but they’re
operating under different policies.” In both cases, they are
having a conversation whose essence is organizing the
party. The conversation might roughly be specified to .
contain information exchange components (e.g., to
establish a set of possible locations), allocation
components (“I’ll call these two restaurants, and you call
this other one”), and a continuation-scheduling component
(“I’ll call you tomorrow with what I find out and we’ll take
it from there”). These are all matters that we expect to find
in a conversation specification. On the other hand, the
decision of whether to stop talking when a specific third
party enters the room is based on a mutually understood
policy and might reasonably be applied to any number of
conversations, for example, negotiations about the price of
a commodity on which the third agent is bidding.

mailto:sandia.gov

DISCLAIMER

This report was prepared as an account of work sponsored
by an agency of the United States Government. Neither the
United States Government nor any agency thereof, nor any
of their employees, make any warranty, express or implied,
or assumes any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information,
apparatus, product, or process disclosed, or represents that
its use would not infringe privately owned rights. Reference
herein to any specific commercial product, process, or
service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its
endorsement, recommendation, or favoring by the United
States Government or any agency thereof. The views and
opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or
any agency thereof.

DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.

Historically the agent communication literature has used
the word “policy” to refer to the description of the
structure of interaction between a number of agents,
generally two but sometimes more (Bradshaw et al. 1997).
The dictionary, however, defines “policy” as “a high-level
overall plan capturing general goals and acceptable
procedures.” This coincides with what we expect of a
conversation policy: an agent using a conversation policy
would operate within certain constraints while attempting
to satisfy general information-based goals. When
discussing procedures and constraints of interaction
beyond the basic structure of a conversation, the word
“policy” has connotation that we feel is more appropriately
bound to the procedures and constraints rather than to the
basic structure. For the latter, then, we will instead use the
word “specification,” and use the word “policy” to refer to
the former.

Policies for Interaction
The focus of our work is to create a mechanism for
combining specifications with policies that constrain the
behavior of an agent in order to generate conversations
among agents.

We have begun to design a mechanism that uses the
specification’s description of input states and actions based
on them and the policy’s description of constraints,
limitations, and requirements together to determine an
agent’s response to a message. Given a suitable
mechanism, the specification and the policy can be
implemented as data objects. The specification defines the
structure for the conversation, and the policy defines the
acceptable procedures, rules, and constraints for the
conversation.

We can interact with and speak of agents as intentional
systems (Dennett 1987). We assume that agents are able to
emit illocutions and that illocutions can have
perlocutionary effect on other agents that “hear” them
(Searle 1969). (We follow Searle in using iZlocution to
mean an utterance intended to affect the listener and
perlocution to mean the production of effect on the
listener). This means that an agent can emit information
with the intent of altering the information state of some
other agent, that the information can be received by some
other agent, and that receipt of this information can cause
the recipient to be in an information state intended by the
emitter. The emitter desires the recipient to be in a certain
state because the emitter believes that this either is or
assists in achieving one or more of its goal states.

Conversation specifications are distinctly similar to
KAoS conversation policies (Bradshaw et al. 1997). The
specification dictates the transitions and outputs made by
the agent in response to input. A conversation policy is a
set of constraints on the conversation specification that

limit the behavior of an agent beyond the requirement of
following the procedures and structures of the conversation
specification. The policy object is used by the mechanism
to make decisions about acceptable courses of action when
the conversation specification fails to completely
determine a course of action. Lynch and Tuttle said it well:
“Our correctness conditions are often of the form ‘if the
environment behaves correctly, then the automaton
behaves correctly.”’ (Lynch and Tuttle, 1989) This stems
from the constraint that IOA’s cannot block inputs, the
automaton is permitted to exhibit arbitrary behavior when
“bad” or unexpected inputs occur. What happens when the
environment doesn ’t behave “correctly?’ This is where
policy applies.

Policy differs from specification in that specifications
describe individual patterns of interactions, while policies
are sets of high-level rules governing interactions. It is
possible for a class of conversation policies to have
subclasses. For one policy to be a subclass of another, the
subclass must be more strict (more constraining) in at least
one attribute and no less constraining in any.

Our new mechanism combines the policies and
specifications to determine the set of conversations that
can be generated. When policies change in the midst of a
conversation, the goal may become infeasible. In our
formulation, the conversation policy does not specify the
types of messages that can occur. It is made up of
constraints on who can participate, and under what
circumstances, whether sub-conversations can be initiated
within an existing open conversation, whether equivalent
conversations can take place in parallel with the same
participating entities (e.g., an agent can’t carry on two
price negotiation conversations with the same entity w.r.t.
the same object). We claim that issues of specification are
orthogonal to issues of policy; specifications define the
structure of interactions, while policies govern the way
interactions are carried out.

Methods
We developed our current agent conversation mechanism
using the Standard Agent Architecture (SAA) developed
by the Advanced lnformation Systems Lab (Goldsmith,
Phillips, and Spires 1998) at Sandia National Laboratories.
The SAA provides a framework for developing goal-based
reasoning agents, and we are currently using a distributed
object system that enables agents to send each another
simple objects or sets of information. We are using the
Knowledge Query and Manipulation Language (KQML)
(Labrou and Finin 1997) as our message protocol.

Interacting with an agent first requires that the agent be
able to correctly identify and respond to illocutionary
messages. A situated agent in pursuit of goals must be able
to answer two questions: To which, if any, of its current

goals does new information relate, and what actions, if
any, should it execute based on new information that
relates to a given goal? In the SAA, the primary structure
that enables this is the agent’s stimulus-response table
(SRT). An agent anticipating input of a certain type puts an
entry into its SRT, which maps stimuli (by class or
instance) to the appropriate action. Our system currently
requires messages to contain an explicit reference to the
context within which the SRT entry was created. The
reference is realized as the object identifier (OID) of the
current conversation object that gave rise to the message.

When an input arrives, the appropriate SRT entry is
retrieved and its goal is undeferred (having previously
been deferred, presumably awaiting relevant input), which
activates the goal. The agent now determines how the new
information in the context affects the goal and either marks
it satisfied, failed, or deferred or continues to attempt to
satisfy the goal. When satisfaction of the goal requires a
speech act, the agent creates an utterance, delineates the
context, embeds the context signature in the utterance,
attaches the goal to the context, places the entry in the
SRT, defers the goal, and executes the utterance. In short,
illocution is a deliberate act that creates an utterance and
sets up an expectation of the response that the recipient
will make.

To engineer a conversation, the entire set of context
descriptors of interest is laid out as a set of subgoals, each
of which is satisfied by gathering specific information. We
have automated the construction of an utterance from a
context, the updating of the context to reflect the new
information conveyed by the input, and the connectivity
that enables the utterance and the input to refer to the same
context. Specialized code is written to construct goals,
execute side effects, maintain the SRT, and so on.

Composing speech acts in a theoretically predictable
fashion is more difficult; this is the motivation for creating
a structured way of merging specification and policy at run
time to get a structured interaction that is forced to remain
within certain operational boundaries.

In our current mechanism, policy is embedded in the
conversation mechanism as part of the design. A policy
change, for example, that an agent should institute a
timeout and ignore all messages responding to a particular
request after the timeout expires, would require
reengineering the conversation. The mechanism would be
much more maintainable given an explicit policy object
that could just be changed to reflect the fact that there’s
now a timeout. Our essential thesis is that policies and
conversation specifications should be independent so that
conversations could be switched under the same policy and
policies could be changed without changing existing
conversations.

~ ~~~ ~ ~

Figure 1. A conversation specification that does not specify
a variety of potential constraints on the agent‘s activities.

Conversation policy
Consider the conversation in Figure 1. It describes a
session allowing agent A to determine agent B’s identity,
offer B a choice of services and ascertain B’s selection,
and perform a task based on the selection. Describing the
conversation is generally simple for such things: when a
request or assertion comes in, the agent deliberates, returns
information to the initiator, and anticipates the
continuation. The two participants are responding to one
another in turn, barring interruption, retransmission, or
communication failure. There is no representation of what
happens when the conversation is interrupted or when an
agent retransmits a message. These issues are matters of
policy that must be dealt with separately.

KAoS conversation “policies” enable definite courses of
action to be established and fail-stop conditions to be dealt
with (Bradshaw et al. 1997). They also imply mechanisms
for initiating and concluding conversations, Specifications
play the crucial role in agent communication of providing
structure, but they do not, for example, describe whether a
discussion can be postponed, or, if so, under what
conditions or for how long. Indeed, KAoS conversation
“policies” appear to concern matters of conversation
specification, fundamentally how to respond to input given
the current information state, rather than matters of
conversation policy, such as what to do when interrupted,
whether the conversation can be postponed, or whether
there is a time constraint on reaching an end state.

Policy issues are important. One constraint imposed by
the policy in Figure I is that it requires turn-taking. If
agent A receives several messages in a row, it may respond
to each in turn without realizing that, say, B’s third
message was sent before A’s second response. If agent A
cannot detect the violation of the turn-taking policy, it
might consider the second and third messages in an
outdated context. A similar situation could occur if several

agents were communicating and one were speaking out of
turn. Without policy, designing a mechanism to deal with
these violations means that a conversation specification
that enforced turn-taking and one that merely allowed it
would be two different things that would need to be
maintained separately and activated separately by the
agent. Furthermore, designing them into a system that had
no notion of turn-taking would require that every
state/action pair of every conversation specification be
examined to see what should now happen if turn-taking is
violated. At worst, accommodating a single policy issue
doubles the number of conversation specifications an agent
might be called upon to employ.

Examining constraints immediately leads to ideas for
policies that replicate familiar patterns of interaction, such
as a forum policy or a central-point-of-contact policy.
Different classes of states, changes in context, and the
particular protocol of communication used are independent
of the conversation policy, although some make more
sense in one policy or another. The web page and
information-state context, for example, make the most
sense in a I : I turn-taking policy when dealing one-on-one
with a number of individual humans. KQML, in contrast,
has many performatives that support broadcasting to a
group of agents involved in the same conversation. In
practical terms we may end up having to constrain which
policies can be upheld based on communication details.

An explicit representation of policy also enables an
agent to express the policy under which it is operating. It
is easy to transmit, say, a policy message outlining the
level of security required for any of several possible
upcoming conversations for which the recipient already
has the specifications. In contrast, without policy, the
“secure” version of each conversation specification needs
to be transmitted anew. If two agents agree on a policy at
the beginning of a conversation, the amount of
communication required to determine a course of action
once a violation has occurred can be minimized,

The structure of the conversation depends thus on the
nature of the information and how this changes the state of
the conversation. By abstracting to the policy level, we
enable a set of constraints to support the execution of
several conversations, as long as they have the same kinds
of sfates and the same kinds offransifions, Le., the nature
of information in a state does not matter as long as there is
a common means of mapping input and state to another
state in the conversation. If the conversation can be
described as a collection of states with transitions between
them, then the conversation policy should be describable
as a form of transition function operating on the current
perceived state of the world and the communications the
agent is receiving.

.

n Announce

turn-taking Responses

timeout-loses-turn
timout after 1 minute
interrupt postpones

Figure 2. Policy and specification as seen by the announcer.
The policy allows conversations to be postponed, which the
conversation specification need not explicitly state.

Example
Consider the specification in Figure 2 . Agent A,, the

announcer, broadcasts a message to a group of agents
AI.. .A, and gathers responses from the group before
continuing. By itself, however, this specification leaves
many questions unanswered-for example, if some agent
doesn’t respond at all, or responds more than once in a
cycle, what should agent AI do? These questions may be
asked of many specifications, and may have different
answers even from one interaction to the next.

The policy in Figure 2 provides answers to some
questions of this sort. The policy enforces turn-taking,
meaning that agents in the group have only one
opportunity to respond to each broadcast. If they do not
respond within one minute of each broadcast, they lose the
chance to do so during that turn. This might be the case if
broadcasts were frequent. If more pressing matters come
up during a session, the discussion is postponed (perhaps
leaving messages in the announcer‘s queue to be dealt with
later), but it can be expected that the session will resume at
some future time.

How might we tailor policies to get usefully different
behavior? For policies concerned with fault-tolerance, the
same policies could be used in many conversations to
handle the same expected problems, but policy can also be
used to control conversations during the course of normal
interaction as well.

Suppose we combine the specification above with a
policy that does not enforce turn taking, but rather says
that newer messages from an agent take precedence over
older messages. The announcer is forbidden from sharing
message data among group members, and the time allowed
for responses to each broadcast is 24 hours. Combining the
policy and specification with a sales announcer produces a
silent auction. If the policy were replaced with one that had

a time limit of a few minutes and required the announcer to
rebroadcast new information to the group, the same
specification could be used to produce an English auction.
Using different policies with the same specification as a
foundation can produce a variety of desirable behaviors
with minimal changes to the agent’s code.

The Impact of a Policy Mechanism
Consider a set of state/action pairs with the property that

when an agent perceives the world to be in a given state
and executes the corresponding action, the world state that
results is described by the “state” component of one of the
pairs. States with no corresponding actions are end states.
Such a set embodies no notion of intent, but an agent can
commit to achieving one of the end states by executing the
actions. The point of an action specification is to explicate
a series of acts that will result in one of a known set of
states.

A conversation specification is such a set of state/action
pairs; the specified states are information states and the
specified actions are speech acts. A conversation
specification explicates a series of speech acts and their
triggering states that will result in a one of a known set of
information states. An end state may be a goal state, Le., a
state whose achievement is the agent‘s intent, or a state in
which the desired state is known or believed to be either no
longer desirable or unachievable.

The conversation specification may specify states and
actions that are never realized; e.g., failure-denoting states
or error-correcting actions. All actions and states are only
partially specified, in the sense that none specify the entire
state of the world, because the number of features that
might be observed at execution time is infinite, and only a
few of these are perceived at specification design time as
having any material effect on movement towards the goal.
A plan that includes forming a team might specify neither
who is to fill every role on the team, though a specific
agent must be cast in each role, nor in what order the roles
are to be filled, because the specific order has no effect on
the goal state.

Neither the conversation specification nor the policy
controls the thread of conversation; the specification
specifies the invariant part of the conversation’s course,
and policy specifies constraints on behavior, not the
behavior itself. Control falls to the mechanism that
combines the specification object and the policy object to
arrive at an executable action at deliberation time. In the
remainder of this section, we examine team formation with
respect to what is determined by the conversation
specification and what is determined by policy.

Assume that an agent is in a state where will listen until
it receives a message from another agent. When a message
arrives, the agent’s policy is to select and commit to

achieve one of the end states of a particular conversation
specification; in other words, the agent’s policy is to have
a conversation when contacted, Leaving aside for the
moment the question of how the agent makes the selection,
assume the agent receives a message asking it to commit to
achieving a goal and that it selects a conversation
specification wherein it will inform the requester that it has
committed if it commits and that it will not commit if it
doesn’t. This could be a matter of policy; suppose there
were many agents available and this was known to the
agent. The agent might reason that the best policy would
be to report only when it could commit and to keep silent
otherwise, in order to reduce bandwidth use.

What happens when an agent achieves a goal to which it
has committed? Should the agent report satisfaction to the
requester, when there is one? If this were a matter of
policy, it could be turned on or off as overarching issues
(security, priority, traffic levels, etc.) dictated and
overridden as needed by specific policy overrides from the
requester.

What should the agent do when it is asked to achieve a
goal it believes it cannot achieve by itself! It might be the
agent’s policy to refuse to commit and to so report. An
alternative policy would be to attempt to acquire
commitments from other agents to assist. This would begin
the team formation phase.

When the agent has acquired commitments from agents
whose combined effort it believes can achieve the goal, it
builds the team roster of agents {A,, ... , An], marks the
team formation goal satisfied, and ends the team formation
phase (this ignores the issue of whether everyone on the
team must believe the team can achieve the goal in order to
commit). It might be the case that the agent must form the
team within a given time period; what the agent should do
when it does not receive sufficient commitments within the
allotted time is a matter of policy. A reasonable policy
would be to report to the original requester that the goal is
unsatisfiable. This can be enforced at a high level, that is,
whenever the agent has committed to achieving a goal, and
the source of that goal is another agent, the agent must
notify the source agent as to the achievement or non-
achievement of that goal. The agent holding a team roster
for a given goal constructs a joint persistent goal (JPG)
(Cohen and Levesque 1991), allocates the subgoals
(assume the goal is linearizeable so that allocation is
deterministic) and sends each subgoal and the JPG to the
appropriate team member. The JPG contains a statement of
the original goal and the team roster. When an agent A, has
achieved its subgoal, it multicasts this fact to the rest of the
team using the roster in the JPG. Here, policy to notify
only the requester must be overridden by JPG-specific
policy. Every team member now believes A, has achieved
its subgoal. Once A, believes that every team member has
achieved its subgoal, it believes that the JPG has been

satisfied and it multicasts this fact to the rest of the team.
At this point, A, believes that every team member believes
that the JPG has been satisfied and is free to leave the
team.

We believe using policy objects to make these decisions
at run time instead of at design time simplifies the job of
the software developer and makes the resulting agent
system more flexible and dynamic.

Conclusions
A conversation policy must be established so that
communicating agents have a common logical and
contextual structure for communication. This allows each
agent to establish predictive models of one another’s
behavior in response to information and to plan and reason
about the outcome of conversations with the other agent.
Each agent can establish this model based on information
that another agent can perform a certain conversation
specification while conforming to certain requirements.

We advocate a separate conversation policy structure
that embodies the constraints that will be enforced while a
conversation is going on-using a conversation
specification as a template or model. A participant in a
conversation must have some means of determining
whether events that transpire during the conversation bear
on the realization of its goals. It is relatively
straightforward to specify the normative events in a
conversation; the speaker intends to have engendered a
specific state in the listener, and the normative response
types are limited. On the other hand, it is not generally
possible to specify all the exceptions. Even if we could, the
necessary responses depend on states of the environment,
not states of the conversation. A policy must be able to
take the state of the environment into consideration and
constrain the behavior of virtually any conversation
specification to which it is applied.

Future Developments
It would be useful to define and prove certain formal
properties of policies when combined with specifications,
for example,

e

e

e

e

e

Is the question of whether a conversation conforms to
a given conversation policy decidable, and if so, how
can this be tested?
Does conversation X conform to some conversation
policy, and if so, which one?
What is the maximally confining policy to which a set
of conversations conforms?
Will the conversation generated from a specification
terminate when following a particular policy?
Under certain circumstances, a policy may render
given specifications impossible. What is the minimal

set of constraints that can be established that will still
allow a set of conversations to take place?
Given a policy that has the potential to render a
conversation impossible, what should an agent do?

Consider for a moment the specification as a description
of an I/O automaton (IOA) (Lynch and Tuttle, 1989). The
IOA’s 110 table determines the bulk of an agent’s behavior,
and the IOA’s input column describes the agent‘s
information states. These states can be traversed as an
agent internalizes information in messages it has received
(Le., as those messages take perlocutionary effect). The
agent then executes the specified internal and external
actions specified by the right-hand side of the automaton’s
I/O table. This theory is appealing because the structure of
the automaton specifies the patterns of interaction that can
occur in a mathematically tractable formalism. Analyzing
collections of speech acts in terms of I/O automata would
be possible if it were not for the dependency of the proofs
about the IOAs on their being input-enabled. Agents that
filter their stimuli before taking action or replying do not
meet this requirement, so the applicability of IOA theory is
questionable.

A formal theory that establishes conversation semantics,
describes how the semantics of individual speech acts
contribute to conversation, and allows us to demonstrate
certain characteristics of combinations of specifications
and policies may or may not be useful. When discussing a
system whose purpose is to deal with the unexpected, it
may be more reasonable to engineer a policy that provides
some reasonable capstone when an unanticipated problem
arises. Engineering conversations that meet certain
requirements, dynamically generating policies and
specifications based on beliefs and intentions, and
modifying conversations based on changing constraints
may allow productive agent behavior even in the absence
of a complete theoretical description.

Acknowledgements
This work was performed at Sandia National Laboratories,
which is supported by the U.S. Department of Energy
under contract DE-AC04-94AL85000.
Regina L. Hunter made numerous valuable comments on
the manuscript.

References
Bradshaw, J.; Dutfield, S.; Benoit, P.; and Wooley, J.
1997. “KAoS: Toward an Industrial-Strength Open Agent
Architecture,” in Sofivare Agents, AAAI PressiMIT Press.

Cohen, P. R., and Levesque, H. J. 1991. Confirmation and
Joint Action. In Proceedings of thel2th Annual

Sandia is a inultiprogram laboratory
operated by Sandia Corporation, a
Lockheed Martin Company. for the
United States Deparmlent of Energy
under contract DE-.ACO-t-9-1AL850.

International Joint Conference on ArtiJicial Jntelligence.pp
951-959, Menlo Park, CA, Morgan Kaufmann

Dennett, D.C. 1987. The Intentional Stance. cambridge,
MA: MIT Press.

Goldsmith, S.; Phillips, L.; and Spires, S. 1998. A multi-
agent system for coordinating international shipping. In
Proceedings of the Workshop on Agent Mediated
Electronic Trading (AMET’981, in conjunction with
Autonomous Agents ’98, MinneapolisiSt. Paul, MN, USA

Labrou, Y. and Finin, T 1997. A Proposal for a new
KQML Specification, Technical Report, CS-97-03, Dept.
of Computer Science and Electrical Engineering,
University of Maryland, Baltimore County

Lynch, N. A. and Tuttle, M. R. 1989. An Introduction to
InpuUOutput Automata, Technical Memo, MIT/LCS/TM-
373, Laboratory for Computer Science, Massachusetts
Institute of Technology

Searle, J . 1969. Speech Acts, Cambridge, UK: Cambridge
University Press.

