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Abstract. We use linear algebra to show that an algebraic privacy ho-
momorphism proposed by Domingo-Ferrer is insecure for some parameter
settings.
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1 The proposed scheme

Let Q, R denote two rings, with addition denoted by + and multiplication by ×
in both cases. Let E : K × Q → R be a symmetric-key encryption scheme, with
corresponding decryption D : K × R → Q. We call E additively-homomorphic
if Dk(Ek(a) + Ek(b)) = a + b for all a, b ∈ Q and all k ∈ K. Similarly, we will
call E multiplicatively-homomorphic if Dk(Ek(a) × Ek(b)) = a × b. Let Z/mZ

denote the ring of integers modulo m.
At ISC 2002, J. Domingo-Ferrer proposed an encryption scheme that is both

additively- and multiplicatively-homomorphic [3]. Let us recall Domingo-Ferrer’s
scheme briefly here. First, we choose parameters:

Public values: a large integer m with many small divisors, and a small integer
d > 2.

Private key: a small divisor m′ of m, and a unit r ∈ (Z/mZ)∗.

We form the ring R
def

= (Z/mZ)[X ] of polynomials in the indeterminate X with
coefficients from Z/mZ. Ciphertexts are elements of R. The plaintext space is

Q
def

= Z/m′
Z, hence the signature of Domingo-Ferrer’s encryption algorithm is

E : K × Z/m′
Z → (Z/mZ)[X ] and D : K × (Z/mZ)[X ] → Z/m′

Z. The scheme
is defined as follows:

Encryption: The encryption algorithm E is randomized. First, we pick uni-
formly at random a polynomial p(X) ∈ (Z/mZ)[X ] of degree ≤ d satisfying

p(0) = 0 and p(1) mod m′ = a. Then, we calculate the polynomial q(X)
def

=

p(rX) ∈ (Z/mZ)[X ], and this is our ciphertext, i.e., Em′,r(a)
def

= q(X). The
ciphertext q(X) is represented by its coefficients, so r is never revealed ex-
plicitly.
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Decryption: D is defined by Dr,m′(q(X))
def

= q(r−1) mod m′, for ciphertexts
q(X) ∈ (Z/mZ)[X ].

Note that Domingo-Ferrer’s scheme is both additively- and multiplicatively-
homomorphic. However, the size of ciphertexts does grow each time we multiply
ciphertexts.

For ease of notation, in this paper we define r′
def

= r mod m′.

Corrections. An earlier version of this paper was published at ISC’03 [5]. That
version had serious flaws [2, 6]; this revision fixes them.

Provably secure? Domingo-Ferrer claims that, if we fix the number n of known
plaintexts available to the cryptanalyst, then one can choose public parameters
large enough so that the cryptanalyst is foiled [3, Corollary 13]. However, what
his paper actually proves is that, under these conditions, there are many possible
candidates for the private key that remain consistent with the known plaintexts
[3, Theorem 7]. It follows that the cryptanalyst cannot recover the entire private
key with certainty under these conditions.

We first note that the size of the parameters in Domingo-Ferrer’s scheme
grows with n. It is traditional in the cryptographic community to seek a scheme
that takes only polynomial work for legitimate parties to evaluate, while requir-
ing the cryptanalyst to spend super-polynomial work to break the scheme. To
avoid confusion, we should emphasize that Domingo-Ferrer’s scheme does not
attain this goal, nor does it attempt to; the envisioned applications are chosen
so that the number of known texts available to the adversary can be bounded
in advance.

However, there is a bigger issue lurking in the wings. The paper’s provable
security result is unsatisfying, in that it does not rule out all possible attacks.
Domingo-Ferrer’s security theorem leaves open the possibility that, though the
cryptanalyst cannot recover the entire private key, maybe the cryptanalyst can
recover enough information to decrypt any other ciphertext of interest.

Indeed, in what follows we show that something like this does happen: in
Domingo-Ferrer’s scheme, (m′, r′) is all you need to know to decrypt, and we
give an attack that recovers (m′, r′) efficiently, even though the attacker never
learns the remainder of the private key (i.e., r). This shows that Domingo-Ferrer’s
Corollary 13 is false and demonstrates that the scheme is insecure.

By way of analogy, imagine an encryption scheme that completely ignores its
key and simply acts as the identity transformation. So long as the key is long
enough, it would be straightforward to show that no attack can recover the key
with certainty. Nonetheless, such an encryption scheme is obviously insecure.
Domingo-Ferrer’s scheme behaves similarly; there is a portion of the key that
is completely ignored by both encryption and decryption, so it is not surprising
that there is no way to recover the entire key—but this does not promise anything
about the security of Domingo-Ferrer’s scheme. This illustrates the importance
of using the right definitions when following the provable security paradigm.



We should clarify that our attack does not work for all parameter settings.
However, it does work for many choices of parameters, and in particular, it
breaks all the specific instantiations suggested in Domingo-Ferrer’s original pa-
per. Along the way, we show that the proof of security for Domingo-Ferrer’s
scheme is flawed. Consequently, Domingo-Ferrer’s original proposal could rea-
sonably be regarded as insecure.

2 Cryptanalysis

In the remainder of the paper, we describe a simple attack on Domingo-Ferrer’s
scheme.

Equivalent keys. The secret key consists of the pair (m′, r), but it is easy to
see that the decryption procedure needs only m′ and r′. In other words, the
Domingo-Ferrer scheme has many equivalent secret keys1: (m′, r) is equivalent
to (m′, r∗) whenever r ≡ r∗ (mod m′). Put yet another way, the part of the

key represented by the value r−r′

m′
is completely ignored by both the encryption

and decryption procedures. Thus, it suffices to recover r mod m′, i.e., to recover
r′.

In our attack, we recover the key (up to equivalences) one element at a time:
first, we show how to find m′; then, we show how to recover r′.

Preliminaries. When analyzing the Domingo-Ferrer scheme, it will be useful to
recall the properties of the resultant. Given two polynomials f(X), g(X) ∈ R[X ],
their resultant, denoted Res(f, g), is an element of R that can be efficiently
computed from the coefficients of f and g. Also, when f, g have a common
root f(z) = g(z) = 0 with z ∈ R, then Res(f, g) = 0. Finally, when these
polynomials have integer coefficients, the resultant respects modular reduction:
Res(f(X) mod n, g(X) mod n) = Res(f(X), g(X)) mod n.

Recovering m′. Assume we have a collection of 400 known plaintexts and their
encryptions, (ai, qi(X)) where qi(X) = Em′,r(ai). Define the polynomials f1(X),

. . ., f400(X) ∈ Z/mZ[X ] by fi(X)
def

= qi(X)− ai. Note that we have fi(r
−1) ≡ 0

(mod m′), hence if we reduce these polynomials modulo m′, they will all share
a common root r−1.
1 Incidentally, this shows that Domingo-Ferrer’s Theorem 11 is false. We can easily

find two private keys (m′, r1) and (m′, r2) that both decrypt a random ciphertext
the same way with certainty; simply take r2 = r1 + m′. The flaw in the proof of
Theorem 11 is in the second of the three cases considered, where Lemma 6 is mis-
applied. Lemma 6 is applied to the quantity p(r −1

1 )−p(r−1
2 ) ∈ Z/mZ, where p(X) is

a randomly chosen ciphertext (recall that r1, r2 are held fixed throughout). Lemma 6
only applies to integers chosen uniformly at random from {0, 1, . . . , m−1}. However,
the quantity p(r −1

1 ) − p(r−1
2 ) does not necessarily behave like a uniformly random

integer, so Lemma 6 does not apply here. In addition, the proof implicitly assumes
that the divisors of this quantity are distributed uniformly on {0, 1, . . . , m− 1}, but
this assumption is not justified.



Let us consider the quantity Res(f1, f2). This is an element of Z/mZ. How-
ever, we also know that fi(X) mod m′ and fj(X) mod m′ share a common root,
hence Res(f1, f2) ≡ 0 (mod m′). This suggests that Res(f1, f2) should behave
like a random multiple of m′, i.e., it is likely to be uniformly distributed on the
set {0, m′, 2m′, . . ., m − m′}.

It is known that if we take the greatest common denominator of a pair of
random, sufficiently-large integers, the greatest common denominator is 1 with
probability about 6/π2. Hence, the greatest common denominator of a pair of
random multiples of m′ will be m′ with probability about 6/π2.

This suggests a simple method for recovering m′. Let xi
def

= Res(f2i−1, f2i).
From 400 known plaintexts, we can compute 200 known x values. We can use
gcd(x1, x2) as an initial guess at m′; this guess will be correct with probability
6/π2. If we repeat this procedure 100 times with 100 different pairs of x values,
then with probability 1 − (1 − 6/π2) ≈ 1 − 2−135, the correct value of m′ will
appear somewhere in these 100 results, so we could imagine repeating the rest
of the attack with each of these 100 candidates for m′. Better still is to note
that the most common result among these 100 is almost certain to be m′, so
taking a majority vote should suffice to recover m′. Even better is to compute
gcd(x1, x2, . . . , x200).

This gives an efficient algorithm for recovering part of the secret key given
only a modest supply of known plaintext. All that remains is to learn r′.

Recovering r′. If m′ is small, finding r′ is easy: we can simply enumerate all
possibilities for r′, and test which ones correctly decrypt all 400 of our known
plaintexts. 3 of the 6 parameter sets suggested by Domingo-Ferrer use a value of
m′ that is 5 decimal digits long, so brute-force enumeration would break these
schemes with complexity about 217. However, it is easy to choose larger values of
m′ that would make brute-force search infeasible, and hence we describe next a
more clever attack that drastically reduces the complexity of finding m′, namely,
from exponential time to polynomial time.

Assume that we have a collection of d known plaintexts and their encryp-
tions, (ai, qi(X)) where qi(X) =

∑d

j=0
qi,jX

j = Em′,r(ai). Note that if we view

the terms X, X2, . . . , Xd as d formal unknowns, then the identity qi(r
−1) ≡ ai

(mod m′) gives d linear equations in d unknowns over Z/m′
Z.

In other words, let Y1, . . . , Yd denote d formal indeterminates. To aid the
intuition, we should think informally of associating the indeterminate Yj with
the term Xj . Consider the d linear equations

d∑

j=1

qi,jYj ≡ ai (mod m′)

over Z/m′
Z in the d unknowns Y1, . . . , Yd. Note that the assignment Yj

def

=
(r′)−j ≡ r−j (mod m′) satisfies all of these linear equations, since by assump-
tion qi(r

−1) ≡ ai (mod m′) and qi,0 ≡ 0 (mod m′).



A standard fact2 of linear algebra says that if we are given a system of d
random linear equations over Z/m′

Z in d unknowns, then with non-negligible
probability there is a unique solution to these equations, and this solution can
be found in O(d3(lg m′)2) time using Gaussian elimination. Hence, by the above
comments, for a random choice of plaintexts ai, we expect to be able to solve
the system of equations for a unique solution Y1, . . . , Yd ∈ Z/m′

Z. Subsequently,
Y −1

1
mod m′ will be a good candidate for r mod m′. This attack succeeds with

constant probability, so after re-trying this procedure a constant number of
times, we expect to learn the true value of r mod m′. Once r mod m′ = r′ is
known, we have everything we need to know to be able to decrypt any cipher-
text we like. This attack is applicable so long as n > d.

Combining these two observations, we see that the Domingo-Ferrer proposal
is broken when n > d. For instance, the suggested parameter sets in the original
paper all had d = 3 and n = 5, 10, or 50, so we have n > d in all 6 of the
6 parameter choices suggested in the original paper, and hence all 6 of those
instantiations are all insecure.

Another way to recover r′: polynomial root-finding. Suppose m′ has known fac-
torization. Then there is a totally different way to recover r′, using algorithms for
factoring polynomials over finite fields rather than linear algebra. The starting
point is the following observation: each known plaintext gives an equation of the
form q(r−1) ≡ 0 (mod m′) where the polynomial q and the modulus m′ are
known, but where the root r−1 is unknown. Since several polynomial-time algo-
rithms for finding roots of polynomials are known, this suggesting using them
to learn r−1 mod m′ = (r′)−1.

The method is clearest in the case where m′ is prime. In this case, we can take
any one known plaintext, derive an equation q(r−1) ≡ 0 (mod m′) and find its
roots (of which there are at most d, and which can be found in polynomial time
using standard methods for univariate polynomial factorization in polynomial
time). Each root of q is a candidate value of (r′)−1, and we may test it against
other known plaintexts for validity. In this way, we recover r′ in the case where
m′ is prime.

If m′ is prime power, say m′ = pe, then we obtain the equation q(r−1) ≡ 0
(mod pe). The roots of this equation may also be found efficiently [4]: first find
all roots modulo p, and then use Hensel lifting to find the roots modulo p2, then

2 Let f(n) denote the probability that a random, large matrix over Z/nZ is invertible.
It is well-known that f(p) is non-negligible when p is prime; for instance, we have
f(2) ≥ 0.288, f(3) ≥ 0.560, f(5) ≥ 0.760, and so on [1]. Also, f(p) = (1 − 1

p
)(1 −

1
p2 ) · · · (1 − 1

pn ) ≥ exp{−2/(p − 1)} ≥ 1 − 2/(p − 1), so random matrices modulo a
large prime have an overwhelming probability of being invertible. Next, a matrix is
invertible modulo pe if and only if it is invertible modulo p, so f(pe) = f(p). (See also
[1, Corollary 2.2].) Finally, by the Chinese remainder theorem, if n = pe1

1 · · · pek

k , then
f(n) = f(p1)×· · ·×f(pk). In particular, f(n) ≥ e−2h(n) where h(n) =

P

p|n 1/(p−1),
so in most cases, there is a very good probability that a system of d random linear
equations in d unknowns will be solvable uniquely.



modulo p3, and so on. There are at most d roots, and each such candidate for
(r′)−1 may then be tested against other known plaintexts as before.

In general, m′ may be an arbitrary composite. If m′ has known factorization
m′ = pe1

1
· · · pek

k , we may find r′ mod pei

i for each i using the methods described
above, finally applying the Chinese remainder theorem to recover r′ mod m′.
Heuristically, it seems likely that this will succeed with high probability so long
as we have a small number of known plaintexts, though we have no proof of this
claim, and so this prediction should be viewed with some skepticism.

Summary. First, we showed an efficient way to recover m′ whenever we have
a small pool of known plaintexts. Then, we described several ways to recover
r′. One possibility is exhaustive search; this works whenever m′ is small (e.g.,
for 3 of the 6 parameter settings originally suggested). Another possibility is an
attack based on linear algebra, which works with reasonable success probability
whenever n ≥ d (e.g., for all 6 of 6 parameter settings). A third possibility is an
attack based on polynomial root-finding, which applies m′ can be factored and
we have a few known plaintexts. In each case, these attacks are conjectured to
work, but we have no formal proof of this conjecture.

These known attacks break all schemes proposed in the original paper. To
repair the scheme, one might hope that other class of parameter choices might
provide better security. Thus, we can ask: Is there any hope for Domingo-Ferrer’s
privacy homomorphism to remain secure in the case n < d? We do not know.

There is one case where no attack strategy is known to us: namely, where m′ is
chosen to be hard to factor and the number of texts encrypted is restricted so that
n < d. One might hope for this to be secure. Unfortunately, there is some bad
news: if we choose from this restricted class of parameters, then the performance
of the scheme suffers dramatically. For instance, if we want to securely encrypt
up to n = 100 messages, we might reasonably take m′ to be a random 1024-bit
RSA modulus, d and s to be slightly larger than n (say, d = s = 105), and m to
be a random 1024s-bit multiple of m′. However, then we find that each ciphertext
is 11 million bits long, so the scheme is likely to be cumbersome in practice. For
this reason, we do not see any obvious way to rescue Domingo-Ferrer’s proposal.
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