Skip to main content

Embedding of Systems of Affine Recurrence Equations in Coq

  • Conference paper
Theorem Proving in Higher Order Logics (TPHOLs 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2758))

Included in the following conference series:

Abstract

Systems of affine recurrence equations (SAREs) over polyhedral domains are widely used to model computation-intensive algorithms and to derive parallel code or hardware implementations. The development of complex SAREs for real-sized applications calls for the elaboration of formal verification techniques. As the systems we consider are generic, i.e., depend on parameters whose value are not statically known, we considered using theorem provers, and have implemented a translation from SAREs into the Coq system. We take advantage of the regularity of our model to automatically generate an inductive type adapted to each particular system. This allows us to automatically prove that the functional translation of equations respects the wanted fixpoint properties, and to systematically derive mutual induction schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. http: http://www.irisa.fr/lande/pichardie/coqalpha/

  2. Abel, A.: Specification and verification of a formal system for structurally recursive functions. In: Coquand, T., Nordström, B., Dybjer, P., Smith, J. (eds.) TYPES 1999. LNCS, vol. 1956, pp. 1–20. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  3. Barthou, D., Feautrier, P., Redon, X.: On the equivalence of two systems of affine recurrence equations. Technical Report 4285, INRIA (2001)

    Google Scholar 

  4. Boulton, R.J., Slind, K.: Automatic derivation and application of induction schemes for mutually recursive functions. In: Palamidessi, C., Moniz Pereira, L., Lloyd, J.W., Dahl, V., Furbach, U., Kerber, M., Lau, K.-K., Sagiv, Y., Stuckey, P.J. (eds.) CL 2000. LNCS (LNAI), vol. 1861, pp. 629–643. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  5. Bove, A.: General Recursion in Type Theory. PhD thesis, Department of Computing Science, Chalmers University of Technology, Sweden (November 2002)

    Google Scholar 

  6. Cachera, D., Quinton, P., Rajopadhye, S., Risset, T.: Proving properties of multidimensional recurrences with application to regular parallel algorithms. In: FMPPTA 2001, San Francisco, CA (April 2001)

    Google Scholar 

  7. Delahaye, D.: A Tactic Language for the System Coq. In: Parigot, M., Voronkov, A. (eds.) LPAR 2000. LNCS (LNAI), vol. 1955, pp. 85–95. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  8. Ferrante, J., Rackoff, C.: A decision procedure for the first order theory of real addition with order. SIAM Journal of Computing (1975)

    Google Scholar 

  9. Filliâtre, J.-C.: Preuve de programmes impératifs en théorie des types. Thèse de doctorat, Université Paris-Sud (July 1999)

    Google Scholar 

  10. Karp, R.M., Miller, R.E., Winograd, S.: The organization of computations for uniform recurrence equations. Journal of the ACM 14(3), 563–590 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  11. Katsushige, M., Kiyoshi, N., Hitoshi, K.: Pipelined LMS Adaptative Filter Using a New Look-Ahead Transformation. IEEE Transactions on Circuits and Systems 46, 51–55 (1999)

    Article  Google Scholar 

  12. Nowak, D., Beauvais, J.R., Talpin, J.P.: Co-inductive axiomatization of a synchronous language. In: Grundy, J., Newey, M. (eds.) TPHOLs 1998. LNCS, vol. 1479, pp. 387–399. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  13. Pfeifer, H., Dold, A., von Henke, F.W., Ruess, H.: Mechanised semantics of simple imperative programming constructs. Technical Report UIB-96-11, Ulm University (December 1996)

    Google Scholar 

  14. Saouter, Y., Quinton, P.: Computability of Recurrence Equations. Technical Report 1203, IRISA (1990)

    Google Scholar 

  15. LogiCal Project The Coq Development Team. The Coq proof Assistant, Reference Manual

    Google Scholar 

  16. Wilde, D.: A library for doing polyhedral operations. Technical Report 785, Irisa, Rennes, France (1993)

    Google Scholar 

  17. Wilde, D.K.: The Alpha language. Technical Report 999, IRISA, Rennes, France (January 1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cachera, D., Pichardie, D. (2003). Embedding of Systems of Affine Recurrence Equations in Coq. In: Basin, D., Wolff, B. (eds) Theorem Proving in Higher Order Logics. TPHOLs 2003. Lecture Notes in Computer Science, vol 2758. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10930755_10

Download citation

  • DOI: https://doi.org/10.1007/10930755_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40664-8

  • Online ISBN: 978-3-540-45130-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics