
The Design and Implementation

of Protocol-Based Hidden Key Recovery

Eu-Jin Goh1, Dan Boneh1, Benny Pinkas2, and Philippe Golle1

1 Stanford University
{eujin,dabo,pgolle}@cs.stanford.edu

2 HP Labs
benny@pinkas.net

Abstract. We show how to add key recovery to existing security pro-
tocols such as SSL/TLS and SSH without changing the protocol. Our
key recovery designs possess the following novel features: (1) The Key
recovery channels are “unfilterable” — the key recovery channels can-
not be removed without also breaking correct operation of the protocol.
(2) Protocol implementations containing our key recovery designs can
inter-operate with standard (uncompromised) protocol implementations
— the network traffic produced is indistinguishable from that produced
by legitimate protocol implementations. (3) Keys are recovered in real
time, hence most or all application data is recovered. (4) The key re-
covery channels exploit protocol features, rather than covert channels in
encryption or signature algorithms.
Using these designs, we present practical key recovery attacks on the
SSL/TLS and SSH 2 protocols. We implemented the attack on SSL/TLS
using the OpenSSL library, a web browser, and a network sniffer. These
tools allow us to eavesdrop on SSL/TLS connections from the browser
to any server.

1 Introduction

Intuitively, protocol key recovery means that a third party, by observing network
traffic, can recover the secret key protecting the data transferred between two
parties. Unlike previous key recovery or escrow schemes that work at the level
of encryption and signature algorithms [23, 24], our designs use features of the
protocol. We also consider practical issues such as ease of deployment and usage.

Our key recovery designs possess the following properties.

1. Unfilterability
Network filters cannot remove key recovery channels from protocol messages
without also breaking the correct operation of the protocol.
Previously suggested key escrow schemes and classic covert channels do not
have this unfilterable property. For example, timing-based channels intro-
duced by Lampson [14] leak secret bits by using small variations in packet
transmission time. The timing-based covert channel is easily filtered by a
proxy that ensures all packets are sent at regular intervals. Our key recovery
designs do not use such channels and cannot be filtered by such proxies.

2. Inter-operability
A protocol implementation with key recovery works seamlessly with other
implementations that do not contain key recovery while still supporting key
recovery. Keys can be recovered from any protocol session in which at least

one of the participating parties support key recovery. For example, a SSL web
server with key recovery inter-operates with a standard (uncompromised)
web browser while still leaking key information.
Note that maintaining the ability to inter-operate precludes protocol changes.
Previously suggested key recovery systems [5, 12, 4] require protocol redesigns.

3. Hidden key recovery
The network traffic generated by a protocol implementation with key recov-
ery is computationally indistinguishable from traffic generated by implemen-
tations without key recovery.

4. Real time key recovery
Session keys are recovered before user data is exchanged.

These properties are essential for any practical key recovery scheme. The
inter-operability and hiding properties allow incremental (and unnoticeable) de-
ployment of servers and clients with key recovery. Unfilterability ensures key
recovery channels cannot be easily circumvented. Real time operation allows
instant decryption and analysis of application data without large storage re-
quirements.3

In this paper, we design key recovery schemes for SSL/TLS and SSH2 that
possess the stated properties. The basic method for adding key recovery to a
security protocol is to change how the protocol implementation generates fields
that are “random looking”. For example, when the server needs a random nonce,
the server uses the encryption of the session key as the nonce. Assuming the
cipher is semantically secure [1], this ciphertext is a valid nonce because it is
indistinguishable from a random string.

2 Applications and Threats

In this section, we discuss several consequences of hidden and unfilterable key
recovery systems.

2.1 Hackers

A hacker can break into a SSL web server and patch the SSL library with hidden
key recovery. This attack allows the hacker to eavesdrop on all SSL connections
to the server without ever having to access the server again. From the network
point of view, there is no detectable difference between the original and the
hacked server. Therefore, it is hard to detect these attacks without host based
intrusion detection system such as Tripwire [13].

3 This property seems well suited for a wiretapping device such as the government’s
Carnivore program [9].

2.2 Governments

The government can convince major software vendors to distribute SSL/TLS or
SSH2 implementations with hidden and unfilterable key recovery. Using a Car-
nivore device, the government can monitor all encrypted connections established
using these protocols in which either the client or server has been compromised.
Users will not notice the key recovery mechanism because the scheme is hidden.
Even savvy users who use a proxy to counter standard covert channels cannot
circumvent key recovery because the channels are unfilterable.

Our designs provide an easy way of deploying a government key recovery sys-
tem. For example, key recovery enabled web browsers can be installed at public
libraries to ensure that criminals and terrorists do not conduct their business
using SSL sessions at these facilities. The social and political implications of a
government key recovery system are outside the scope of this paper.

2.3 Trusting Closed Source Products

While the design and implementation of security protocols should be left to
experts, end users must verify that the implementation correctly follows the
protocol. In particular, users should ensure that implementations do not contain
the key recovery mechanisms described in this paper.

Unfortunately, validating implementations is often impractical. Most com-
mercial software libraries are closed source and can only be validated using black
box testing. Black-box testing is carried out by running the product and observ-
ing external state (such as generated network traffic) to ensure that it works as
promised. Hidden key recovery, however, cannot be detected by observing exter-
nal state. Hence, black-box testing is insufficient for validating security products.
Note that checking MD5 fingerprints and standard code signing techniques is also
inadequate for detecting compromised implementations.

The problem is much harder for hardware implementations of security proto-
cols. Many vendors already sell hardware implementations of IPsec. Next gener-
ation SSL accelerators implement the entire SSL protocol in hardware. Note that
even FIPS 140-2 [16] certified hardware must be checked. Indeed, it is harder
to verify FIPS level 3 and 4 certified hardware because they are designed to be
tamper resistant. Furthermore, the FIPS certification might provide users with
a false sense of security. How can end-users ensure that these implementations
do not provide hidden key recovery?

It is currently an open problem whether there is a way for a closed implemen-
tation to prove to the outside world that it is properly following the protocol
and does not implement our hidden key recovery. Therefore, it is fair to say
that closed source software and hardware implementations of security protocols
cannot be fully trusted since it is hard for end-users to validate them.

3 Assumptions and Definitions

We define some useful terms and also state our assumptions about the opera-
tional model.

Escrow Agency Field (EAF). In our key recovery system, a key (such as
a master key or a session key) that enables decryption of network traffic is
encrypted with another key (the recovery key). The result of encrypting the

session key with the recovery key is called the Escrow Agency Field, or EAF.4

The recovery agency can decrypt the EAF using the recovery key. We also assume
that the ciphers used for key recovery are semantically secure [1].

Model. We consider three entities, a client-side user, a server-side user and a
recovery agency. The client-side and server-side users use a standard protocol
P to communicate securely while the recovery agency aims to decrypt their
communication. Both users execute P correctly and neither colludes with the
recovery agency.

Hidden key recovery. Given a cryptographic protocol P with specified inputs
and outputs, let P

′ be a new protocol created with key recovery. Consider a
device implementing P which uses a set of keys K, and a device implementing
P

′ that knows the same set of keys K (and possibly some other keys that P
′ uses).

We say that P
′ contains hidden key recovery if the inputs and outputs of the

implementations of P and P
′ are computationally indistinguishable to everyone

except the key recovery agency. Hence, P
′ conforms with the specifications of

P , and P
′ can inter-operate seamlessly with all implementations of P .

4 Design and Implementation

In this section, we provide an outline of the techniques for adding hidden and
unfilterable real time key recovery to existing security protocols.

4.1 Hidden and Unfilterable Key Recovery

Hidden Key Recovery. The basic idea is to embed the Escrow Agency Field
(EAF) in protocol fields containing random looking data. The rationale is that
the EAF is a ciphertext; A semantically secure cipher produces ciphertexts that
look random to everyone except the recovery agency. Therefore, the EAF or
parts of the EAF can be sent in place of any field containing random data.

For example, when the protocol requires a random nonce, the nonce is re-
placed with the EAF. Note that we are excluding standard covert channels be-
cause they are easy to filter (see Section 8).

We prefer encrypting the EAF using a asymmetric (public key) encryption
scheme as opposed to a symmetric (bulk) encryption scheme. If a symmetric
encryption scheme is used, every implementation must contain a unique key so
as to prevent a system wide compromise by an attacker extracts the key from a
single client. On the other hand, a large number of unique keys results in a key

4 This field has the same functionality as the Law Enforcement Agency Field (LEAF)
in the Escrow Encryption Standard (EES) scheme [5].

management nightmare for the recovery agency. If a asymmetric cipher is used,
then only the public key is embedded in every implementation of the protocol.
In this case, an adversary that reverse engineers a compromised implementation
only recovers the public key and cannot decrypt any messages.

Unfilterable Key Recovery. For a key recovery scheme to be unfilterable, key
information must be hidden in fields that are essential for the correct operation
of the protocol. For example, the SSL protocol requires implementations to verify
a checksum of all the messages exchanged before the negotiated cryptographic
parameters are used. If any message is altered by a third party such as a filter,
the verification will fail, halting further communication.

4.2 Real Time Key Recovery

We use the following criteria to determine which messages in a protocol are
suitable for real time key recovery — information hidden in a session must be
related to the current session key. We can hide information in a message about
the current session key only if we have that information before the message is
sent. Otherwise, fields in that message can be used to store older session keys.

Encryption keys shared between two parties are usually generated from a
combination of secret and public randomness. Either the encryption key or the
secret part of the randomness can be escrowed. Since the encryption key is
usually smaller than the secret randomness, it appears that the encryption key
should always be escrowed. If, however, the only suitable key recovery channels
are in messages exchanged before key generation, and one party generates the
entire secret randomness, then the system should hide the secret randomness
instead. We will see an example of this in SSL.

4.3 Using Low Capacity Channels

In this section, we describe techniques for hiding the EAF in very short fields.
The motivation for developing these techniques is because in many protocols,
fields suitable for key recovery are usually very short and cannot contain the
entire EAF.

Recall that the EAF is encrypted with the recovery agency’s public key (re-
covery key). The shortest public key cipher is a variant of the ElGamal cryp-
tosystem over elliptic curves (ECEG) [15]. ECEG produces ciphertext that is
327 bits (≈ 41 bytes) long if the plain text is no greater than 163 bits (≈ 20
bytes). We therefore assume that 41 bytes is the minimum capacity for hiding an
EAF encrypted using an asymmetric cipher. We also assume that the ElGamal
cryptosystem over standard elliptic curves is semantically secure.

How much information to hide. To minimize the EAF size, the key infor-
mation should be less than 20 bytes. Recall that we can hide either the session
key or the secret randomness used to generate session keys. Without loss of gen-
erality, we can assume that the key information a compromised implementation

discloses is shorter than 20 bytes. If the session key or secret randomness is
longer than 20 bytes, the compromised implementation can generate them from
a short seed (less than 20 bytes) using a pseudo-random generator. This seed
is leaked instead of the full key or randomness. Therefore, at most 41 bytes of
capacity is required for hiding the ECEG encrypted EAF.

Unfortunately, a 41 byte EAF is often larger than the capacity of a single
protocol session. We describe three methods for hiding the EAF even if each
protocol session has less than 41 bytes of capacity.

Method 1. Since a ECEG encrypted EAF cannot fit into the capacity of one
session, the EAF is split and distributed over a few sessions. One drawback is
that this method cannot support real time eavesdropping. Another drawback
is that the recovery agency, to decrypt a particular session, has to assemble
and correlate key information recovered over a number of sessions. The recovery
agency also has to store all encrypted traffic until they can be decrypted.

Method 2. Method 2 is a hybrid method that has comparable security to the
first while mostly providing real time eavesdropping. The compromised imple-
mentation performs the following procedure.

1. Picks a random key K for a symmetric cipher. K is used to encrypt the
EAFs. Any semantically secure symmetric cipher can be used.

2. Use ECEG with the public key of the recovery agency to encrypt K. Denote
E[K] as the encryption of K under the public key of the recovery agency.
Recall that E[K] is 41 bytes long.

3. Divide E[K] up into shares so that each share is no bigger than the capacity
of a single session. Let i be the number of shares required to reconstruct
E[K]. E[K] is then hidden over i sessions. Note that we cannot hide any
other information for those i sessions.
Erasure codes can be used to divide the EAF into shares to provide redun-
dancy against lost or missed sessions.

4. Once K has been transmitted, the EAF in future sessions is encrypted using
the symmetric encryption scheme instead of ECEG. For example, we can
use IDEA with key K and 0 IV.

One disadvantage is that the recovery agency cannot eavesdrop on the initial
i sessions. Another disadvantage is that the recovery agency has to intercept
at least i sessions containing E[K]. If less than i sessions are intercepted, the
recovery agency cannot eavesdrop until E[K] is sent out again. In fact, it is a
non-trivial task to differentiate between sessions containing encrypted session
keys and those containing E[K]. Therefore, this hybrid method is only suitable
if the recovery agency can deduce when E[K] is transmitted.

Method 3. This method compromises the security of the cryptosystem protect-
ing the EAF for the ability to carry out real time eavesdropping. For example,
the compromised implementation can use ECEG with a shorter key to encrypt
the EAF. In this case, the largest ECEG key is used to encrypt the EAF, while

ensuring that the EAF still fits in the available capacity. One disadvantage is
that an adversary can extract the private key from the public key in reasonable
time.

5 Overview of TLS

We provide an overview of the Transport Layer Security (TLS) protocol [8] before
describing our key recovery attacks on TLS. Readers who are familiar with TLS
can proceed to the next section.

TLS provides communication privacy and data integrity between applica-
tions. TLS is used on the Internet to secure data traffic between HTTPS clients
and web servers. TLS is the successor to the Secure Socket Layer 3.0 (SSL3)
protocol [10]. TLS and SSL3 are very similar and unless otherwise noted, SSL3
shares the same vulnerabilities as TLS. For brevity, we will only describe TLS.

TLS runs on top of a reliable transport protocol such as TCP/IP. It consists of
two layers, the record protocol and the handshake protocol. The record protocol
provides a private connection using symmetric encryption and keyed MACs. The
handshake protocol is layered over the record protocol without any cryptographic
parameters, and provides peer authentication and shared secret negotiation.

A TLS session occurs in two phases. First the handshake protocol is run
to authenticate the server to the client (and optionally vice versa). The TLS
handshake protocol supports RSA, Ephemeral Diffie-Hellman (EDH) and other
key exchange algorithms. In this paper, we will only refer to TLS as it is most
commonly used with RSA key exchange and server only authentication. The
client and server also agree on a symmetric cipher, a MAC function, and a
compression algorithm. The cryptographic keys are derived from a combination
of a premaster secret chosen by the client and random strings chosen by both
parties. Finally, the application’s protocol runs over the record protocol with the
cryptographic parameters negotiated in the handshake.

Next, we give a simplified description of the messages exchanged during the
handshake protocol. Figure 1 provides an overview of the messages exchanged
during a TLS handshake.

1. Client Hello: The client sends a list of supported ciphers, together with 28
bytes of randomness and a 4 byte time-stamp. These 32 bytes make up the
client randomness.

2. Server Hello: The server chooses a cipher among those supported by the
client. The server also sends 28 bytes of randomness with a 4 byte time-
stamp and a session identifier (session ID). The session ID can be up to 32
bytes long. The 28 bytes of randomness and the 4 byte time-stamp make
up the server randomness. The session ID is used for resuming sessions with
previously established cryptographic parameters.

3. Server certificate: The server sends a chain of X509 certificates to authen-
ticate itself to the client. If requested by the server, the client may also
authenticate itself to the server.

Server Hello

Client Key Exchange

Change Cipher Spec

Finished (encrypted)

Change Cipher Spec

Finished (encrypted)

Certificate

Server Hello Done

Client Hello

Client Server

Fig. 1. TLS Handshake with RSA key exchange

TLS Record = headers || encrypted data

encrypted data = E
ˆ

data || MAC(headers || data) || pad
˜

Fig. 2. TLS Record Structure. ‖ denotes concatenation, E[] and MAC() denote sym-
metric encryption and message authentication. Padding is unnecessary for stream ci-
phers

4. Client Key Exchange: The client sends a 48-byte premaster secret encrypted
with the public key in the server’s X509 certificate.

5. Client and Server Finished: The client and server separately derive common
cryptographic parameters from the shared premaster secret and random-
ness. They also verify the key exchange and authentication by exchanging
the output of a pseudo-random function applied to a hash of all handshake
messages and a predefined string. These two messages are encrypted with
the negotiated parameters.

After the handshake, the server and client share a common set of crypto-
graphic parameters which are used to secure further communication. The format
of TLS messages in the record protocol is shown in Table 2.

6 Key Recovery in TLS

In this section, we examine TLS to find subliminal channels for key recovery.
We then discuss our implementation of the key recovery scheme in TLS and SSL
3.0. Table 1 summarizes our findings on which message fields in TLS can be used

Table 1. Candidate fields for key recovery in TLS and SSL. These fields are all unfil-
terable

Field Whom Size (bits) Frequency Session Restrictions

CipherSuites Client a few session current
Randomness Client 224 session current
Time stamp Client a few session current
Randomness Server 224 session previous
Time stamp Server a few session previous
Session ID Server up to 256 session previous
Pad Contents Both 52 record current SSL 3.0

for hidden key recovery. Note that the listed channels are unfilterable. For each
field,

– Whom: indicates whether the field can be used by either the client, the
server or both.

– Size: the size (in bits) of data that can be hidden in the field.
– Frequency: indicates whether a field can be used once per TLS session or

once per TLS record.
– Session: describes the most recent session key that can be leaked in the

field.
– Restrictions: indicates any restrictions that may apply to using the field.

Surprisingly, even the block cipher padding in SSL 3.0 can be used as a
channel. We spend the rest of this section describing how to hide information in
padding schemes.

If a block cipher is used to encrypt the record, the record has to be padded
to the cipher’s block size. At first glance, the pad seems useless as a subliminal
channel because it is encrypted. However, we can manipulate the pad so that its
cipher text serves as a subliminal channel. Padding for block ciphers is different
in TLS and SSL3. We first discuss SSL 3.0 padding.

SSL 3.0 Padding. The pad can be up to the block size, which is 8 bytes in
most ciphers. The last byte of the pad specifies the pad length excluding the last
byte. The following code snippet shows how the pad is checked in the OpenSSL
implementation of SSL 3.0:

// here bs is the block size

l=rec->length;

i=rec->data[l-1]+1;

if (i > bs) return

(SSL_ERROR_BLOCK_CIPHER_PAD_IS_WRONG);

rec->length-=i;

Only the last byte of the pad is checked because the other bytes are unspecified
in the protocol.

We assume that the block size is 8 bytes. We can also assume that the data
length in the record is a multiple of the block size because the TLS implementa-
tion controls the amount of data in each record. If the data length is a multiple
of block size, the pad length will be 8 bytes (64 bits).

We create a 52 bit subliminal channel in the following manner — fix the first
52 bits of the ciphertext to contain the EAF. Next, iterate over the 212 possible
values of the last 12 bits of the cipher text block until the decryption of the
last byte is 7. We will be able to find the desired cipher text with very high
probability because we are iterating over 212 possible values.

TLS Padding. The pad can be between 0 and 255 bytes if the record size is a
multiple of the block size. All bytes in the pad are set to the length of the pad.
Only the pad length can be used as a subliminal channel because the content of
the pad is specified. Given an encrypted record, however, we cannot determine
the length of either the data or padding segment. As a result, we cannot use the
padding in TLS as a subliminal channel.

6.1 Implementation in SSL/TLS

This section describes our implementation of key recovery in SSL/TLS.

Hidden and Unfilterable Key Recovery. The TLS implementation con-
taining key recovery should be indistinguishable from standard TLS. We can
achieve this goal by using only the subliminal channels listed in Table 1, which
are all unfilterable. We ignore the lower capacity channels and focus on the client
randomness, server randomness and server Session ID.

Real time Key Recovery. To carry out key recovery in real time, the EAF for
a TLS session must contain key information for the current session. Examining
the session column in Table 1, we see that only the client randomness field and
the pad contents (for SSL 3.0) are suitable.

Session keys in SSL 3.0 and TLS are created by applying a pseudo-random
function (PRF) to the concatenation of the public client randomness, public
server randomness, and premaster secret. When RSA is used for key exchange,
the client creates the premaster secret. The client can generate the session keys
only after it receives the server random in the Server Hello message. Unfortu-
nately, the only channel suitable for real time key recovery is the client random-
ness field found in the first message exchanged. Therefore, the only way to carry
out real time key recovery using a compromised client is to hide the premaster
secret instead of the session key.

The client can leak the premaster secret in the Client Hello message because
the client generates the entire premaster secret when RSA key exchange is used.
Even if the server does not contain key recovery capabilities, the client can
compromise the communication between them. If Diffie-Hellman key exchange
is used, the client creates only part of the premaster secret. In this case, the
client cannot compromise the secure connection without the help of the server.

On the other hand, the server can only generate the session keys after it
receives the encrypted premaster secret in the Client Key Exchange message.
Therefore, it is impossible to implement real time key recovery in TLS on the
server. Although real time key recovery on a SSL 3.0 server is possible, it is
infeasible because of the small capacity of the pad contents channel. Furthermore,
it is only possible if a block cipher is selected as the symmetric encryption
algorithm. We shall concentrate on implementing key recovery in the client.

Low Capacity Channels. Recall an ECEG encrypted EAF is 326 bits (41
bytes) long. The client randomness field, however, is only 28 bytes long. If a
block cipher is used with SSL 3.0, we can use the pad as another channel. The
pad has a capacity of 6.5 bytes, giving a total of 34.5 bytes (276 bits).

The premaster secret comprises of 46 securely generated random bytes and 2
bytes denoting the client’s TLS version. The client version is a public value sent
in the Client Hello message. Hence, we only need to leak the 46 random bytes.
As suggested in Section 4.3, we leak a small seed of 16 bytes and derive the
premaster secret from it. This derivation is done by applying a SHA-1 hash on
thirds of the seed. We only use 46 out of the 60 bytes generated by the hashes.

To encrypt the EAF, we can use either a short (224 or 276 bits) RSA key (a
variant of method 3 in Section 4.3), or the hybrid scheme (method 2). The hybrid
scheme leaks the encrypted symmetric key over two handshake sessions, mean-
ing that the recovery agency cannot decipher the traffic of these two sessions.
Furthermore, if the recovery agency misses either session, it cannot decrypt any
traffic until the encrypted symmetric key is sent again.

Prototype implementation. We implemented a prototype for the client side
key recovery scheme in SSL 3.0 and TLS using OpenSSL [17], a free SSL library.
For SSL 3.0, we implemented the hybrid scheme where we use ECEG to protect
a 128 bit IDEA key and leak it over two handshakes. We use IDEA in CBC mode
to protect the 16 byte seed used to generate the premaster secret. ECEG was
implemented using routines provided by Miracl [19]. For TLS, we implemented
a variant of method 3 which uses a short (224 bit) RSA key to protect the EAF.

Both TLS and SSL 3.0 required only a few lines of additional code to call on
our key recovery routines. The key recovery routines are contained in a source file
containing about 400 lines of unoptimized C code. These key recovery routines
can be reused for other protocols. The small amount of extra code added to both
protocols demonstrates the ease of implementing key recovery.

We compiled w3m [11], a web browser, with the modified SSL library to
show compromised HTTPS connections. We also modified ssldump [18], a SSL
packet sniffer, to serve as the recovery agency. It decrypts the EAF to obtain
the premaster secret which is used to generate the session key. The sniffer then
decrypts the session traffic and prints out the decrypted contents. We do not
handle session resumes in our implementation but this can be easily added.

The computational overhead imposed by key recovery is trivial compared
to the total amount of work done by the client. For SSL 3.0, the IDEA key is
generated and encrypted with ECEG off-line. Hence, no extra work is carried

out by the client during the initial two SSL handshakes. Subsequent handshakes
incur the cost of a encrypting the premaster secret seed with IDEA. For TLS,
every handshake incurs the cost of an RSA operation with a very short modulus.
Note that the EAF can be generated and encrypted off-line.

7 Key recovery in SSH version 2

In this section, we describe a simple hidden and unfilterable real time key recov-
ery attack on SSH2.

SSH2 Overview. SSH is a secure shell protocol designed to replace insecure
login mechanisms such as telnet. Version 2 of the protocol (SSH2) is designed
by the secsh working group in the IETF [20] to solve the first version’s short-
comings. Like TLS, SSH2 is divided into several layers. The lowest layer is the
Transport Layer Protocol, which runs over TCP/IP. The Transport Layer is
analogous to the Record Layer in TLS. The next layer is the Authentication
Protocol, which runs over the Transport Layer. The last layer is the Connection
Protocol, which runs over the Authentication Protocol. We will focus on the
Transport Layer Protocol.

All messages in SSH2 are carried at the Transport Layer by the Binary
Packet Protocol. This protocol defines the record structure shown in Table 2.
The packet length field is the byte length of the packet, not including itself or
the MAC. The length of the padding must be between 4 to 255 bytes, and the
padding should consist of random bytes. Furthermore, both block and stream
ciphers are required to pad the structure so that the total size (in bytes) of the
second to fifth fields is either a multiple of the cipher block size or 8, whichever
is larger. The payload length field is calculated by the following equation —
payload length = packet length - pad length - 1. The length fields, payload and
padding are included in the computation of the MAC.

Table 2. Format of a SSH2 Binary Packet

field type field description

unsigned int (32 bits) packet length
byte pad length
byte[payload length] payload
byte[pad length] random padding
byte[mac length] MAC

SSH2 Key Recovery. When SSH2 is used as the secure equivalent of telnet,
a packet is sent and returned for almost every keystroke. This mode of usage
results in a network traffic pattern consisting of a large number of small packets

exchanged between the server and client. Furthermore, every packet contains a
single keystroke, resulting in only 1 byte of payload per packet. The total size
of the second, third, and fourth field is 6 bytes. According to the padding rules
stated in the previous paragraph, there will be at least 8 bytes of ciphertext
derived directly from the pad. In SSL 3.0, the last byte of the padding specifies
the pad length. In contrast, the pad length in SSH2 is specified in a separate
field. The pad contents are specified as random bytes. In a single packet, 8 bytes
of the EAF can be hidden as the ciphertext of the pad.

For our key recovery attack on SSH2, the symmetric key used to encrypt the
binary packets is hidden in the EAF. If ECEG is used to encrypt the EAF, the
EAF can be completely disclosed in 5 to 10 packets sent by only one party. The
probability of either the client or server sending at least 10 packets is very high
because of the network traffic pattern.

Comparison to SSL. For the padding attack to be viable in SSL 3.0, the
symmetric encryption algorithm has to be a block cipher. In SSH2, however,
padding is required for all symmetric encryption algorithms, including stream
ciphers. Hence, SSH2 is always vulnerable to our key recovery attack. In addition,
either the client or the server can carry out the key recovery attack.

8 Related Work

This paper draws on contributions from two complementary lines of research —
key escrow mechanisms and subliminal channels. In contrast to previous work,
we examine the threat of key escrow through subliminal channels at the protocol
level rather than the cryptosystem level.

Key escrow refers to methods allowing participants to hold encrypted commu-
nication while a third party holds the secret key for the communication. A basic
key escrow scheme takes the session key, encrypts it using an escrow agency’s
key, and sends this information together with the encrypted session data. Key
escrow received a large amount of attention with the (failed) introduction of
the Escrow Encryption Standard (EES) [5] by the US government. Proposed
key escrow schemes at the protocol level, such as the EES, rely on known key
escrow fields such as the LEAF. Blaze showed that the LEAF is filterable [2].
Denning [4], Kilian and Leighton [12] provides a survey of key escrow schemes.

Simmons [21] gave the first definition of subliminal channels are defined as
means to convey information in the output of a cryptosystem such that the
information is hidden to everyone except the escrow party. Simmons also gives
the first practical example of a subliminal channel for ElGamal signatures [22].
Desmedt et. al. provide another example using the Fiat-Shamir authentication
protocol [7]. As a solution, Desmedt advocates the use of active wardens to
eliminate the possibility of subliminal channels in a variety of protocols [6].

Young and Yung [23] investigated subliminal channels in public key cryptog-
raphy. In their paper, the compromised key generation algorithms selects keys
for the RSA and ElGamal public key cryptosystems such that the public key

reveals the private key to the escrow agency. Young and Yung later expanded
and refined these ideas [24].

Lampson mentions a related idea of covert channels [14]. He defines covert
channels as channels that are not intended for information transfer. An example
of a covert channel is the timing delay between transmitting network packets.
We do not consider covert channels in this paper because they tend to be easily
filterable. For example, if an adversary uses timing delay between messages to
hide information, then adding random delays to messages would degrade the
channel. Following Desmedt [6], we only consider channels originally intended to
exchange information.

9 Summary and Conclusions

We showed how to add unfilterable and hidden key recovery to any security
protocol. We also described methods for recovering key information in real time,
as well as in low capacity channels. We used these methods to carry out our key
recovery attacks on SSL 3.0, TLS and SSH2. We implemented a prototype of
hidden and unfilterable real time key recovery in SSL 3.0 and TLS.

Our results show the ease with which hidden and unfilterable key recovery
is added to existing security protocols. In particular, we can undetectably add
key recovery without changing the protocol. Our prototype implementation il-
lustrates the danger of trusting closed source and hardware implementations of
security protocols.

It is not easy to design security protocols that resist our hidden key recovery
attack. Canetti and Ostrovsky [3] define a model of distributed computation
with honest-looking parties and prove some initial results on the feasibility of
secure function evaluation in this model. It is currently an open problem to build
a practical conversion procedure that will translate any security protocol into a
protocol that will remain secure in the presence of honest looking parties.

Despite this, protocol designers should still consider this family of attacks
when designing security protocols. The authors of SSH state that SSH2 was
“not designed to eliminate covert channels”. As we have shown, it is particularly
easy to carry out our key recovery attacks on SSH2 because of its cipher padding
scheme. Our attack on SSH2 will be seriously hindered if the protocol used a
padding scheme similar to the one used in TLS. We have only examined SSL
3.0, TLS and SSH2. Our ideas will apply equally well to other security protocols
such as IPsec and Kerberos.

References

1. M. Bellare, A. Desai, D. Pointcheval, and P. Rogaway. Relations among notions
of security for public-key encryption schemes. In H. Krawczyk, editor, Proceedings

of Crypto 1998, volume 1462 of LNCS, pages 26–45. Springer-Verlag, Aug 1998.
2. M. Blaze. Protocol failure in the escrowed encryption standard. In Proceedings

of the 2nd ACM Conference on Computer and Communications Security, pages
59–67. ACM, ACM Press, Nov 1994.

3. R. Canetti and R. Ostrovsky. Secure computation with honest-looking parties:
What if nobody is truly honest? In Proceedings of the 31st Symposium on Theory

of Computing, pages 255–264. ACM, ACM Press, May 1999.
4. D. Denning. Descriptions of key escrow systems. Technical report, Georgetown

University, Feb 1997. http://www.cs.georgetown.edu/∼denning/.
5. D. Denning and M. Smid. Key escrowing today. IEEE Communications, 32(9):58–

68, 1994.
6. Y. Desmedt. Abuses in cryptography and how to fight them. In S. Goldwasser,

editor, Proceedings of Crypto 1988, volume 403 of LNCS, pages 375–389. Springer-
Verlag, Aug 1988.

7. Y. Desmedt, C. Goutier, and S. Bengio. Special uses and abuses of the Fiat-Shamir
passport protocol. In C. Pomerance, editor, Proceedings of Crypto 1987, volume
293 of LNCS, pages 21–39. Springer-Verlag, Aug 1987.

8. T. Dierks and C. Allen. The TLS protocol. RFC 2246, Jan 1999.
9. FBI. Carnivore diagnostic tool. http://www.fbi.gov/hq/lab/carnivore/

carnivore.htm.
10. A. Freier, P. Karlton, and P. Kocher. The SSL protocol version 3.0.

http://www.netscape.com/eng/ssl3/draft302.txt, Nov 1996.
11. A. Ito. w3m: text based browser. http://w3m.sourceforge.net/.
12. J. Kilian and T. Leighton. Fair cryptosystems, revisited: A rigorous approach to

key-escrow. In D. Coppersmith, editor, Proceedings of Crypto 1995, volume 963 of
LNCS, pages 208–221. Springer-Verlag, Aug 1995.

13. G. H. Kim and E. H. Spafford. The design and implementation of Tripwire: A file
system integrity checker. In Proceedings of the 2nd ACM Conference on Computer

and Communications Security, pages 18–29. ACM, ACM Press, 1994.
14. B. Lampson. A note on the confinement problem. Communications of the ACM,

16(10):613–615, Oct 1973.
15. A. J. Menezes and S. A. Vanstone. Elliptic curve cryptosystems and their imple-

mentations. Journal of Cryptology, 6(4):209–224, 1993.
16. National Institute of Standards and Technology. Security require-

ments for cryptographic modules. FIPS 140-2, NIST, Jun 2001.
http://csrc.nist.gov/publications/fips/.

17. OpenSSL Project. http://www.openssl.org/.
18. E. Rescorla. ssldump version 0.9b2. http://www.rtfm.com/ssldump/.
19. M. Scott. MIRACL - Multiprecision Integer and Rational Arithmetic C/C++

Library v. 4.6. http://indigo.ie/∼mscott/.
20. secsh IETF Working Group. http://www.ietf.org/html.charters/secsh-

charter.html.
21. G. J. Simmons. The prisoners’ problem and the subliminal channel. In D. Chaum,

editor, Proceedings of Crypto 1983, pages 51–67. Plenum Press, Aug 1983.
22. G. J. Simmons. The subliminal channel and digital signatures. In T. Beth, N. Cot,

and I. Ingemarsson, editors, Proceedings of Eurocrypt 1984, volume 0209 of LNCS,
pages 364–378. Springer-Verlag, Apr 1984.

23. A. Young and M. Yung. The dark side of “black-box” cryptography, or: Should we
trust Capstone. In N. Koblitz, editor, Proceedings of Crypto 1996, volume 1109 of
LNCS, pages 89–103. Springer-Verlag, Aug 1996.

24. A. Young and M. Yung. Kleptography: Using cryptography against cryptography.
In W. Fumy, editor, Proceedings of Eurocrypt 1997, volume 1233 of LNCS, pages
62–74. Springer-Verlag, May 1997.

