
University of Alberta

Library Release Form

Name of Author: Mark Goldenberg

Title of Thesis: TrellisDAG: A System for Structured DAG Scheduling

Degree: Master of Science

Year this Degree Granted: 2003

Permission is hereby granted to the University of Alberta Library to reproduce sin-
gle copies of this thesis and to lend or sell such copies for private, scholarly or
scientific research purposes only.

The author reserves all other publication and other rights in association with the
copyright in the thesis, and except as herein before provided, neither the thesis
nor any substantial portion thereof may be printed or otherwise reproduced in any
material form whatever without the author’s prior written permission.

Mark Goldenberg
Ap. 402
10101 Saskatchewan Drive
Edmonton, Alberta, T6E 4R6
Canada

Date:

University of Alberta

TRELLISDAG: A SYSTEM FOR STRUCTURED DAG SCHEDULING

by

Mark Goldenberg

A thesis submitted to the Faculty of Graduate Studies and Research in partial ful-
fillment of the requirements for the degree of Master of Science.

Department of Computing Science

Edmonton, Alberta
Spring 2003

University of Alberta

Faculty of Graduate Studies and Research

The undersigned certify that they have read, and recommend to the Faculty of Grad-
uate Studies and Research for acceptance, a thesis entitled TrellisDAG: A System
for Structured DAG Scheduling submitted by Mark Goldenberg in partial fulfill-
ment of the requirements for the degree of Master of Science.

Paul Lu
Co-Supervisor

Jonathan Schaeffer
Co-Supervisor

Peter Minev

Martin Müller

Date:

Abstract

The progress of research in many areas of science, including physics, chemistry,

engineering and others, depends on the ability of the researchers to perform massive

computations on the order of month and years of CPU time.

We have designed and implemented TrellisDAG – a system that combines the

use of placeholder scheduling and a subsystem for describing workflows to provide

novel mechanisms for computing non-trivial workloads with inter-job dependen-

cies. This combination results in TrellisDAG enjoying the following properties:

1. Ability to use resources across multiple administrative domains,

2. Automatic load balancing across all of the used resources,

3. High utilization of the opportunities for concurrent execution while respect-

ing inter-job dependencies, and

4. Convenience of monitoring of the computation.

The design of TrellisDAG allows it to handle many prospective applications and

we used computing the checkers end-game databases as a motivating application

and proof-of-concept.

Acknowledgements

I would like to thank my co-supervisors, Paul and Jonathan, for guidance, advice,

and invaluable moral support that they have given me throughout the program.

Thank you to Chris Pinchak and all fellow graduate students in the Software

Systems research lab. Their support and friendship were of great importance.

I am forever grateful to my family in Edmonton – Isaak, Lora, Luba and Ilia

Agranovitch – for everything they did for me.

Contents

1 Introduction 1
1.1 Contributions of this thesis . 2
1.2 Overview . 6

2 Background and Relevant Work 8
2.1 Batch schedulers . 10
2.2 Specialized systems . 12
2.3 Metacomputing systems . 12

2.3.1 Condor . 13
2.3.2 Trellis . 15

2.4 Grids . 20
2.4.1 Legion . 20
2.4.2 Globus . 21

2.5 Policies . 24
2.6 Concluding remarks . 27

3 The Motivating Application 29
3.1 Introducing the application . 29

3.1.1 Important application-specific characteristics 30
3.2 Properties of the checkers application with respect to TrellisDAG . . 36
3.3 Concluding remarks . 37

4 Overview of TrellisDAG 38
4.1 The group model and the running example 38
4.2 Submitting the workflow . 46

4.2.1 Using Makefile . 50
4.2.2 The DAG description script 52
4.2.3 The DAG description script with supergroups 57
4.2.4 The DAG description script with attributes 60

4.3 Services of the command-line server 63
4.4 Utilities . 67

4.4.1 mqstat: status of the computation 67
4.4.2 mqdump: jobs browser . 67

4.5 Concluding remarks . 69

5 Implementation of TrellisDAG 70
5.1 mqmakemake: generation of the Makefile 70
5.2 The jobs database . 74
5.3 Services of the command-line server 80

5.3.1 Implementation of mqnextjob 80
5.3.2 Implementation of mqdonejob 81

5.4 Services of mqdump . 82
5.5 Concluding remarks . 83

6 Experimental Assessment of TrellisDAG 85
6.1 Goals . 85
6.2 The experiments . 86
6.3 The minimal schedule . 87
6.4 Experimental setup . 88
6.5 The placeholder . 88
6.6 Small-size experiment: 2, 3, and 4 kings 90

6.6.1 The experiment without placement affinity 91
6.6.2 The experiment with placement affinity 97
6.6.3 Summary . 102

6.7 Medium-size experiment: all-kings databases up to 7 pieces 102
6.7.1 The experiment without supergroups 103
6.7.2 The use of opportunities for concurrency 110
6.7.3 The experiment with supergroups 115
6.7.4 Summary . 118

6.8 Large-size experiment: all 4 versus 3 pieces endgame databases . . 123
6.8.1 The experiment without data movement 125
6.8.2 The experiment with data movement 129
6.8.3 Summary . 129

6.9 Concluding remarks . 129

7 Future Work and Concluding Remarks 131
7.1 Future work . 131
7.2 Concluding remarks . 132

Bibliography 134

A The Placeholder for the Checkers Computation 138

B The Placeholder Nanny 143

C Rules of Checkers in Brief 144

D Code Listing for mqnextjob and mqdonejob Services of the Command-
Line Server 145

E The Experiment with Data Movement 153
E.1 Organization of data movement . 153
E.2 The experiment with data movement and no placement affinity . . . 155
E.3 The experiment with data movement and placement affinity 158

F The Fault Tolerance Daemon 162

List of Figures

1.1 Two administrative domains and an overlay metacomputer. 3
1.2 A 3-stage computation. It is convenient to inquire the status of each

stage. If the second stage resulted in errors, we may want to disable
the third stage and rerun starting from the second stage. 4

1.3 Submitting the dependencies helps, as in this case. 5

2.1 Remote system calls in Condor. 14
2.2 Placeholder scheduling. 16
2.3 Algorithm for a generic placeholder. 17
2.4 Generic PBS placeholder [32]. 19
2.5 Resource management with Globus (reproduced from Foster and

Kesselman [10]). 22
2.6 Stages of the lifetime of a job. 24
2.7 A simple workflow example. 27

3.1 Levels of subdivision of checkers databases. 31
3.2 Workflow dependencies at the level of pieces. 31
3.3 Workflow dependencies at the level of pieces on each side (i.e. the

versus level). 32
3.4 Positions from the sets 2113 and 1231. 33
3.5 Workflow dependencies at the level of slices. 34
3.6 Workflow dependencies at the level of ranks. 35

4.1 An architectural view of TrellisDAG. 39
4.2 Dashed ovals denote jobs. The dependencies between the jobs of

group X are implicit and determined by the order of their submission. 40
4.3 The workflow dependency of group Y on group X implies the de-

pendency of the first job of Y on the last job of X (this dependency
is shown by the dashed arc). 41

4.4 Group X has subgroups K, L, M and jobs A, B, C. These jobs will
be executed after all the jobs of K, L, M and their subgroups are
completed. 42

4.5 Groups K, L, M have same supergroup X; therefore, we can specify
dependencies between these groups. Similarly, group Y is a com-
mon supergroup for groups P and Q. In contrast, groups K and P do
not have a common supergroup (at least not immediate supergroup)
and cannot have an explicit dependency between them. 42

4.6 Group Y depends on group X and this implies pairwise dependen-
cies between their subgroups (these dependencies are denoted by
dashed arrows). 43

4.7 The workflow for the running example. The nodes are slices. Here
slices are groups at the lowest and highest levels at the same time,
since there is only one level. The figure shows how the slice 2001
contains only one job: 2001.sh. 44

4.8 The workflow for the running example with supergroups. The level
versus is the highest and groups at this level are supergroups for
slices that are groups at the lowest level in this example. 45

4.9 The complete submission procedure. Next to each form of descrip-
tion of the workflow is its corresponding programming paradigm
with respect to submitting the workflow to the jobs database. Note
that, with respect to executing the jobs, all of the forms of descrip-
tion are declarative. 48

4.10 The flat submission script for the running example. 49
4.11 The Makefile format. 50
4.12 The Makefile for the running example. 51
4.13 The Makefile with calls to mqsub for the running example. 53
4.14 A basic DAG description script. 54
4.15 The DAG description script with supergroups. 59
4.16 The DAG description script with supergroups and attributes. 62
4.17 The first screen of mqdump for the running example. 68

5.1 When the jobs of groups W, Y, Z are complete, the jobs of group
X’s prologue can be executed. Then the jobs of groups K, L, M are
executed. Only after that does job A of group X become ready. . . . 71

5.2 The Makefile produced by mqmakemake (continued in Figure 5.3). 72
5.3 The Makefile produced by mqmakemake (beginning in Figure 5.2). 73
5.4 SQL script for creating the tables of the jobs database. 77
5.5 The Levels table. 78
5.6 The Targets table. 78
5.7 The Jobs table. 78
5.8 The Before table. 79
5.9 The Running table. 79
5.10 The Cache table. 79

6.1 The layout of the placeholder. 89
6.2 The nanny script. 89

6.3 The pipeline workflow for computing the endgame databases for up
to 4 kings. 91

6.4 The submission script for a simple pipeline using implicit depen-
dencies. 91

6.5 The submission script for a simple pipeline using explicit depen-
dencies. 92

6.6 The small-size experiment at a glance. 92
6.7 The submission script for the small-size experiment. 93
6.8 Resource utilization chart for the small-size experiment. See Table

6.2 for the definition of jobs. 94
6.9 Degree of concurrency chart for the small-size experiment. 95
6.10 The submission script for the small-size experiment with placement

affinity. 99
6.11 Placement affinity and pigeon-hole principle. 100
6.12 Resource utilization chart for the small-size experiment with place-

ment affinity. See Table 6.2 for the definition of jobs. 100
6.13 Degree of concurrency chart for the small-size experiment with

placement affinity. 101
6.14 The DAG for the all-kings computation. 103
6.15 Using the grouping capability for the all-kings computation. 104
6.16 The DAG description script for the all-kings computation. 106
6.17 Resource utilization chart for the medium-size experiment. See Ta-

ble 6.5 for the definition of jobs. 107
6.18 Resource utilization chart for the medium-size experiment. This is

a scaled version of the beginning part of the chart in Figure 6.17.
See Table 6.5 for the definition of jobs. 107

6.19 Resource utilization chart for the medium-size experiment. This is
a scaled version of the beginning part of the chart in Figure 6.18.
See Table 6.5 for the definition of jobs. 108

6.20 Degree of concurrency chart for the medium-size experiment. 108
6.21 Degree of concurrency chart for the medium-size experiment. This

is a scaled version of the beginning part of the chart in Figure 6.20. . 109
6.22 Degree of concurrency chart for the medium-size experiment. This

is a scaled version of the beginning part of the chart in Figure 6.21. . 109
6.23 Resource utilization chart for the medium-size experiment. Model

run. The lines over bars represent the real run (see Figures 6.17,
6.18, and 6.19). See Table 6.5 for the definition of jobs. 111

6.24 Resource utilization chart for the medium-size experiment. Model
run. This is a scaled version of the beginning part of the chart in
Figure 6.23. The lines over bars represent the real run (see Figures
6.17, 6.18, and 6.19). See Table 6.5 for the definition of jobs. 112

6.25 Resource utilization chart for the medium-size experiment. Model
run. This is a scaled version of the beginning part of the chart in
Figure 6.24. The lines over bars represent the real run (see Figures
6.17, 6.18, and 6.19). See Table 6.5 for the definition of jobs. 112

6.26 Degree of concurrency chart for the medium-size experiment. Model
run. The dashed graph represents the corresponding levels of con-
currency for the real run (see Figures 6.20, 6.21, and 6.22). 113

6.27 Degree of concurrency chart for the medium-size experiment. Model
run. This is a scaled version of the beginning part of the chart in
Figure 6.26. The dashed graph represents the corresponding levels
of concurrency for the real run (see Figures 6.20, 6.21, and 6.22). . . 113

6.28 Degree of concurrency chart for the medium-size experiment. Model
run. This is a scaled version of the beginning part of the chart in
Figure 6.27. The dashed graph represents the corresponding levels
of concurrency for the real run (see Figures 6.20, 6.21, and 6.22). . . 114

6.29 The DAG description script for the all-kings computation with su-
pergroups. 119

6.30 Resource utilization chart for the medium-size experiment with su-
pergroups. The lines over bars represent the real run (see Figures
6.17, 6.18, and 6.19). See Table 6.8 for the definition of jobs. 120

6.31 Resource utilization chart for the medium-size experiment with su-
pergroups. This is a scaled version of the beginning part of the
chart in Figure 6.30. The lines over bars represent the real run (see
Figures 6.17, 6.18, and 6.19). See Table 6.8 for the definition of jobs.120

6.32 Resource utilization chart for the medium-size experiment with su-
pergroups. This is a scaled version of the beginning part of the
chart in Figure 6.31. The lines over bars represent the real run (see
Figures 6.17, 6.18, and 6.19). See Table 6.8 for the definition of jobs.121

6.33 Degree of concurrency chart for the medium-size experiment with
supergroups. The dashed graph represents the corresponding de-
grees of concurrency of the run without supergroups (see Figures
6.20, 6.21, and 6.22). 121

6.34 Degree of concurrency chart for the medium-size experiment with
supergroups. This is a scaled version of the beginning part of the
chart in Figure 6.33. The dashed graph represents the correspond-
ing degrees of concurrency of the run without supergroups (see Fig-
ures 6.20, 6.21, and 6.22). 122

6.35 Degree of concurrency chart for the medium-size experiment with
supergroups. This is a scaled version of the beginning part of the
chart in Figure 6.34. The dashed graph represents the correspond-
ing degrees of concurrency of the run without supergroups (see Fig-
ures 6.20, 6.21, and 6.22). 122

6.36 The DAG description script for the 4 pieces versus 3 pieces compu-
tation. 124

6.37 Resource utilization chart for the large-size experiment. 126
6.38 Resource utilization chart for the large-size experiment. Model run. 127
6.39 Degree of concurrency chart for the large-size experiment. 127
6.40 Degree of concurrency chart for the large-size experiment. Model

run. 128

A.1 The placeholder for the checkers computation. 141
A.2 common.sh: Routines used in the placeholder and elsewhere. . . . 142

B.1 The placeholder nanny. See Figure A.2 for the listing of common.sh143

C.1 This figure provides the brief description of the rules of checkers as
it appeared in Paul Lu’s Masters thesis [26]. 144

D.1 Listing of server.py: The module used by both mqnextjob
and mqdonejob. 149

D.2 Listing of mqnextjob.py. 151
D.3 Listing of mqdonejob.py. 152

E.1 Resource utilization chart for the large-size experiment with data
movement. 156

E.2 Degree of concurrency chart for the large-size experiment with data
movement. 157

E.3 Resource utilization chart for the large-size experiment with data
movement and placement affinity. 160

E.4 Degree of concurrency chart for the large-size experiment with data
movement and placement affinity. 161

F.1 The fault tolerance daemon . 163

List of Tables

4.1 Short description of the mqsub utility. 46
4.2 Short description of the mqtranslate utility. 52
4.3 Short description of the mqmakemake utility. 57
4.4 Services of the command-line server. The order of presentation is

the order in which the services are usually invoked in the place-
holder. Note: mqnextjob and mqdonejob modify the last-
Start, lastCompletion and lastHost attributes of the job
in order to store when (and on which host) the job was started and
completed in the last run of the computation. 63

4.5 Keys for the mqnextjob service. 64
4.6 Keys for the mqgetjobcommand service. 64
4.7 Keys for the mqgetjobattributes service. 64
4.8 Keys for the mqdonejob service. 65
4.9 Keys for the mqstatus service. 65
4.10 Keys for the mqsignal service. 66
4.11 Keys for the mqlock service. 66
4.12 Keys for the mqunlock service. 66

6.1 The makespans for the small-size experiment. The median run is
shown in bold. 93

6.2 Time of computation and overhead for the small-size experiment.
Job# corresponds to annotations in Figure 6.8. 96

6.3 The makespans for the small-size experiment with placement affin-
ity. The median run is shown in bold. 98

6.4 The makespans for the medium-size experiment. The median run
is shown in bold. 103

6.5 Time of computation and overhead for the medium-size experiment. 105
6.6 The makespans for the medium-size experiment with supergroups.

The median run is shown in bold. 115
6.7 Comparison of the times of reaching the end-points of the all-kings

computation with and without supergroups. 116
6.8 Time of computation and overhead for the medium-size experiment

with supergroups. 117
6.9 The makespans for the large-size experiment. The median run is

shown in bold. 125

E.1 The makespans for the large-size experiment with data movement.
The median run is shown in bold. 155

E.2 The makespans for the large-size experiment with data movement
and placement affinity. The median run is shown in bold. 158

Chapter 1

Introduction

The progress of research in many areas of science, including physics, chemistry,

engineering and others, depends on the ability of the researchers to perform mas-

sive computations on the order of month and years of CPU time. Examples of the

problems that require computation of this scale include Earthquake Ground Mo-

tion Modeling and solving the Non-linear Einstein equations describing General

Relativity. These and other challenging computational problems are described at

the HPCC Grand Challenges web site [15]. Often, such computations consist of

the execution of many programs or of many executions of one program with dif-

ferent parameters, or a combination of the two. We refer to an executable unit of

computation as a job.

The important observation here is that there is an opportunity to speed up the

computation by running jobs on different (and possibly remote) processors. Sup-

pose that we have jobs
�

, � and � that can be started simultaneously without

affecting the overall correctness of the computation. If we have only one processor,

then executing all three jobs at once (i.e. multiprogramming) may not make much

sense unless there is a specific mix of computation and I/O. However, if we have

three processors, then it makes sense to execute the jobs concurrently (or, as we

also say, in parallel).

As simple as it may seem, there are several tasks involved in such a decision:

1. Identifying that the jobs
�

, � and � can be run in parallel,

2. Recognizing that there are three processors at the moment that are ready to

1

execute the jobs, and

3. Mapping the jobs to the processors – the task that we refer to as scheduling.

The Trellis project is concerned with performing the above tasks automatically,

harnessing all of the available processors to speed up the user’s computation. The

CISS-1 and CISS-2 [33] experiments showed how the recently introduced technique

of placeholder scheduling [30, 31, 32] automates the tasks described above in the

cases when all of the jobs can be executed in parallel. In this thesis, we consider

the same tasks for the more general case when some jobs can be executed only after

other jobs are completed, i.e. when there are inter-job or, as we also say, workflow

dependencies between the jobs of the computation.

1.1 Contributions of this thesis

To properly put the contributions of this thesis in context, it is important to under-

stand two standard notions from the area of operating systems: mechanisms and

policies. Mechanisms provide the infrastructure or the means for carrying out a

task, but they do not specify how exactly the task is to be carried out. Policies use

mechanisms to carry out the task. Suppose that our task is to keep the users of a

large system from using too much disk storage. The file system provides mech-

anisms for achieving that goal: the administrator’s ability to define disk quotas.

However, the exact quotas are a matter of policy. The policies can change (some-

times quite often), but the mechanisms do not need to change in order to put a new

policy in place (e.g. the file system does not need to be rewritten in order to change

the users’ disk quotas).

All of the contributions of this thesis can be classified as mechanisms. Devel-

oping policies that take advantage of the mechanisms introduced in this thesis is an

interesting direction for future work.

The contributions of this thesis can be summarized as follows:

1. Design and implementation of TrellisDAG – a system that can use the tech-

nique of placeholder scheduling for the case of inter-job dependencies,

2

2. Novel mechanisms for representing the workflow in terms that are natural for

the application,

3. Novel mechanisms for job scheduling in the context of placeholder schedul-

ing with inter-job dependencies, and

4. An evaluation of the effectiveness of our approach using a non-trivial appli-

cation.

The technique of placeholder scheduling allows one to build an overlay meta-

computer on top of the existing infrastructure [32]. Suppose for example, that a

researcher has access to processors at the University of Alberta and the University

of British Columbia (see Figure 1.1). Each of these universities define their own

independent (of each other) policies for using resources and, because of that, we

say that the two universities represent two different administrative domains. The

fact that there are multiple administrative domains makes it difficult for a compu-

tational scientist to use the available processors as a single computational resource.

Therefore, we need an infrastructure on top of the existing one, where the resources

in the two different institutions are abstracted. This infrastructure is called an over-

lay metacomputer [32]. This metacomputer consists of the processors at the two

universities, but is logically represented to the user as one point of control. As well,

placeholder scheduling provides a natural mechanism for load balancing of jobs

between the individual resources constituting the metacomputer.

User does not
interact here

University of British Columbia

University of Alberta

Overlay metacomputer

User interacts
here

(one point of control)

Figure 1.1: Two administrative domains and an overlay metacomputer.

TrellisDAG utilizes the technique of placeholder scheduling and therefore en-

joys both the abstraction of resources provided by the overlay metacomputer and

3

the load balancing properties mentioned above.

A B

Stage 1

D

Stage 2

C F

Stage 3

E

Figure 1.2: A 3-stage computation. It is convenient to inquire the status of each
stage. If the second stage resulted in errors, we may want to disable the third stage
and rerun starting from the second stage.

TrellisDAG enhances the convenience of monitoring and administering the com-

putation by providing the user with a tool to translate the set of inter-dependent jobs

into a hierarchical structure with the naming conventions that are natural for the

application domain. Suppose for example, that the computation is a 3-stage sim-

ulation, where the first stage is represented by jobs
�

and � , the second stage is

represented by jobs � and � , and the third stage is represented by jobs � and �

as shown in Figure 1.2. The following are examples of natural tasks of monitoring

and administering of such a computation:

1. Querying the status of the first stage of the computation, e.g. is it completed?

2. Making the system execute only the first two stages of the computation, in

effect disabling the third stage.

3. Redoing the computation starting from the second stage.

TrellisDAG makes such services possible by providing a mechanism for a high-

level description of the workflow, in which the user can define named groups of

jobs and specify collective dependencies between the defined groups.

Finally, TrellisDAG provides mechanisms for scheduling:

1. The user can submit all of the jobs and dependencies at once. The importance

of submitting the workflow dependencies can be demonstrated by an exam-

ple. Suppose that the computation consists of jobs
�

, � and � and that the

4

jobs � and � can only start after
�

is done (as shown schematically in Fig-

ure 1.3). It is possible to envision a system where the user is only required to

submit the jobs in some legal order, for example
�

, � , � in our case. How-

ever, such a system would have no way of figuring out that the jobs � and

� can be executed in parallel and would not take advantage of this opportu-

nity. Submitting all jobs and dependencies at once gives the scheduler more

information and makes it possible to look ahead before making scheduling

decisions.

A

B C

Figure 1.3: Submitting the dependencies helps, as in this case.

2. TrellisDAG provides a single point for describing the scheduling policies.

The placeholder scheduling maps the ready jobs to resources. However, it

does not restrain our freedom of choosing the jobs to be run. There is a pro-

cedure that gets invoked to choose the next job to run. All of the information

stored about jobs is available to that procedure. Also, the procedure knows

where the chosen job will be executed.

3. TrellisDAG provides a flexible mechanism by which attributes may be associ-

ated with individual jobs. The more information the scheduler has, the better

scheduling decisions it may make. Of special importance is the knowledge of

the length of the jobs. For example, suppose we have processors ��� and ��� ,

and jobs
�

, � and � , with no inter-job dependencies, that run for 10, 20, and

40 seconds, respectively. If the scheduler does not know a priori the running

times of the jobs, it may schedule
�

and � to run on ��� and ��� respectively,

and, after 10 seconds, schedule � to run on ��� , resulting in the total time of

50 seconds. However, if the user can estimate the time and submit these times

together with the jobs, then the scheduler can easily come up with a schedule

5

that takes only 40 seconds by choosing � to run first. Although such an at-

tribute is not used for scheduling in this version of the system, the mechanism

is in place.

4. Stores the history information associated with the workflow. The scheduler

may use learning in order to improve the overall computation time from one

trial to another. Our system provides mechanism for this capability by storing

the relevant history information about the computation, such as the start times

of jobs, the completion times of jobs, and the resources that were used for

computing the individual jobs. Developing scheduling policies that use this

mechanism is an interesting direction for future work.

We demonstrate the effectiveness of our approach by using TrellisDAG for a

non-trivial application – computing the checkers end-game databases (see Chapter

3) – and show that:

1. Specifying the jobs and inter-job dependencies using our system is a straight-

forward task,

2. Using the system results in good utilization of resources and the application-

specific opportunities for inter-job concurrency, and

3. The overhead introduced by using TrellisDAG is small and does not signifi-

cantly affect the overall computation time for the applications of interest.

1.2 Overview

Chapter 2 surveys the relevant work and puts the work of this thesis in perspective.

In Chapter 3, we describe the application that originally provided motivation for

this research and was later used as a proof-of-concept. We use the same application

as a running example in Chapters 4 and 5.

Chapter 4 is a user guide to the system. It provides the reader with all the

necessary information to understand the system at a conceptual level and be able to

use it.

6

Chapter 5 goes into the implementation details of the system.

In Chapter 6, we describe our experiments and demonstrate that the system

achieves the design goals outlined above and exhibits other good properties.

Finally, in Chapter 7, we conclude and list some directions for future work.

7

Chapter 2

Background and Relevant Work

High-performance computing (HPC) is the area of computing science that is con-

cerned with achieving maximal computational benefits by exploiting the opportu-

nities for concurrent execution. We can distinguish two types of concurrency:

1. Intra-job concurrency refers to executing two or more different instructions of

one job simultaneously on different processors, e.g. Single Program Multiple

Data (SPMD) parallel computing.

2. Inter-job concurrency refers to executing two or more distinct jobs on differ-

ent processors.

This thesis is concerned with the applications that exhibit opportunities for

inter-job concurrency and only considers sequential jobs. Computational science

provides many examples of such applications (e.g. the computational chemistry ap-

plication used in the Canadian Internetworked Scientific Supercomputer (CISS) ex-

periment [33] and computing checkers end-game databases [19]). Most commonly,

these applications exhibit the following properties that we will take advantage of:

1. Non-interactivity (batch jobs). A job is usually started with a number of

command-line parameters and/or with a file given to it as an input. These

parameters and/or file completely specify what computation should be per-

formed by the job and no interaction with the user is required. This property

is important when we want to execute the job remotely and thus detach it

from the terminal through which it could possibly interact with the user.

8

2. Long run times. The jobs that constitute the applications of computational

science tend to be long – on the order of hours or days of CPU time per job.

Because of the coarse granularity, using mechanisms for scheduling that have

a potential of incurring considerable overhead is not a concern. At the same

time, scheduling policies based on such mechanisms may considerably speed

up the computation.

3. Large number of jobs. It is common that a scientific computation consists of

running one or several executables over and over again with different sets of

parameters or inputs. For example, CISS-1 [33] computed 7,592 jobs dur-

ing a 24-hour period; the checkers computation [19] that we demonstrate in

Section 6.8 involves 1,276 jobs. In the presence of a large number of jobs,

good scheduling decisions are especially important, because they can have a

significant cumulative effect on the overall time taken by the computation.

4. Inter-job dependencies. Sometimes, not all of the jobs of the application can

run concurrently. That is, there can be ordering constraints called dependen-

cies. Usually such constraints exist because the result of one job is used by

another job of the computation. The workflow in Figure 1.3 is an example

of a small workflow having dependencies. One of the applications exhibiting

this property inspired the work on this thesis (see Chapter 3).

This survey consists of two major parts that could roughly be separated as re-

ferring to either mechanisms or policies.

1. Mechanisms. Sections 2.1-2.4 describe systems that provide mechanisms for

automatically executing the jobs of the computation on different and, possi-

bly, remote processors. Some of these systems provide a number of mecha-

nisms similar to those described as the contributions of this thesis. The major

difference is that our system uses placeholder scheduling as its underlying

infrastructure.

2. Policies. The order in which jobs are executed and the mapping of jobs to

resources can have a large impact on the overall computation time. This issue

9

becomes especially interesting when the computation has inter-job depen-

dencies. Section 2.5 describes the work that has been done in the area of

scheduling and, in particular, DAG Scheduling [17], where DAG refers to the

directed acyclic graph used to represent the workflow with its dependencies.

2.1 Batch schedulers

The first widely used batch scheduler was the Network Queuing System (NQS) [2]

developed by the NASA Ames Research Center. The main purpose of the system

was to give the users of slower machines the opportunity to submit their jobs to a

faster machine. There were multiple users competing for CPU cycles of the fast

machine and the system helped by providing several services:

1. The job queue. The submitted jobs were put in a queue similar to a printer

queue, thus making sure that the jobs of different users were executed in turn

and did not interfere with each other, and

2. Restriction policies. With every queue there were associated quotas that limit

the amount of resources that the individual jobs could use up. For example,

the administrator could specify that a job should not run for more than 2

hours, or that a program should not use more than 16 MB of memory, etc.

Although NQS was usually used in the environment with only one or a few high-

performance machines on which most of the computation was done, the ultimate

purpose of the system was to harness the available computational resources and

make these resources available to the users.

A descendant of NQS, the Portable Batch System (PBS) [34], is widely used

today. Relating to our work, PBS provides the following interesting features:

1. Load balancing. It is possible to install PBS on a cluster of workstations so

that there is a central submission point. Then, PBS makes sure to put the jobs

on the less loaded machines. If there are no dependencies between the jobs

and all jobs are submitted at the same time (e.g. by a submission script), then

PBS will do a good job of maximizing the throughput.

10

2. Job dependencies. Every job is assigned an identity (ID) upon submission.

Thus, if the job � depends on jobs
�

and � that were submitted previously

and assigned IDs 1234 and 1235 respectively, then the command for submit-

ting � may look as follows: qsub -Wdepend=afterok:2534,1235

C.sh. As seen in this example, PBS also supports basic fault tolerance;

namely the afterok key word means that the job � will only be executed

upon successful completion of its antecedents.

PBS has several limitations that are addressed by our system:

1. PBS is designed to work within one administrative domain, such as a cluster

of workstations. Thus, the amount of computational power harnessed by PBS

is quite limited. In contrast, TrellisDAG can work with widely dispersed

computational resources.

2. Because the jobs are assigned IDs at submission time and knowing them is

required to specify dependencies, writing a submission script that takes job

dependencies into account is not a trivial task. In contrast, TrellisDAG en-

courages that the jobs and the dependencies are submitted all at once. Also,

the system provides a single location where both the jobs and the dependen-

cies are specified.

Other widely used batch scheduling systems are the Sun Grid Engine (SGE)

[38], the Load Sharing Facility [24, 43], and IBM’s LoadLeveler [25]. In terms of

load balancing and inter-job dependencies, they have similar capabilities with PBS.

As we will explain later in this chapter, placeholder scheduling does not replace

the local batch schedulers; instead, it allows our system to take advantage of the

good properties of the local batch schedulers and reuse their load balancing func-

tionality.

11

2.2 Specialized systems

There are systems made to address only a subset of the needs of scientific high-

throughput computing. One such system is called Nimrod1 and is designed to help

scientists explore large parametric spaces [1].

Nimrod is a specialized system for two reasons:

1. Job dependencies are of no concern for Nimrod because the parameter sets

can be explored in parallel. A workload in which all jobs can be run in parallel

without violating any dependencies is called embarrassingly parallel.

2. Nimrod can only be applied to problems that are formulated as parameter

space exploration.

Nimrod has a feature that is similar to TrellisDAG: there is a single place where

the whole computation is defined. The user defines the parameter space to be ex-

plored in a special programming-like language. He also defines the operations to

be performed before and after exploring each particular parameter set. These oper-

ations usually include data transfer.

Nimrod works within one administrative domain. This limitation is addressed

by the grid-enabled (see Section 2.4) version of this system called Nimrod/G [41].

2.3 Metacomputing systems

The purpose of a metacomputing system is to represent a set of heterogeneous and,

possibly, dispersed computing resources as a unit. Such a system is expected to

have the following characteristics:

1. Transparent (for the user) mapping of jobs that were submitted to the meta-

computing system to the physical machines,

2. Load balancing. The system has to, in effect, maximize throughput, and

1The name Nimrod comes from the Bible. Nimrod, son of Cush, son of Ham, was a great-
grandson of Noah who was saved during the Flood. The Bible describes him as “the first to be a
mighty man on earth.”

12

3. Monitoring of the jobs being executed.

We note that the batch schedulers described in Section 2.1 exhibit some or all of the

properties listed above. However, we typically expect that a metacomputing system

can work across multiple administrative domains. The batch schedulers described

in the last section can also be installed in a way that covers several administrative

domains – at a cost of potentially compromised security. In particular, the clients

of a batch scheduler are trusted and, when such a client connects to the scheduler’s

server, no machine and/or user authentication takes place. This is not the case

in placeholder scheduling (see Section 2.3.2), where placeholders connect to the

server through an authenticated ssh connection.

We will now describe some existing metacomputing systems.

2.3.1 Condor

The Condor2 High Throughput Computing environment [3, 23] is one of the first

metacomputing systems. It was developed at the University of Wisconsin-Madison

in the late 1980s to facilitate scientific research that consumed years of CPU time.

In 1997, the computing pool of Condor consisted of 300 UNIX workstations deliv-

ering on average more than 180 CPU days per day.

Although technically Condor is a batch scheduler, it has several advanced fea-

tures (described below); moreover, there is an extension of Condor called Condor-G

[4] that works across administrative domains.

The system is built on three concepts:

1. ClassAd. ClassAds are descriptions of resources and computational tasks.

The resources’ ClassAds are like advertisements of offers and the computa-

tional tasks’ ClassAds are like advertisements of demands. Once in a while

the ClassAds from two sides are matched and the most suited resources and

tasks are paired up.

2. Remote System Calls. This is a mechanism by which Condor deals with

2Condor is a large vulture; in fact, it is the largest bird in the Western Hemisphere and its
wingspan is about 3 meters.

13

Data

Submission host Execution host

read()

Application

read() {

}

Linked library

Figure 2.1: Remote system calls in Condor.

the data. The data is always stored on the submission host and the remotely

running application needs a means to access that data. In order to do that, the

application has to be linked with a special library, which overrides the well-

known I/O functions such as open() and read() to access remote data as

shown in Figure 2.1. The interesting consequence of this is that the user does

not have to have an account on all the execution hosts and his programs are

run under a special account with very limited permissions. The downside is

that the submission host may end up overloaded, especially if the application

is I/O-bound.

3. Checkpointing. A Condor process can save its complete state, periodically

and/or on demand. This means that Condor processes can be preempted (i.e.

the resources taken up by these processes are reclaimed) and migrated, which

is beneficial from the scheduling point of view and provides a mechanism for

fault tolerance.

Condor comes with a tool called the Directed Acyclic Graph Manager (DAG-

Man) [5]. The tool addresses the problem of job dependencies and allows the user

to do something very similar to what our system does: one can represent a hierar-

chical system of jobs and dependencies using DAGMan scripts. Let us look at a

sample DAGMan script:

Job A A.condor

Job B B.condor

14

Job C C.condor

PARENT A B CHILD C

Here, the job � depends on the results of jobs
�

and � . The names with the

.condor extension are the scripts representing the jobs. What makes the model

interesting is that those scripts can be DAGMan scripts themselves. This is useful

because when a group of ��� jobs can only be started after another group of � �

jobs has executed, then there are on the order of � ��� � dependencies that need to

be specified. The model allows us, in effect, to reduce the number of dependencies

to one. In our system, we provide a similar functionality through a mechanism by

which jobs can be organized in groups, with the following additional advantages:

1. All of the dependencies are specified within one file,

2. The jobs get names automatically, which allows for a large number of jobs,

and

3. The information about the groups of jobs is used for monitoring and admin-

istrative purposes.

2.3.2 Trellis

The Trellis project [42] aims to develop simple and effective techniques for forming

a virtual supercomputer out of a geographically-distributed collection of computing

resources. Investigators of the Trellis project identified and developed solutions for

two main problems:

1. Distribution of computation. The technique of placeholder scheduling [30,

31, 32] provides a mechanism for automatic load balancing of computational

jobs across workstations that can be in different administrative domains.

2. Data access. The Trellis File System [36] introduces a namespace similar to

that used by the UNIX scp utility and makes this namespace available to

programs through wrappers to the standard I/O functions, such as open()

15

and read(). The Trellis File System also supports caching, sparse access,

and prefetching.

The technique of placeholder scheduling is very relevant to this thesis, since

TrellisDAG is built on top of the technique. Therefore, we provide a more detailed

explanation of the technique here. In contrast, we do not use the Trellis File System

in this thesis and leave a thorough treatment of data movement by TrellisDAG as a

topic for future work.

At a high level, placeholder scheduling is illustrated in Figure 2.2. There is a

central host that we will call the server. All the jobs (a job is anything that can

be executed) are stored on the server (the format of storage is not specified; it can

be a plain file, a database, or any other format). There is also a set of programs

called services that form a layer called the command-line server. The command-

line server provides means for accessing and modifying the stored jobs in ways that

will be described later.

Command lines

Placeholder

Execution host 2
Placeholder

Execution host n
Placeholder

Execution host 1

Server

Service routines (command−line server)

Figure 2.2: Placeholder scheduling.

There are any number of execution hosts (or computational nodes) – the ma-

chines on which the computations are actually executed. On each execution host

there is one or more (usually depending on the number of CPUs) placeholder(s)

running. A placeholder is a unit of potential work. It can be implemented as a shell

script, or a script for a local batch scheduler, or in any other way. However, it has

to use the service routines (or services) of the command-line server to perform the

16

following activities:

1. Get the next job from the server,

2. Execute the job, and

3. Resubmit itself.

In the simplest case, the placeholder can be implemented as a shell script con-

taining only an infinite loop. Resubmission corresponds to looping around in this

case. The placeholder stops when it gets information that there are no unexecuted

jobs left.

While there are non-started jobs, do:

1. Obtain a command line.

2. Execute the command line.

3. Signal completion.

Figure 2.3: Algorithm for a generic placeholder.

Basically, a placeholder executes the algorithm in Figure 2.3 [32]. A sample

placeholder implemented as a PBS script is shown in Figure 2.4. The placeholder

includes the ability to dynamically increase and decrease the number of placehold-

ers in the PBS queue. The lines beginning with #PBS (lines 4-11, Figure 2.4) are di-

rectives interpreted by PBS at submission time. The command line is retrieved from

the command-line server (in our case, using the program getcmdline) and stored

into the OPTIONS shell variable (line 18, Figure 2.4). This variable is later evalu-

ated at placeholder execution time with the command(s) that will be executed (line

50, Figure 2.4). The late binding of placeholder to executable name and command-

line arguments is key to the flexibility of placeholder scheduling.

The placeholder then evaluates the amount of time it has been queuing for (line

32, Figure 2.4), and consults a local script to determine what action to take (line 38,

Figure 2.4). It may increase the placeholders in the queue by one (lines 44-47, Fig-

ure 2.4), maintain the current number of placeholders in the queue by resubmitting

itself after finishing the current command line (line 60, Figure 2.4), or decrease the

17

number of placeholders in the queue by not resubmitting itself after completing the

current command line (lines 53-55, Figure 2.4).

18

1 #!/bin/sh
2 ## Generic placeholder PBS script
3
4 #PBS -S /bin/sh
5 #PBS -q queue
6 #PBS -l ncpus=4
7 #PBS -N Placeholder
8 #PBS -l walltime=02:00:00
9 #PBS -m ae
10 #PBS -M pinchak@cs.ualberta.ca
11 #PBS -j oe
12
13 ## Environment variables:
14 ## CLS_MACHINE - points to the command-line server’s host.
15 ## CLS_DIR - remote directory in which the command-line server is located.
16 ## ID_STR - information to pass to the command-line server.
17 ## Note the back-single-quote, which executes the quoted command.
18 OPTIONS=‘ssh $CLS_MACHINE "$CLS_DIR/getcmdline $ID_STR"‘
19
20 if [$? -ne 0]; then
21 /bin/rm -f $HOME/MQ/$PBS_JOBID
22 exit 111
23 fi
24 if [-z $OPTIONS]; then
25 /bin/rm -f $HOME/MQ/$PBS_JOBID
26 exit 222
27 fi
28
29 STARTTIME=‘cat $HOME/MQ/$PBS_JOBID‘
30 NOWTIME=‘$HOME/bin/mytime‘
31 if [-n "$STARTTIME"] ; then
32 let DIFF=NOWTIME-STARTTIME
33 else
34 DIFF=-1
35 fi
36
37 ## Decide if we should increase, decrease, or maintain placeholders in the queue
38 WHATTODO=‘$HOME/decide $DIFF‘
39
40 if [$WHATTODO = ’reduce’] ; then
41 /bin/rm -f $HOME/MQ/$PBS_JOBID
42 fi
43
44 if [$WHATTODO = ’increase’]; then
45 NEWJOBID=‘/usr/bin/qsub $HOME/psrs/aurora-pj.pbs‘
46 $HOME/bin/mytime > $HOME/MQ/$NEWJOBID
47 fi
48
49 ## Execute the command from the command-line server
50 $OPTIONS
51
52 ## leave if ’reduce’
53 if [$WHATTODO = ’reduce’] ; then
54 exit 0
55 fi
56
57 /bin/rm -f $HOME/MQ/$PBS_JOBID
58
59 ## Recreate ourselves if ’maintain’ or ’increase’
60 NEWJOBID=‘/usr/bin/qsub $HOME/psrs/aurora-pj.pbs‘
61
62 $HOME/bin/mytime > $HOME/MQ/$NEWJOBID

Figure 2.4: Generic PBS placeholder [32].

19

2.4 Grids

We adopt the widely-accepted definition of a grid by Ian Foster [9]. According to

that definition, a grid “is a system that:

1. coordinates resources that are not subject to centralized control

2. using standard, open, general-purpose protocols and interfaces

3. to deliver nontrivial qualities of service.”

Some metacomputing systems come close to satisfying this definition. How-

ever, most of them fail to use “standard, open, general-purpose protocols and inter-

faces.” In particular, Trellis is not a grid, because it does not satisfy the second and

the third conditions of the above definition.

2.4.1 Legion

In order to understand the main principle of Legion3 [20, 21, 22], we look back at

the concept of an operating system (OS) that the reader is certainly familiar with.

According to one definition [28], “an OS is a set of software elements that turn

the physical resources constituting a computing system into a collection of virtual

objects, with the intention of providing a convenient and efficient virtual platform

for the development, execution, and maintenance of programs, as well as for infor-

mation storage and retrieval”. By this definition, Legion is an operating system for

the computing system that represents a possibly large collection of decentralized

computational resources.

Legion defines an object-oriented model in which all the resources are objects

that are instances of corresponding classes. Examples of Legion objects include: a

host, a file residing on some host, a printer, etc. Legion does not specify a particular

implementation of its classes’ interfaces; thus, it provides a general-purpose frame-

work for creating non-trivial applications that harness the power of the available

computational resources.

3In the Roman empire, legion was an army unit of 3,000-6,000 infantry and 100-200 cavalry.

20

Legion meets only two of the three conditions of our definition of a grid: its

interfaces have not gone through a rigorous standardization process that Ian Foster

required.

As powerful a platform as it is, Legion has one major drawback: in order to

benefit from Legion’s great features, an application has to be Legion-aware, i.e.

it has to be reimplemented to connect to Legion’s object-oriented interfaces. In

contrast, TrellisDAG does not impose any such requirements on an application.

2.4.2 Globus

Globus [13, 10] is a grid toolkit that started out in the Argonne National Laboratory

and since became a multi-institutional project with significant industry support. It

represents a set of software components that any application can use to take advan-

tage of the resources visible to the toolkit. There are two major differences between

the Legion (see Section 2.4.1) project and the Globus project:

1. Legion emphasizes an object-oriented programming model; Globus applica-

tions can use any programming model, and

2. Whenever possible, the developers of Globus use existing standards (e.g.

LDAP – Lightweight Directory Access Protocol); furthermore, they aim to

augment the standards by the Globus protocols and interfaces.

The Globus project is ambitious and wants to address all the problems of grid

computing including security, status monitors, and automatic resource discovery.

We will describe parts of the toolkit most relevant to this thesis (refer to Figure

2.5):

1. The Globus Resource Allocation Manager (GRAM). This software com-

ponent is a bottom level of the hierarchy of components that provide global

resource allocation. It is responsible for managing local resources. For exam-

ple, there could be an installation of LSF on a group of computers. Then there

would be a GRAM component that managed this group of computers. Thus,

GRAM components work on top of the local resource management systems

and bridge them to the global services of the toolkit.

21

Local

resource

managers

GRAM GRAM

LSF EASY−LL NQE

Simple ground RSL

Co−allocator

Information
Service

Queries

& Info

Broker

Application

GRAM

RSL

Ground
RSL

Figure 2.5: Resource management with Globus (reproduced from Foster and
Kesselman [10]).

The global resource allocation works as follows. When an application needs

a resource, it specifies the need in a special language called the Resource

Specification Language (RSL). This specification is passed to a component

called the broker, which identifies a subset of GRAMs that fit the description

and refines the specification accordingly. The resulting specification can be

passed to another broker for further refinement. Eventually a set of GRAMs

that best match the specification is found. Then the specification is broken

into a set of specific requests that are passed to the GRAM components.

It is possible that resources corresponding to several GRAMs have to be allo-

cated simultaneously or co-allocated. Therefore, there are global components

called co-allocators built on top of several GRAM components. These com-

ponents receive the resource requests and co-allocate GRAMS as necessary.

2. The Globus Metacomputing Directory Service (MDS). A computational

grid is a dynamic system, in which new resources may be added, other re-

22

sources removed, and some resources changed. The grid components and ap-

plications need to have means to get information about various components

(both software and hardware) in order to adapt to the changes.

MDS provides interfaces for publishing information about the state of the grid

as well as for accessing that information. It uses the Lightweight Directory

Access Protocol (LDAP) for representing the information.

Other components and applications have a responsibility to use the publishing

interfaces of MDS to post information about their status.

3. The Global Access to Secondary Storage (GASS). The idea is somewhat

similar to the Trellis File System’s wrappers. The standard I/O functions are

overridden in order to provide remote access functionality.

Several grids have been constructed using the Globus toolkit, including:

1. Grid Physics Network (GriPhyN) [14] – a grid for collecting and analyzing

scientific and engineering data on large scale. There are several other projects

with similar data-oriented goals [6, 16, 29, 40],

2. Information Power Grid [27] – an ambitious grid project by NASA with the

goal of building an all-purposes grid with advanced services on top of the

Globus toolkit, and

3. TeraGrid [39] – a project with the main goal of creating a grid-based comput-

ing research environment for several American universities. A project with

similar goals exists in Denmark [7].

Most grids built with the Globus technology use the DAGMan tool of Condor to

tackle the problem of job dependencies.

Work is under progress to create a standard called the Open Grid Services Ar-

chitecture based on the Globus toolkit [11, 12].

23

2.5 Policies

In the previous sections of this chapter, we surveyed several systems that provide

mechanisms for harnessing computational resources. Usually, these mechanisms

are generic enough to allow for many ways of mapping individual jobs to resources;

such is TrellisDAG, whose mechanisms are generic. In this section, we introduce

standard terminology used in the HPC community to discuss the issues of schedul-

ing. In particular, we are interested in scheduling in the context of workflows with

inter-job dependencies.

Assume a job that has to be executed using TrellisDAG or any other system such

as the ones described in this survey. The lifetime of a job can be conceptually split

into stages, as shown in Figure 2.6.

Running PostReadyQueuePre

Submitted

Queued

Ready

Release/Dispatch

Completion

Turnaround time

Figure 2.6: Stages of the lifetime of a job.

We discuss the stages in the order from left to right on this figure. First, the

job has to be submitted to the system. The moment of submission is called the

submission time of the job (labeled as “Submitted” in Figure 2.6). The submitted

job is entered into the pre-queue (labeled as “Pre” in Figure 2.6). The job stays in

the pre-queue until all of its static dependencies are satisfied. Static dependencies

are the ones that do not depend on the result of execution of other jobs. For example,

compilation of the executable for the job may be a static dependency.

Once all the static dependencies are satisfied, the job is entered into the queue.

A job stays in the queue as long as there are unmet dynamic (or workflow) depen-

24

dencies.

When all of the dynamic dependencies of the job are satisfied, it is entered into

the ready queue. The moment when this happens is called the ready time of the

job. The job stays in the ready queue until the system is able to allocate a physical

resource and run the job, at which point the state of the job is changed to running.

This moment of time is called the release (or dispatch) time of the job.

The job is completed at completion time and is entered into the post-queue (la-

beled as “Post” in Figure 2.6), thereby allowing the system to perform post-tasks,

such as, for example, removal of the executable of the job.

Now we introduce some more terminology that is used to describe scheduling

engines in HPC environments. The terminology comes from a well-known paper

by Feitelson, Rudolph, Schwiegelshohn, Sevcik and Wong [8].

Suppose that a set of jobs
�

has been submitted to the environment. Then, with

every job ��� �
, we can associate the following parameters:

1. ��� – the release time,

2. ��� – the completion time, and

3. 	
� – the priority level of � .

The following cost metrics are commonly used to evaluate a schedule:

1. �
������������� – makespan or throughput. Note that usually throughput is de-

fined as the number of jobs (or, in this context, the sum of priorities of jobs)

completed per time unit. We will use the term in the latter sense,

2. � ����� 	
����� – weighted completion time, and

3. � ����� 	
��������������� – weighted response time.

Jobs are usually matched to a partition (i.e., set of resources) of the HPC envi-

ronment according to the job’s specifications (such as required number of proces-

sors and amount of memory) and the state of the environment (such as the work-

load). Depending on how the partition given to a job can or cannot change, the

partitions can be fixed (i.e. determined at submission time (refer to Figure 2.6) by

25

the administrator), variable (i.e. chosen at submission time according to user re-

quirements), adaptive (i.e. chosen at release time by the environment), or dynamic

(i.e. can change during the execution).

Preemption adds another dimension to the choices that the scheduler can make

in order to obtain a better schedule. It is useful to classify the jobs according to the

degree of preemption that they support. A job may support no preemption; alterna-

tively, it can support local preemption (i.e. threads of the job can be preempted, but

must be later resumed on the same processor), migratable preemption (i.e. threads

of the job can be preempted and later resumed on a different processor), or gang

scheduling (i.e. all threads of the job are preempted and restarted simultaneously,

either with or without migration).

Given the cost metrics for schedules and the classification of jobs according to

their flexibility and support of preemption, the scheduler has to come up with a

schedule.

One of the main characteristics of a scheduler is what information is available

to it and what information it can use for decision making. Four main cases are

distinguished:

1. The scheduler does not have/use any knowledge,

2. The scheduler maintains information about workload and its distribution,

3. The scheduler classifies jobs according to several important properties (e.g.

estimated parallelism) and uses the information about the class of the indi-

vidual jobs, or

4. The scheduler uses estimates of execution time of individual jobs (each job

may have many estimates depending on partition size given).

We proceed to introduce additional terminology that is used to describe scheduling

issues for workflows with dependencies. Our source is a well-known paper by

Kwok and Ahmad [17].

The set of jobs can be modeled as a directed acyclic graph (DAG) with a set

of vertices (or nodes) � and a set of arcs � . Each node represents a single job. If

26

A

B C

Figure 2.7: A simple workflow example.

� ��� � � � � and there is an arc � � � � � � , then the job � � cannot be executed until the

job � � is completed and its results are available. For example, job � and job
�

are

examples of such jobs � � and � � , respectively, in Figure 2.7. � � is called the parent

node and � � is called the child node. A node with no parent is an entry node and a

node with no child is an exit node. Each DAG has one or more entry nodes and one

or more exit nodes. For example, the DAG in Figure 2.7 has one entry node
�

and

two exit nodes � and � . We assume that all jobs are sequential and are executed on

one processor. In this thesis, we do not deal with preemption (i.e. we assume the

run-to-completion policy).

We further associate a weight with every node of the DAG. The weight associ-

ated with a node � � � is denoted by 	 � � � and represents the expected execution

time of � . We also associate a weight with every arc and these weights are called
��� � � � . The cost associated with the arc � � � � � � is the overhead of transferring the

data generated by � � in order to start � � . This cost is denoted by � � � ��� � ��� .
Scheduling jobs of a DAG as described above to a limited number of proces-

sors so as to minimize the makespan is an
� � -complete problem. Many heuristic

approaches to scheduling have been proposed (see [17] for details).

2.6 Concluding remarks

Harnessing the available computational resources has been a subject of efforts of

the high-performance computing community for years. As a result of these efforts,

we have systems ranging in sophistication from simple batch schedulers to grids.

However, there is no single system that is both easy to install and use and covers all

the needs of the computational science community. In this respect, TrellisDAG’s

27

interesting feature is that it can work on top of other systems without sacrificing

any of its distinct features related to handling of inter-job dependencies.

28

Chapter 3

The Motivating Application

First we introduce the motivating application – building checkers endgame databases

via retrograde analysis – at a very high level. Then we highlight the properties of the

application that are important for our project. Finally, we argue that many scientific

applications exhibit these properties and it is therefore desirable to have a system

that is able to take advantage of these properties. We used the checkers databases

as one example of an application, but the design of TrellisDAG does not make any

application-specific assumptions and can be applied to other application domains.

3.1 Introducing the application

A team of researchers in the Department of Computing Science at the University of

Alberta aims to solve the game of checkers [18]. The rules of the game of check-

ers are briefly summarized in Appendix C. For any given position the following

question has to be answered:

Can the side to move first force a win or a draw?

In order to answer this question, the investigators of the checkers project com-

bine retrograde analysis [19] and forward search. During the retrograde analysis,

a database of endgame positions is constructed. Each entry in the database corre-

sponds to a unique position and contains one of 3 values: ��� � , ������� or �
	 � � .

Such a value represents perfect information about a position and is called the theo-

retical value for that position.

29

The construction starts with the trivial case of one piece. We know that whoever

has that last piece is the winner. In general, given a position, whenever there is at

least one legal move that leads to a position that has already been entered in the

database as a ������� for the opponent side, we know that the given position is a

� � � for the side to move (since he can take that move, the values of all other

moves do not matter); conversely, if all legal moves lead to positions that were

entered as a � � � for the opponent side, we know that the given position is a

��� ��� for the side to move. For a selected part of databases, this analysis goes in

iterations. An iteration consists of going through all positions to which no value has

been assigned and trying to derive a value using the rules described above. When

an iteration does not result in any updates of values, then the remaining positions

are assigned a value of � 	 � � since neither player can force a win.

If we could continue the process of retrograde analysis up to the initial position

with 24 pieces on the board, then we would have solved the game. However, the

number of positions grows exponentially and there are on the order of
��� ��� possible

positions in the game. That is why retrograde analysis is combined with a forward

search, in which a game tree with the root as the initial position of the game is

constructed. When the two approaches “meet”, we will have perfect information

about the initial position of the game and the game will be solved.

The program that we use for this project implements the retrograde analysis

approach [19].

3.1.1 Important application-specific characteristics

Division of Databases

Early on, the researchers of the checkers project saw that there were opportunities

for massive parallelism in the computation of checkers endgame databases [19].

This was one of the reasons why the checkers databases were divided into smaller

and smaller parts; the other reason was to reduce the memory footprint – the amount

of memory used at any one time. We will now describe the logic behind this division

as well as the opportunities for concurrency.

The levels of subdivision are summarized in Figure 3.1. Our explanation follows

30

this diagram in the direction from top to bottom.

Pieces

Versus

Slices

Ranks

Figure 3.1: Levels of subdivision of checkers databases.

At the highest level, it is natural to divide the set of all possible positions into

subsets according to the total number of pieces on the board as shown in Figure

3.2. The least non-trivial number of pieces is 2. Given the size of the databases,

we cannot expect to compute the 11-piece databases any time soon. For now we

assume a simple model of retrograde analysis where the databases for ���
�

pieces

can only start being computed when the complete databases for � pieces have been

obtained. Figure 3.2 shows the workflow dependencies so far.

5 pieces 4 pieces 3 pieces 2 pieces10 pieces

Figure 3.2: Workflow dependencies at the level of pieces.

Assume that that the two players are black and white. The following observa-

tion is important: the theoretical value of two distinct positions can be computed

in parallel (i.e. independently) if and only if neither of these positions can reach

the other by a sequence of legal moves. For example, consider a position with 5

pieces on the board in which black has 2 pieces and white has 3 pieces, and another

31

position with the same number of pieces in which black has only 1 piece and white

has 4 pieces. These two positions can be processed in parallel because there is no

way for one of them to result in the other in any game of checkers, since the number

of pieces of neither color can increase during the game.

At the next level, we further subdivide the databases according to the number

of pieces that each side has on the board. For example, for 7-piece databases, there

are three independent subsets: 4 pieces versus 3 pieces, 5 pieces versus 2 pieces,

and 6 pieces versus 1 piece. Note that two positions in any two different groups

listed above can be processed in parallel by the above observation. Therefore, if we

expand the node in Figure 3.2 corresponding to 7-piece databases, then we have no

workflow dependencies for computing 7-piece databases (see Figure 3.3).

6 vs. 14 vs. 3 5 vs. 2

7 pieces

Figure 3.3: Workflow dependencies at the level of pieces on each side (i.e. the
versus level).

We can subdivide the databases further. Suppose that black has 4 pieces and

white has 3 pieces. We note that a position with 2 black kings, 2 black checkers,

and 3 white kings can never play into a position with 3 black kings, 1 black checker,

2 white kings, and 1 white checker or vice versa – because the change in the number

of black kings corresponds to the forward direction in the game and the change in

the number of white kings corresponds to the backwards direction. Thus, any two

positions from those two categories can be processed in parallel.

In general, let us denote any position by four numbers standing for the number

of kings and checkers of each color on the board. For example, 2113 is read

from left to right as follows: a position with 2 black kings, 1 white king, 1 black

checker, and 3 white checkers. Such a position is shown in Figure 3.4(a). We can

32

1

2

3

4

5

6

a b c d e f g h

7

8

1

2

3

4

5

6

a b c d e f g h

7

8

1

2

3

4

5

6

a b c d e f g h

7

8

(a) (b)

Figure 3.4: Positions from the sets 2113 and 1231.

always assume that black is to move because we will also consider the symmetrical

positions from the group 1231. For example, Figure 3.4(b) shows the position

from the group 1231 that corresponds to the position in Figure 3.4(a).

A group of all positions that have the same 4-number representation is called a

slice.

Positions � �� 	 �� � �� 	 �� and � �� 	 �� � �� 	 �� that have the same number of black and white

pieces can be processed in parallel if one of the following two conditions hold:

	 ���� 	 �� and � ���� � ��

or

	 ���� 	 �� and � ���� � ����

Figure 3.5 shows the workflow dependencies for the case of 4 pieces versus 3

pieces.

Each of the slices in Figure 3.5 supports additional concurrency. In order to see

that, let us order the positions that have the same number of checkers and kings of

each color by the rank of the leading checker. The rank of a checker is defined as

follows:

33

3310

2320

1330 3112

0340

4102

4003

30132122

2023

1033

1132

0043

0142

0241

43004 vs. 3

1231

2221

3211

4201

Figure 3.5: Workflow dependencies at the level of slices.

1. The rank of a black checker is counted from 0 starting from line 8 of the

board. For example, the leading black checker in Figure 3.4(a) is on line 4,

which is rank 5 and

2. The rank of a white checker is counted from 0 starting from line 1 of the

board. For example, the leading white checker in Figure 3.4(a) is on line 4,

which is rank 3.

Thus ranks are numbers from 0 to 6 (on rank 7 a checker would become a king).

Let ��� 	�� refer to a position with the leading checker for black on line ��� and the

leading checker for white on line 	�� . Then a part of databases at the finest level of

subdivision is denoted by 6 numbers as � � 	 � � � 	 � � ��� 	�� . For example, the position in

Figure 3.4(a) is from the group of positions 2113.53. The workflow dependencies

at the level of ranks are illustrated in Figure 3.6 for three cases (from left to right):

34

1. Both sides have checkers,

2. Only black has checkers, and

3. Only white has checkers.

6, 6 6, 5 6, 4 6, 3 6, 2 6, 1

5, 6 5, 5 5, 4 5, 3 5, 2 5, 1

4, 6 4, 5 4, 4 4, 3 4, 2 4, 1

3, 6 3, 5 3, 4 3, 3 3, 2 3, 1

2, 6 2, 5 2, 4 2, 3 2, 2 2, 1

1, 6 1, 5 1, 4 1, 3 1, 2 1, 1

0, 6 0, 5 0, 4 0, 3 0, 2 0, 1

6, 0

5, 0

4, 0

3, 0

2, 0

1, 0

0, 0

6, 0

5, 0

4, 0

3, 0

2, 0

1, 0

0, 0

0, 6

0, 5

0, 4

0, 3

0, 2

0, 1

0, 0

Figure 3.6: Workflow dependencies at the level of ranks.

We emphasize that the workflow dependencies emerge from:

1. The rules of checkers,

2. The retrograde analysis algorithm, and

3. The subdivision of the checkers endgame databases.

TrellisDAG does not contribute any workflow dependencies in addition to those

listed above.

Stages for computing a part of the checkers endgame databases

Several stages1 are executed for each part of the databases at the level of ranks:

1. Computation. At this stage the positions of the part are assigned their � � � / ��� ��� / �
	 � �
value and this value is stored in the database for the part being computed. The

stage uses the complete compressed (see below) databases computed to date,

1The reader is referred to Lake, Schaeffer, Lu [19] for a more detailed description of the compu-
tation.

35

2. Compression. The databases are compressed to save disk space,

3. Addition. The compressed databases are added to the complete databases,

and

4. Verification. The complete databases are checked for consistency.

3.2 Properties of the checkers application with re-
spect to TrellisDAG

Although building the checkers endgame databases motivated our work on Trellis-

DAG, the system can handle a wide class of applications with or without inherent

workflow dependencies. Building the checkers endgame databases is just one of

many possible applications for TrellisDAG. In this section, we summarize the prop-

erties of the checkers application that make it well suited for testing TrellisDAG.

We use computing the part of the 7-piece databases for 4 pieces versus 3 pieces

(see Figures 3.5 and 3.6) as a running example for demonstrating these properties.

1. Variable degree of concurrency. The computation of 4 vs. 3 slice starts with

computing the databases for the kings only situation and admits no concur-

rency. However, it can happen that slices 0340, 1231, 2122, and 3013

(the area marked by the dashed rectangle in Figure 3.5) are being computed

simultaneously; moreover, in each of the latter three slices, there is a pos-

sibility of 7 jobs computing concurrently (corresponding to the up-diagonal

on the left part of Figure 3.6). Thus, the maximal degree of concurrency is
�����

�
�����	�

.

2. Varying length of jobs. On a 1.5 GHz Athlon with 512 MB of memory,

computing the 4300 slice takes more than an hour, while some of the shorter

jobs take as little as 6 seconds.

3. Large number of jobs. Computing the 4 vs. 3 slice of the databases involves

638 jobs. In our experiments, we separate the verification stage into a separate

job, leading to a total of
� ��
��	� � �

�
� �	

jobs.

36

4. Non-trivial workflow dependencies.

3.3 Concluding remarks

Computing checkers endgame databases is a non-trivial application that requires

large computing capacity and presents a challenge by demanding several properties

of a metacomputing system:

1. A tool/mechanism for convenient description of a multitude of jobs and inter-

job dependencies,

2. The ability to dynamically satisfy inter-job dependencies while efficiently

using the application-specific opportunities for concurrent execution, and

3. A tool for convenient monitoring and administration of the computation.

TrellisDAG prototypes a system that combines the technique of placeholder

scheduling with a hierarchical subsystem for describing a workflow to provide for

these properties. In the next chapter, we look at the features of TrellisDAG in de-

tail.

37

Chapter 4

Overview of TrellisDAG

An architectural view of TrellisDAG is presented in Figure 4.1. We start by intro-

ducing the running example for our discussion in Section 4.1. Simultaneously, we

introduce the group model – a concept that facilitates convenient handling of com-

plicated workflows (such as the checkers computation [19]) and provides a mech-

anism for other developments (see Sections 1.1 and 7.1). To run a computation,

the user has to submit the jobs and their dependencies to the jobs database using

one of the several methods described in Section 4.2. Then one or more placehold-

ers have to be run on the execution nodes (workstations). These placeholders use

the services of the command-line server to access and modify the jobs database.

The command-line server is described in Section 4.3. Finally, the monitoring and

administrative utilities are described in Section 4.4.

4.1 The group model and the running example

In our system, each job is part of a group of jobs and explicit dependencies exist

between groups rather than between individual jobs. This simplifies the dependen-

cies between jobs (i.e. the order of execution of jobs within a group is determined

by the order of their submission).

A group may contain either only jobs or both jobs and subgroups. A group is

called the supergroup with respect to its subgroups. A group that does not have

subgroups is said to be a group at the lowest level. In contrast, a group that does not

have a supergroup is said to be a group at the highest level. In general, we say that

38

Translation and submission

Jobs databaseJobs database

Execution host 1
Placeholder

Execution host 2
Placeholder

Execution host n
Placeholder

Description layer

Placeholder scheduling

TrellisDAG

Service routines (command−line server)

Figure 4.1: An architectural view of TrellisDAG.

a subgroup is one level lower than its immediate supergroup.

With each group, there is associated a special group called the prologue group.

The prologue group logically belongs to the level of its group, but it does not have

any subgroups. Jobs of the prologue group (called prologue jobs) are executed

before any job of the subgroups of the group is executed.

We also distinguish epilogue jobs. In contrast to prologue jobs, epilogue jobs

are executed after all other jobs of the group are complete. In this version of the

system, epilogue jobs of a group are part of that group and do not form a separate

group (unlike the prologue jobs).

Note the following:

1. Jobs within a group will be executed in the order of their submission. In

effect, they represent a pipeline. This is illustrated in Figure 4.2.

2. Dependencies can only be specified between groups and never between indi-

vidual jobs. If such a dependency is required, a group can always be defined

to contain one job. This is illustrated in Figure 4.3.

3. A supergroup may have jobs of its own. Such jobs are executed after all

39

job C

job B

job A

dependencies

inter−job
Implied

Group X

job C

job B

job A

Group X

Figure 4.2: Dashed ovals denote jobs. The dependencies between the jobs of group
X are implicit and determined by the order of their submission.

subgroups of the supergroup are completed. This is illustrated in Figure 4.4.

4. Dependencies can only be defined between groups with the same supergroup

or between groups at the highest level (i.e. the groups that do not have a

supergroup). This is illustrated in Figure 4.5.

5. Dependencies between supergroups imply pairwise dependencies between

their subgroups. These extra dependencies do not make the workflow in-

correct, but are an important consideration, since they may inhibit the use of

concurrency. This is illustrated in Figure 4.6.

Assume that we have the 2-piece databases computed and that we would like

to compute the 3-piece and 4-piece databases. We assume that there are scripts to

compute individual slices. For example, running script 2100.sh would compute

and verify the databases for all positions with 2 kings of one color and 1 king of

the other color (in effect, a script � � 	 � � � 	 � .sh computes and verifies two slices:

� � 	 � � � 	 � and 	 � � � 	 � � � , see Section 3.1.1). The workflow for our example is shown

in Figure 4.7. The group 2001 in Figure 4.7 contains a single job (2001.sh) and

can only be executed after the group 2100 is complete.

We can think of defining supergroups for the workflow in Figure 4.7 as shown

40

job C

job B

job A

job F

job E

job D

Group X Group Y

Figure 4.3: The workflow dependency of group Y on group X implies the depen-
dency of the first job of Y on the last job of X (this dependency is shown by the
dashed arc).

by the dashed lines. Then, we can define dependencies between the supergroups

and obtain a simpler looking workflow in Figure 4.8.

41

job C

job B

job A

Group L Group M

Group K

Group X

Figure 4.4: Group X has subgroups K, L, M and jobs A, B, C. These jobs will be
executed after all the jobs of K, L, M and their subgroups are completed.

Group L Group M

Group K

Group X

Group Q

Group Y

Group P

Figure 4.5: Groups K, L, M have same supergroup X; therefore, we can specify de-
pendencies between these groups. Similarly, group Y is a common supergroup for
groups P and Q. In contrast, groups K and P do not have a common supergroup (at
least not immediate supergroup) and cannot have an explicit dependency between
them.

42

Group K Group MGroup L

Group X

Group P Group Q Group R

Group Y

Figure 4.6: Group Y depends on group X and this implies pairwise dependencies
between their subgroups (these dependencies are denoted by dashed arrows).

43

2001.sh

2100

0021

1011

2001

0120

1110

3 Pieces: 2 vs. 1

2200

0121

1111

0022

0220

1210

0031

0130

3100

1021

2011

3001

1120

2110

4 Pieces: 3 vs. 1 4 Pieces: 2 vs. 2

Figure 4.7: The workflow for the running example. The nodes are slices. Here slices
are groups at the lowest and highest levels at the same time, since there is only one
level. The figure shows how the slice 2001 contains only one job: 2001.sh.

44

2100

0021

1011

2001

0120

1110

3 Pieces: 2 vs. 1

2200

0121

1111

0022

0220

1210

0031

0130

3100

1021

2011

3001

1120

2110

4 Pieces: 3 vs. 1 4 Pieces: 2 vs. 2

Figure 4.8: The workflow for the running example with supergroups. The level
versus is the highest and groups at this level are supergroups for slices that are
groups at the lowest level in this example.

45

Command/ Description
Parameter

mqsub Submit one job to the jobs database
-l Name of the group

-deps Names of the groups on which the group depends
-comm The command line of the job

-attr Job’s attributes

Table 4.1: Short description of the mqsub utility.

4.2 Submitting the workflow

The submission procedure is shown in Figure 4.9. The figure shows that there are

several ways of describing the workflow. The user chooses the way depending on

how complicated the workflow is and how he wants (or does not want) to make use

of the grouping capability of the system.

Whatever way of describing the workflow is chosen, the description is trans-

lated into the form of the jobs database (see Figure 4.1) – a relational database that

contains both static and dynamic information about the jobs and dependencies (see

Section 5.2 for more details about the format of the jobs database).

We start with the simplest tools and work our way up to the most advanced way

that allows definition of supergroups (this roughly corresponds to the order from

the bottom upwards in Figure 4.9).

The utility for submitting a single job of a given group to the jobs database is

called mqsub. The short description of mqsub is given in Table 4.1. There is no

necessity to create groups explicitly. Whenever a group does not exist, TrellisDAG

will create it automatically.

There are two limitations on the order of submission of the constituents of the

workflow to the system:

1. The groups have to be submitted in some legal (with respect to workflow

dependencies) order, and

2. The jobs within a group have to be submitted in the correct order.

The first of these limitations is taken care of by TrellisDAG when we use a DAG

46

description script for submission (see Section 4.2.2). The second limitation is inten-

tional, because it allows for an implicit assumption about the pipeline dependencies

between the jobs of a group; the user does not need to worry about specifying such

dependencies.

In our example, we define a group for each slice to be computed. The script in

Figure 4.10 submits the workflow in Figure 4.7.

47

sh

Jobs database

mqmakelevels, make −n

flat submission script

mqtranslate

Makefile with mqsub’s

mqmakemake

Makefile

DAG description script Combination of
declarative & imperative

Declarative

Declarative

Imperative (sequential)

Figure 4.9: The complete submission procedure. Next to each form of description
of the workflow is its corresponding programming paradigm with respect to sub-
mitting the workflow to the jobs database. Note that, with respect to executing the
jobs, all of the forms of description are declarative.

48

mqsub -deps "" -l "2100" -c "2100.sh"
mqsub -deps "2100" -l "1110" -c "1110.sh"
mqsub -deps "1110" -l "0120" -c "0120.sh"
mqsub -deps "2100" -l "2001" -c "2001.sh"
mqsub -deps "2100" -l "2200" -c "2200.sh"
mqsub -deps "1110 2001 2200" -l "1210" -c "1210.sh"
mqsub -deps "0120 1210" -l "0220" -c "0220.sh"
mqsub -deps "1210" -l "1111" -c "1111.sh"
mqsub -deps "0021 1111" -l "0121" -c "0121.sh"
mqsub -deps "0121" -l "0022" -c "0022.sh"
mqsub -deps "2100" -l "3100" -c "3100.sh"
mqsub -deps "1110 3100" -l "2110" -c "2110.sh"
mqsub -deps "0120 2110" -l "1120" -c "1120.sh"
mqsub -deps "1120" -l "0130" -c "0130.sh"
mqsub -deps "1110 2001" -l "1011" -c "1011.sh"
mqsub -deps "0120 1011" -l "0021" -c "0021.sh"
mqsub -deps "2001 3100" -l "3001" -c "3001.sh"
mqsub -deps "1011 2110 3001" -l "2011" -c "2011.sh"
mqsub -deps "0021 1120 2011" -l "1021" -c "1021.sh"
mqsub -deps "0130 1021" -l "0031" -c "0031.sh"

Figure 4.10: The flat submission script for the running example.

49

<target name>: <target 1> <target 2> ... <target n>
<command line 1>
<command line 2>
...
<command line m>

Figure 4.11: The Makefile format.

4.2.1 Using Makefile

The standard UNIX utility make is regularly used to build software where con-

straints on the order of building of constituent components/modules must be im-

posed through the use of dependencies. Recall that a Makefile consists of rules that

follow the format shown in Figure 4.11. A rule specifies how a single target is

made. It starts with the name of the target to be made and the names of the tar-

gets that have to be made prior to the making of the target of interest. In Figure

4.11, the target <target name> can be made only after targets <target 1>

through <target n> are made. Note that the order of making these targets is

not specified and, in principle, they can be made concurrently. Finally, on separate

lines indented by the tabulation character are the command lines that are executed

to make the target.

The make utility itself does not impose any limitation on its usage. For exam-

ple, instead of executing a compiler, one can execute a checkers computation. The

execution of make on the Makefile in Figure 4.12 results in sequentially comput-

ing the workflow in Figure 4.7. It is possible to achieve concurrent execution of

the Makefile in Figure 4.12 by using the so called parallel make, which is pro-

vided with many platforms and is invoked by make -p. However, the utilization

of computational resources is limited to the physical machine on which the make

utility is being executed.

To use TrellisDAG and take advantage of the available computational resources,

we merely need to translate the commands of the Makefile in Figure 4.12 into invo-

cations of mqsub. This is done by using the mqtranslate utility. We summarize

this utility in Table 4.2.

The result of applying mqtranslate to the Makefile in Figure 4.12 is shown

in Figure 4.13. The workflow can be submitted by simply applying make to the

50

all: 0022 0031

#compute 3-piece databases
2100:

2100.sh
1110: 2100

1110.sh
2001: 2100

2001.sh
0120: 1110

0120.sh
1011: 1110 2001

1011.sh
0021: 0120 1011

0021.sh

3 vs. 1
3100: 2100

3100.sh
2110: 1110 3100

2110.sh
3001: 2001 3100

3001.sh
1120: 0120 2110

1120.sh
2011: 1011 2110 3001

2011.sh
0130: 1120

0130.sh
1021: 0021 1120 2011

1021.sh
0031: 0130 1021

0031.sh

2 vs. 2
2200: 2100

2200.sh
1210: 1110 2001 2200

1210.sh
0220: 0120 1210

0220.sh
1111: 1210

1111.sh
0121: 0220 1111

0121.sh
0022: 0121

0022.sh

Figure 4.12: The Makefile for the running example.

51

Command/ Description
Parameter

mqtranslate Reads a Makefile script from standard input and
replaces all the commands with the invocations of mqsub.

The resulting new Makefile is output to standard output.
The parameters of mqsub are formed as follows:

1. The target of the command is used as an argument for -l
2. The dependencies of the target is used as an argument for -deps

3. The command is used as an argument for -comm
4. The comments immediately preceding the command and starting
with #attribute (see Section 5.1) are interpreted as attributes

and used as an argument for -attr
5. All other comments and lines are left without change

Table 4.2: Short description of the mqtranslate utility.

Makefile shown in Figure 4.13. Furthermore, applying make -n to that Makefile

produces the flat submission script in Figure 4.10.

4.2.2 The DAG description script

Writing a flat submission script or a Makefile may be a cumbersome task, espe-

cially when the workflow contains hundreds or thousands of jobs as in the checkers

computation. For some applications, it is possible to come up with simple naming

conventions for the jobs and write a script to automatically produce a flat submis-

sion script or a Makefile. TrellisDAG helps the user by providing a framework for

such a script. Moreover, through using this framework (which we call the DAG

description script), the additional functionality of supergroups becomes available.

A DAG description script is a module coded using the Python scripting lan-

guage; this module implements the interface required by TrellisDAG. TrellisDAG

transforms that module into a Makefile and further into a flat submission script as

described above.

We work our way up from using the most essential features of the DAG descrip-

tion script, to defining supergroups, to using job attributes.

52

all: 0022 0031

2100:
mqsub -deps "" -l "2100" -c "2100.sh"

1110: 2100
mqsub -deps "2100" -l "1110" -c "1110.sh"

2001: 2100
mqsub -deps "2100" -l "2001" -c "2001.sh"

0120: 1110
mqsub -deps "1110" -l "0120" -c "0120.sh"

1011: 1110 2001
mqsub -deps "1110 2001" -l "1011" -c "1011.sh"

0021: 0120 1011
mqsub -deps "0120 1011" -l "0021" -c "0021.sh"

3100: 2100
mqsub -deps "2100" -l "3100" -c "3100.sh"

2110: 1110 3100
mqsub -deps "1110 3100" -l "2110" -c "2110.sh"

3001: 2001 3100
mqsub -deps "2001 3100" -l "3001" -c "3001.sh"

1120: 0120 2110
mqsub -deps "0120 2110" -l "1120" -c "1120.sh"

2011: 1011 2110 3001
mqsub -deps "1011 2110 3001" -l "2011" -c "2011.sh"

0130: 1120
mqsub -deps "1120" -l "0130" -c "0130.sh"

1021: 0021 1120 2011
mqsub -deps "0021 1120 2011" -l "1021" -c "1021.sh"

0031: 0130 1021
mqsub -deps "0130 1021" -l "0031" -c "0031.sh"

2200: 2100
mqsub -deps "2100" -l "2200" -c "2200.sh"

1210: 1110 2001 2200
mqsub -deps "1110 2001 2200" -l "1210" -c "1210.sh"

0220: 0120 1210
mqsub -deps "0120 1210" -l "0220" -c "0220.sh"

1111: 1210
mqsub -deps "1210" -l "1111" -c "1111.sh"

0121: 0220 1111
mqsub -deps "0220 1111" -l "0121" -c "0121.sh"

0022: 0121
mqsub -deps "0121" -l "0022" -c "0022.sh"

Figure 4.13: The Makefile with calls to mqsub for the running example.

53

1 #!/usr/bin/python
2
3 import sys
4 import math
5 import string
6
7 nPieces = int(sys.argv[1])
8
9 def getDependentSlice(slice):

10 return [# dependencies come from retrograde analysis
11 # a checker could have become a king
12 [slice[0] + 1, slice[1], slice[2] - 1, slice[3]],
13 [slice[0], slice[1] + 1, slice[2], slice[3] - 1],
14 # a capture
15 [slice[0] - 1, slice[1], slice[2], slice[3]],
16 [slice[0], slice[1] - 1, slice[2], slice[3]],
17 [slice[0], slice[1], slice[2] - 1, slice[3]],
18 [slice[0], slice[1], slice[2], slice[3] - 1],
19 # (switch black and white) + capture
20 [slice[1] - 1, slice[0], slice[3], slice[2]],
21 [slice[1], slice[0] - 1, slice[3], slice[2]],
22 [slice[1], slice[0], slice[3] - 1, slice[2]],
23 [slice[1], slice[0], slice[3], slice[2] - 1]]
24
25 #THE INTERFACE PART
26 Levels = [[’Slice’, 4]]
27
28 def generateGroup(level, superGroup):
29 result = []
30 #--- np - # of pieces
31 #--- bk, wk - # of black and white kings
32 #--- bc, wc - # of black and white checkers
33 for np in range(3, nPieces + 1):
34 for bk in range(0, np):
35 for wk in range(0, np - bk + 1):
36 for bc in range(0, np - bk - wk + 1):
37 # since np, bk, wk, bc are fixed, wc is computed
38 wc = np - bk - wk - bc
39 if wc < 0: break
40 if bk + bc == 0 or wk + wc == 0: continue
41 # elimination of slices based on symmetry
42 if bk + bc < wk + wc: continue
43 if bk + bc == wk + wc and bc < wc: continue
44 result.append([bk, wk, bc, wc])
45 return result
46
47 def getPrologueExecutables(level, group): return []
48 def getPrologueAttributes(level, group): return []
49 def getPrologueParameters(level, group): return []
50 def getEpilogueExecutables(level, group): return []
51 def getEpilogueAttributes(level, group): return []
52 def getEpilogueParameters(level, group): return []
53
54 def getJobsExecutables(level, group):
55 return [string.join(map(str, group), "") + ".sh"]
56
57 def getJobsAttributes(level, group): return [""]
58
59 def getJobsParameters(level, group): return [""]
60
61 def getDependent(level, group, superGroup):
62 return getDependentSlice(group)

Figure 4.14: A basic DAG description script.

54

A basic DAG description script

The DAG description script shown in Figure 4.14 represents the workflow in Figure

4.7. Note that it reads one parameter from the command line (line 7): the maximal

number of pieces on the board for the computation. The description script contains

the following required declarations and definitions:

1. Levels – the list of used levels of groups (line 26). The levels are listed

from highest (i.e. the level of groups that have no supergroups) to the lowest

(i.e. the level of groups that have no subgroups). In our case, there is only

one level that we call Slice. Each group at this level will be denoted by

the name of the group appended by 4 numbers called the vector-name of the

group. For example, the name of the group for slice 3100 is Slice 3 1 0 0

and its vector name is [3, 1, 0, 0],

2. generateGroup – the function for group generation (lines 28-45). The

return value of this function is the list of groups (represented by their vector-

names) at the given level with the given supergroup. In our case, there is only

one level and we just return all slices to be computed (i.e. all of the slices

corresponding to the nodes of the DAG in Figure 4.7),

3. getDependent – the function that specifies dependencies (lines 61 and

62); most of its functionality is implemented in the auxiliary function get-

DependentSlice (lines 9-23). The result of this function is a list of

groups on which the given group depends. The system takes precautions to

guarantee that all of the groups exist among those generated by the gener-

ateGroup function and have the same supergroup as the group of interest.

That is why we just need to insure that the list that we return contains all the

dependencies.

For example, for the group with the vector name [2, 0, 1, 1], the func-

tion returns the following vector names: [3, 0, 0, 1], [2, 1, 1,

0], [1, 0, 1, 1], [2, -1, 1, 1], [2, 0, 0, 1], [2, 0, 1,

0], [-1, 2, 1, 1], [0, 1, 1, 1], [0, 2, 0, 1], [0, 2, 1,

55

0]. However, the system ignores all of the vector names except [3, 0,

0, 1], [2, 1, 1, 0], [1, 0, 1, 1], [2, 0, 0, 1], because

the other vector names do not correspond to any of the groups generated by

generateGroup.

Alternatively, the function isDependent can be provided. It takes two

group parameters (second and third parameters) and returns 1 if the first

group depends on the second group and 0 otherwise. Examples of description

scripts that define this function can be found in Chapter 6,

4. Three functions are implemented to specify the jobs of a group:

(a) getJobsExecutablesmust return the list of the names of executa-

bles for the individual jobs. In our case, each group has only one exe-

cutable, whose name is closely related to the vector-name of the group.

For example, the only job of the group with the vector name [2, 1,

0, 0] is 2100.sh,

(b) getJobsParametersmust return the list of strings representing the

command-line parameters passed to the jobs’ executables. In our case,

there are no command-line parameters to be passed and we match each

job with an empty string, and

(c) getJobsAttributesmust return the list of strings representing the

attributes of the jobs. We will concentrate on this feature in Section

4.2.4, and

5. The prologue jobs and epilogue jobs of a group are specified similarly as nor-

mal jobs. In our examples, we do not use this capability and the functions that

are reserved for specifying prologue and epilogue jobs (getPrologueEx-

ecutables, getPrologueParameters,getPrologueAttributes,

getEpilogueExecutables,getEpilogueParameters and getEpi-

logueAttributes) simply return an empty list.

Given a DAG description script, one can form a Makefile that can later be trans-

formed into a flat submission script using the previously described utilities. The

56

Command/ Description
Parameter

mqmakemake Calls functions of the DAG description script
whose name is obtained by appending .py to the last

command-line argument. The rest of the command line arguments
are passed without change to the DAG description script.

The result is the Makefile that is output to the standard output.
The Makefile may contain special comments to encode levels and attributes

(see Chapter 5 for more details).

Table 4.3: Short description of the mqmakemake utility.

Makefile is obtained by using the utility mqmakemake. If the DAG description

script is called running, then the Makefile called running.make is obtained

by issuing the command:

mqmakemake running > running.make

A short description of mqmakemake is given in Table 4.3.

Once the Makefile is obtained, we need to ensure that the defined levels are en-

tered into the jobs database. This is done by means of calling the mqmakelevels

utility as follows:

mqmakelevels running.make

More details about storing the information about levels in the jobs database is pro-

vided in Chapter 5.

4.2.3 The DAG description script with supergroups

In this section, we show how to modify the DAG description script in Figure 4.14

in order to obtain and submit the workflow shown in Figure 4.8. The new script is

shown in Figure 4.15. We summarize the changes made to the script in Figure 4.14.

1. There are two levels (line 17). One of the levels corresponds to the super-

groups in Figure 4.8 and is called VS. Note that 2 numbers naturally represent

the groups at this level, one being the number of pieces of one color and the

other being number of pieces of the other color.

2. There are two cases in the generateGroup function. In the case of VS

57

level (lines 22-24), we generate the groups [[2, 1], [3, 1], [2, 2]].

The generation of the groups at the level Slice for a given supergroup at the

level VS is also straightforward (lines 26-34).

3. There are two cases in the function getDependent. The implementation

for the case of VS level is given in function getDependentVS. The imple-

mentation for the case of Slice level is simpler than it was in the description

script without supergroups, because we only need to worry about dependen-

cies within one group at VS level (lines 9-11).

4. Finally, the groups at level VS do not have jobs and the functions getJob-

sExecutables,getJobsParameters and getJobsAttributes are

modified accordingly.

58

1 #!/usr/bin/python
2
3 import sys
4 import math
5 import string
6
7 nPieces = int(sys.argv[1])
8
9 def getDependentSlice(slice):

10 return [[slice[0] + 1, slice[1], slice[2] - 1, slice[3]],
11 [slice[0], slice[1] + 1, slice[2], slice[3] - 1]]
12
13 def getDependentVS(vs):
14 return [[vs[0] - 1, vs[1]], [vs[0], vs[1] - 1]]
15
16 #THE INTERFACE PART
17 Levels = [[’VS’, 2], [’Slice’, 4]]
18
19 def generateGroup(level, parentGroup):
20 result = []
21 if level == ’VS’:
22 for np in range(3, nPieces + 1):
23 for b in range((np + 1)/2, np):
24 result.append([b, np - b])
25 else:
26 b = parentGroup[0]
27 w = parentGroup[1]
28 for bk in range(0, b + 1):
29 for wk in range(0, w + 1):
30 bc = b - bk
31 wc = w - wk
32 if bk + bc < wk + wc: continue
33 if bk + bc == wk + wc and bc < wc: continue
34 result.append([bk, wk, bc, wc])
35 return result
36
37 def getPrologueExecutables(level, group): return []
38 def getPrologueAttributes(level, group): return []
39 def getPrologueParameters(level, group): return []
40 def getEpilogueExecutables(level, group): return []
41 def getEpilogueAttributes(level, group): return []
42 def getEpilogueParameters(level, group): return []
43
44 def getJobsExecutables(level, group):
45 if level != ’Slice’: return []
46 return [string.join(map(str, group), "") + ".sh"]
47
48 def getJobsAttributes(level, group):
49 if level != ’Slice’: return []
50 return [""]
51
52 def getJobsParameters(level, group):
53 if level != ’Slice’: return []
54 return [""]
55
56 def getDependent(level, group, parentGroup):
57 if level == ’VS’:
58 return getDependentVS(group)
59 else:
60 return getDependentSlice(group)

Figure 4.15: The DAG description script with supergroups.

59

4.2.4 The DAG description script with attributes

Sometimes it is convenient to associate more information with a job than just the

command line. Such information can be used by the scheduling system or by the

user. In TrellisDAG, the extra information associated with individual jobs is stored

as key-value pairs called attributes. In this version of the system, we have several

kinds of attributes that serve the following purposes:

1. Increasing the degree of concurrency by relaxing workflow dependencies,

2. Regulating the placement of jobs, i.e. mapping jobs to execution hosts, and

3. Storing the history profile – when and where jobs were started and completed

(also see the note to Table 4.4).

In this section, we concentrate on the first two kinds of attributes.

We note that a higher degree of concurrency can be achieved if we separate com-

putation of the checkers end-game databases with their verification. For example,

we can split the script for computing the 0121 slice into 2 jobs: 0121.comp.sh

and 0121.ver.sh. Once the former job is done, we can start the computation for

the 0022 slice (i.e. start 0022.comp.sh).

We would like to reuse the script shown in Figure 4.15 as much as possible. So,

we keep the computation and the verification as jobs of one group at the Slice

level. However, we introduce an attribute that allows the dependent groups to pro-

ceed when a group reaches a certain point in the computation (i.e. a certain number

of jobs are complete). We refer to this feature as early release. In our example,

the computation job of all slices will have the release attribute set to yes and

that will result in the workflow dependency of the dependent groups being satisfied

once the computation is complete.

We also take into account that verification needs the data that has been produced

during the computation. Therefore, it is desirable that verification runs on the same

machine as the computation. Hence, we introduce another attribute called affinity.

When the affinity of a job is set to yes, the job is forced to be executed on the

same machine as the previous job of its group.

60

In the DAG description script in Figure 4.15, we only had to change the func-

tions getJobsExecutables,getJobsParameters and getJobsAttributes.

The modified description script is shown in Figure 4.16.

61

1 #!/usr/bin/python
2
3 import sys
4 import math
5 import string
6
7 nPieces = int(sys.argv[1])
8
9 def getDependentSlice(slice):

10 return [[slice[0] + 1, slice[1], slice[2] - 1, slice[3]],
11 [slice[0], slice[1] + 1, slice[2], slice[3] - 1]]
12
13 def getDependentVS(vs):
14 return [[vs[0] - 1, vs[1]], [vs[0], vs[1] - 1]]
15
16 #THE INTERFACE PART
17 Levels = [[’VS’, 2], [’Slice’, 4]]
18
19 def generateGroup(level, parentGroup):
20 result = []
21 if level == ’VS’:
22 for np in range(3, nPieces + 1):
23 for b in range((np + 1)/2, np):
24 result.append([b, np - b])
25 else:
26 b = parentGroup[0]
27 w = parentGroup[1]
28 for bk in range(0, b + 1):
29 for wk in range(0, w + 1):
30 bc = b - bk
31 wc = w - wk
32 if bk + bc < wk + wc: continue
33 if bk + bc == wk + wc and bc < wc: continue
34 result.append([bk, wk, bc, wc])
35 return result
36
37 def getPrologueExecutables(level, group): return []
38 def getPrologueAttributes(level, group): return []
39 def getPrologueParameters(level, group): return []
40 def getEpilogueExecutables(level, group): return []
41 def getEpilogueAttributes(level, group): return []
42 def getEpilogueParameters(level, group): return []
43
44 def getJobsExecutables(level, group):
45 if level != ’Slice’: return []
46 return [string.join(map(str, group), "") + ".comp.sh",
47 string.join(map(str, group), "") + ".ver.sh"]
48
49 def getJobsAttributes(level, group):
50 if level != ’Slice’: return []
51 return [["affinity=no", "release=yes"],
52 ["affinity=yes", "release=no"]]
53
54 def getJobsParameters(level, group):
55 if level != ’Slice’: return []
56 return ["", ""]
57
58 def getDependent(level, group, parentGroup):
59 if level == ’VS’:
60 return getDependentVS(group)
61 else:
62 return getDependentSlice(group)

Figure 4.16: The DAG description script with supergroups and attributes.

62

Service Description

mqnextjob Obtain � � of a ready job
mqgetjobcommand Get command line given a job � �
mqgetjobattributes Get a value of a specific attribute of a job with a given � �

mqstatus Inform the system of the status of computation of a job
mqsignal Inform the system that the placeholder is alive
mqlock Obtain a named exclusive lock

mqunlock Release a lock with the given name
mqdonejob Inform the system that the job with the given � � is complete

Table 4.4: Services of the command-line server. The order of presentation is
the order in which the services are usually invoked in the placeholder. Note:
mqnextjob and mqdonejob modify the lastStart, lastCompletion
and lastHost attributes of the job in order to store when (and on which host)
the job was started and completed in the last run of the computation.

4.3 Services of the command-line server

Services of the command-line server (see Figure 4.1) are the programs through

which a placeholder can access and modify the jobs database. These services are

normally called within an ssh session in the placeholder. All of the services are

listed and briefly described in Table 4.4.

All of the services get their parameters on the command line as key-value pairs.

For example, if the value associated with the key id is 5, then the key-value pair

on the command line is id=5.

We start with the service called mqnextjob. The output of this service repre-

sents the job � � of the job that is scheduled to be run by the calling placeholder.

The keys for this service are summarized in Table 4.5. For example, the service

could be called as follows:

ssh server ‘‘mqnextjob sched=SGE �
sched id=$JOB ID �
submit host=brule host=‘hostname‘’’

Once the job’s � � is obtained, we can obtain the command line for that job us-

ing the mqgetjobcommand service. The command line is output to the standard

output. The keys for this service are summarized in Table 4.6.

63

Key Description

sched The name of the local scheduler, e.g. SGE.
submit host The submission host for the local scheduler

sched id The � � given to the placeholder by the local scheduler,
e.g. $JOBID in SGE

host The name of the host on which the placeholder is running

Table 4.5: Keys for the mqnextjob service.

Key Description

id The job � � of the job

Table 4.6: Keys for the mqgetjobcommand service.

The placeholder has access to the attributes of a job through the mqgetjo-

battribute service. The service outputs the value associated with the given

attribute. The keys for this service are summarized in Table 4.7.

When the job is complete, the placeholder has to inform the system about this

event. This is done using the mqdonejob service. The keys for this service are

summarized in Table 4.8.

The user can maintain his own status of the running job in the jobs database by

using the mqstatus service. The status entered through this service is shown by

the mqstat monitoring utility (see Section 4.4.1). The keys for this service are

summarized in Table 4.9.

The mqsignal service is the means by which the placeholder can assure the

system that it is still alive and functioning normally. For example, the placeholder

can spawn a background script that would call the service at equal time intervals.

We will show an example of such a script in Section 6.5. A script can be running on

the server that checks when the service was invoked last time and takes actions when

Key Description

id The job � � of the job
attribute The name of the attribute

Table 4.7: Keys for the mqgetjobattributes service.

64

Key Description

id The job � � of the job

Table 4.8: Keys for the mqdonejob service.

Key Description

id The job � � of the job
status The string representing the job’s or placeholder’s status

Table 4.9: Keys for the mqstatus service.

the gap between two consecutive calls to mqsignal is too large. We implemented

such a script and called it mqdaemon, shown in Appendix F. The keys for this

service are summarized in Table 4.10.

Finally, there are two services that support named exclusive locks. Using these

locks, for example, it is possible to implement critical sections within placehold-

ers. The mqlock service is used to obtain the lock and assign a name to it and

the mqunlock service is used to release a lock with the given name. The keys

for these services are summarized in Tables 4.11 and 4.12. In this version, locks

are associated with jobs rather than placeholders and thus can only be used after

mqnextjob has been invoked.

65

Key Description

id The job � � of the job

Table 4.10: Keys for the mqsignal service.

Key Description

id The job � � of the job
name The name of the lock
host Name of the host that will hold the lock

Table 4.11: Keys for the mqlock service.

Key Description

name The name of the lock

Table 4.12: Keys for the mqunlock service.

66

4.4 Utilities

The utilities described in this section are used to monitor the computation and per-

form some basic administration tasks.

4.4.1 mqstat: status of the computation

This utility outputs information about running jobs: job � � , command line, host-

name of the machine where the job is running, time when the job has started, and

the status submitted by means of calling the mqstatus service.

4.4.2 mqdump: jobs browser

mqdump is an interactive tool for browsing, monitoring, and changing the dynamic

status of groups. The first screen of mqdump for the example corresponding to the

DAG description script in Figure 4.16 is presented in Figure 4.17. Following the

prompt, the user types the number from 1 to 11 corresponding to the command that

must be executed. If the selected command operates on one or more groups, then

the desired groups’ numbers (see the left column on top of Figure 4.17) are typed

as a comma-separated list in response to the next prompt of mqdump.

We see that groups are numbered from 0 to 5 and each group has a unique

identification number. Each group has two statuses: one shows the progress of the

computation associated with the group and its subgroups, while the other shows

the progress with respect to the attributes of the group’s jobs. Currently, the only

attribute statuses used are None and Released.

There are 11 commands and we explain each of them. Note that some com-

mands are applied to specific groups. For most such commands, the user can specify

a comma-separated list of groups and the command will be applied to the maximal

possible set of these groups. The system makes sure that no action can result in an

inconsistent (with respect to dependencies) state of the jobs database.

1. Dive – the selected group’s subgroups are shown and the level changes to the

levels of the subgroups. Only one group can be selected for this command.

67

Command ID Group Status Attribute Status
-------- ---------- ------------------------------ ------------------------- ---------------
0. 1 VS_2_1_prologue Not started None
1. 14 VS_2_1 Not started None
2. 15 VS_2_2_prologue Not started None
3. 28 VS_2_2 Not started None
4. 29 VS_3_1_prologue Not started None
5. 46 VS_3_1 Not started None

1. Dive
2. Show dependencies
3. Enable 4. Disable
5. Not started 6. Done
7. Stop 8. Stop-Disable
9. Up
10. Refresh
11. Quit
Command?(1-11)

Figure 4.17: The first screen of mqdump for the running example.

2. Show dependencies – only the groups of the current level that have to

be executed before the selected group are shown. Only one group can be

selected for this command.

3. Enable – enable the selected groups. The command takes action only on

groups that were previously disabled.

4. Disable – disable the selected groups. The groups on which this command

succeeded and their subgroups cannot be started.

5. Not started – force the selected groups to be recomputed.

6. Done – inform the system that the computation for the selected groups have

been performed (e.g. by hand).

7. Stop – not implemented.

8. Stop-Disable – not implemented.

9. Up – go one level higher. The level is changed to that of the supergroup of

the groups at the current level.

10. Refresh – To speed up operation of the utility, we chose to make a snap-

shot of the jobs database at the beginning and work with that snapshot unless

68

the user changes the statuses of some groups by means of the commands de-

scribed above. The Refresh command forces the utility to make a new

snapshot of the jobs database. The current level is not changed.

11. Quit – exit the program.

mqenable, mqdisable.py, mqnotstarted, and mqdone

These are batch mode facilities that correspond to the commands of mqdump. Each

of these utilities take a list of unique group � � s (as shown by the mqdump utility)

or names on the command line and performs the required action.

4.5 Concluding remarks

The features of TrellisDAG can be summarized as follows (see Figure 4.1):

1. The workflow and its dependencies can be described in several ways (see

Figure 4.9). The user chooses the way of description based on the properties

of the workflow (such as the level of complexity) and his own preferences,

2. Whatever way of description the user chooses, utilities are provided to trans-

late this description into the jobs database,

3. Services of the command-line server are provided so that the user can access

and modify the jobs database dynamically, either from the command line or

from within a placeholder,

4. mqstat and mqdump are utilities that can be used to perform monitoring

and simple administrative tasks, and

5. The history profile of the last computation is stored in the jobs’ attributes. A

user possessing programming skills can implement a scheduling policy that

best suits his specific application (see Section 5.3.1 for details).

In the next chapter, we provide a high-level description of the implementation

of the features of TrellisDAG that were presented in this chapter.

69

Chapter 5

Implementation of TrellisDAG

In Chapter 4, we described our system at a high level. In this chapter, we pro-

vide some details about the implementation of the features that were presented in

Chapter 4.

We start by explaining the Makefile that TrellisDAG produces from the DAG

description script. In Section 5.2, we describe the schema of the jobs database.

Section 5.3 gives pseudo code for several services of the command-line server. In

Section 5.4, we explain how the services of the mqdump utility can be implemented

using the jobs database schema described in Section 5.2.

5.1 mqmakemake: generation of the Makefile

Jobs of a group can only start after three prerequisites have been satisfied:

1. The workflow dependencies are satisfied, i.e. the groups with the same su-

pergroup on which the group explicitly depends are complete,

2. The subgroups of the group are complete, and

3. The prologue jobs of the group are complete (see Figure 5.1).

Generating a Makefile that would preserve dependencies between jobs as well

as allow for prologue and epilogue jobs turned out to be a non-trivial problem. We

illustrate our solution to this problem with an example. Figures 5.2 and 5.3 show a

part of the Makefile that was generated by mqmakemake for the DAG description

script in Figure 4.16. This part includes all of the targets for the 3-piece databases.

70

job B

job A

job C
Group L Group M

Group K

Group XGroup X’s
prologue

job P2

job P1

Group W Group Y Group Z

Figure 5.1: When the jobs of groups W, Y, Z are complete, the jobs of group X’s
prologue can be executed. Then the jobs of groups K, L, M are executed. Only after
that does job A of group X become ready.

We start by deciding that each group will correspond to a single target/rule of

the Makefile (the Makefile format was discussed in Section 4.2.1). The commands

of a rule are the command lines of the jobs of the corresponding group. Whenever

a target does not have any commands, we give it an echo command. For example,

the target VS 2 1 corresponds to the group of positions with 2 pieces of one color

and 1 piece of the other color. Although all of the jobs for this group are contained

in its subgroups, we need a representation of the group in the jobs database and the

auxiliary echo job serves this purpose.

Note that we cannot just list all of the prerequisites of the jobs of a group in the

dependencies part of the corresponding rule, because all of the dependencies can be

built simultaneously (refer to Section 4.2.1).

71

1 #AutoMakefile
2 #VS
3 #Slice
4
5 all: VS_2_1 VS_2_2 VS_3_1
6
7 VS_2_1: Slice_0_0_2_1 Slice_0_1_2_0 Slice_1_0_1_1 Slice_1_1_1_0 \

Slice_2_0_0_1 Slice_2_1_0_0
8 echo
9

10 VS_2_1_prologue:
11 echo
12
13 Slice_0_0_2_1: Slice_0_0_2_1_prologue
14 #attribute affinity=no
15 #attribute release=yes
16 0021comp.sh
17 #attribute affinity=yes
18 #attribute release=no
19 0021ver.sh
20
21 Slice_0_0_2_1_prologue: Slice_1_0_1_1 Slice_0_1_2_0
22 echo
23
24 Slice_0_1_2_0: Slice_0_1_2_0_prologue
25 #attribute affinity=no
26 #attribute release=yes
27 0120comp.sh
28 #attribute affinity=yes
29 #attribute release=no
30 0120ver.sh
31
32 Slice_0_1_2_0_prologue: Slice_1_1_1_0
33 echo
34
35 Slice_1_0_1_1: Slice_1_0_1_1_prologue
36 #attribute affinity=no
37 #attribute release=yes
38 1011comp.sh
39 #attribute affinity=yes
40 #attribute release=no
41 1011ver.sh
42

Figure 5.2: The Makefile produced by mqmakemake (continued in Figure 5.3).

Therefore, we need a more sophisticated organization of the Makefile. The

structure of the Makefile that we came up with is summarized as follows:

1. The target of a group at the lowest level depends on the target of its prologue

group,

2. The target of a group that has subgroups depends on their targets,

3. The target of the prologue group of a group that has workflow dependencies,

depends on the targets of the parent groups of that group (i.e. it depends on

the groups corresponding to the workflow dependencies), and

72

43 Slice_1_0_1_1_prologue: Slice_2_0_0_1 Slice_1_1_1_0
44 echo
45
46 Slice_1_1_1_0: Slice_1_1_1_0_prologue
47 #attribute affinity=no
48 #attribute release=yes
49 1110comp.sh
50 #attribute affinity=yes
51 #attribute release=no
52 1110ver.sh
53
54 Slice_1_1_1_0_prologue: Slice_2_1_0_0
55 echo
56
57 Slice_2_0_0_1: Slice_2_0_0_1_prologue
58 #attribute affinity=no
59 #attribute release=yes
60 2001comp.sh
61 #attribute affinity=yes
62 #attribute release=no
63 2001ver.sh
64
65 Slice_2_0_0_1_prologue: Slice_2_1_0_0
66 echo
67
68 Slice_2_1_0_0: Slice_2_1_0_0_prologue
69 #attribute affinity=no
70 #attribute release=yes
71 2100comp.sh
72 #attribute affinity=yes
73 #attribute release=no
74 2100ver.sh
75
76 Slice_2_1_0_0_prologue: VS_2_1_prologue
77 echo

Figure 5.3: The Makefile produced by mqmakemake (beginning in Figure 5.2).

4. The target of the prologue group of a group that does not have workflow

dependencies, depends on the target of the prologue group of the supergroup

of that group.

We illustrate these rules using the Makefile in Figures 5.2 and 5.3.

1. The group 2100 at the Slice level is an example of a group at the lowest

level. Therefore, the target corresponding to this group Slice 2 1 0 0 de-

pends on the target corresponding to its prologue group Slice 2 1 0 0 prologue

(line 68).

2. The supergroup of 2100 is the group of all slices with 2 pieces of one

color and 1 piece of the other color. The target corresponding to this group

VS 2 1 depends on all of the targets corresponding to its subgroups (line

73

7): Slice 0 0 2 1, Slice 0 1 2 0, Slice 1 0 1 1, Slice 1 1 1 0,

Slice 2 0 0 1, Slice 2 1 0 0.

3. 0021 is an example of a group that has workflow dependencies. Its depen-

dencies are 1011 and 0120. That is why the target corresponding to the

prologue group Slice 0 0 2 1 prologue depends on the targets corre-

sponding to those dependencies (line 21): Slice 1 0 1 1 and Slice 0 1 2 0.

4. 2100 is an example of a group that does not have workflow dependencies.

That is why the target of its prologue group Slice 2 1 0 0 prologue de-

pends on the target corresponding to the prologue of its supergroup VS 2 1 prologue

(line 76).

5.2 The jobs database

We use the PostgreSQL relational database management system [35] to store the

jobs of the computation. The SQL script for creating the tables of the jobs database

is shown in Figure 5.4. We need to store more information than just the command

lines associated with the jobs to be executed. For example,

1. Information to identify group and super-/subgroup relationships (table Lev-

els and attribute level id in table Targets in Figure 5.4),

2. Information about workflow dependencies between groups (table Before in

Figure 5.4), and

3. Extra information needed for the operation of mqstat and mqdump utilities

has to be stored (there are several status and time fields in Running and

other tables in Figure 5.4).

Examples of instantiated tables are given in Figures 5.5, 5.6, 5.7, 5.8, 5.9 and

5.10, where we show the part of the jobs database for the DAG description script in

Figure 4.16 that corresponds to the piece of the Makefile shown in Figures 5.2 and

5.3.

74

The Levels table is shown in Figure 5.5. It simply stores the names of the

levels with corresponding ��� s.

The Targets table is shown in Figure 5.6. Each tuple in the table corresponds

to a target in the Makefile shown in Figures 5.2 and 5.3. Note that each target

cross-references a unique level. Although the information about groups and super-

and sub-relationships is not stored in the database explicitly, the level id field of

the Targets table makes it possible to identify groups (discussed in Section 5.4).

The Jobs table is shown in Figure 5.7. The main responsibility of the Jobs

table is to store the command lines of the jobs. We note that there are quite a few

jobs with the simple command line echo. This was initially done for simplicity

of implementation, so that each target in the Targets table corresponds to at

least one job in the Jobs table. The extra jobs do not affect performance much

(they are never given to placeholders for execution) and still remain in this version.

Effectively, the echo’s are no-operation jobs (no-ops).

The Before table is shown in Figure 5.8. The table keeps the dependencies

as presented by the -deps parameter of mqsub commands (which corresponds

in one-to-one fashion to the dependencies in the Makefile). The value in the

status field shows whether the dependency has been dynamically satisfied or

not. This is the only dynamic field in the Before table.

The Running table represents the jobs that have been given out to the place-

holders for execution by the mqnextjob service. Thus all fields of the Running

table are dynamic. Immediately after the flat submission script has run, the table

is empty since no jobs have been assigned to placeholders. Let us invoke mqnex-

tjob and see how the table will be filled. Here we show that mqnextjob can be

invoked from the command line by the user. Usually, however, it is invoked from a

placeholder as shown in Section 4.3.

mqnextjob sched=sge sched id=1 �
submit host=server host=machineA

The Running table after execution of the above command is shown in Figure

5.9. Many of the fields repeat (for convenience of implementation) the informa-

75

tion about the job with � � 3 from the Jobs table (including status, which has

changed to 3 in the Jobs table as well). Other pieces of information include:

1. started – the system time (measured in seconds from 00:00 of January 1,

1970) when the job was given out for execution,

2. user status and user started – the status entered by means of the

mqstatus service and the system time when that status was last changed.

As we see the time stamp is initialized to the value in the started field, and

3. last signal – the system time when the mqsignal service was last in-

voked.

Since jobs of a group execute in the pipeline order, we know that whenever a

job completes, the next job from the same group is ready for execution. Thus we

can often reduce the time required for the execution of the mqnextjob service

by storing the information about the next job of the group in the mqdonejob

service. Let us invoke mqdonejob on the job with � � 3 and see how the described

information is saved in the Cache table.

mqdonejob id=3

The Cache table after execution of the above command is shown in Figure

5.10. The only tuple in the table says that the job with � � 4 is ready to be exe-

cuted and that this job had the affinity attribute set to yes and therefore must

be executed on the same machine on which the previous job of the same group

was executed, namely on machineA. Note that all fields of the Cache table are

dynamic.

76

1 CREATE TABLE Levels (
2 level_id int PRIMARY KEY,
3 level_name varchar(64) UNIQUE
4);
5
6 CREATE TABLE Targets (
7 tar_id int PRIMARY KEY,
8 tar_name varchar(64) UNIQUE,
9 level_id int REFERENCES Levels,

10 status int, -- DYNAMIC!
11 attr_status int -- DYNAMIC!
12);
13
14 CREATE TABLE Jobs (
15 j_id int PRIMARY KEY, -- unique job id
16 tar_id int REFERENCES Targets, -- target id
17 comm_line varchar(800), -- command line
18 status int, -- DYNAMIC!
19 attrs varchar(100) -- SOME ATTRS ARE DYNAMIC!
20);
21
22 CREATE TABLE Before (
23 pre_id int REFERENCES Targets,
24 dep_id int REFERENCES Targets,
25 status int, -- DYNAMIC!
26 PRIMARY KEY (pre_id, dep_id)
27);
28
29 CREATE TABLE Running (-- ALL FIELDS ARE DYNAMIC!
30 j_id int UNIQUE REFERENCES Jobs,
31 comm_line varchar(256), -- command line
32 hostname varchar(20),
33 started float, -- time when started
34 status int,
35 attrs varchar(100),
36 user_status varchar(40),
37 user_started float, -- time when user_status
38 -- is last changed
39 scheduler varchar(5), -- the local scheduler
40 sched_id varchar(10), -- the id given to the job
41 -- by local scheduler
42 submit_host varchar(20),
43 last_signal float, -- time when the job last
44 -- signaled that it’s alive
45 PRIMARY KEY (j_id)
46);
47
48 CREATE TABLE Cache (-- ALL FIELDS ARE DYNAMIC!
49 j_id int UNIQUE REFERENCES Jobs,
50 hostname varchar(20), -- the required host
51 PRIMARY KEY (j_id)
52);
53
54 CREATE TABLE Locks (-- ALL FIELDS ARE DYNAMIC!
55 lock_id int PRIMARY KEY,
56 lock_name varchar(64) UNIQUE,
57 host varchar(64),
58 started float, -- time when the lock was obtained
59 j_id int REFERENCES Jobs
60);

Figure 5.4: SQL script for creating the tables of the jobs database.

77

level_id | level_name
----------+------------

0 | VS
1 | Slice

Figure 5.5: The Levels table.

tar_id | tar_name | level_id | status | attr_status
--------+------------------------+----------+--------+-------------

1 | VS_2_1_prologue | 0 | 0 | 0
2 | Slice_2_1_0_0_prologue | 1 | 0 | 0
3 | Slice_2_1_0_0 | 1 | 0 | 0
4 | Slice_2_0_0_1_prologue | 1 | 0 | 0
5 | Slice_2_0_0_1 | 1 | 0 | 0
6 | Slice_1_1_1_0_prologue | 1 | 0 | 0
7 | Slice_1_1_1_0 | 1 | 0 | 0
8 | Slice_1_0_1_1_prologue | 1 | 0 | 0
9 | Slice_1_0_1_1 | 1 | 0 | 0

10 | Slice_0_1_2_0_prologue | 1 | 0 | 0
11 | Slice_0_1_2_0 | 1 | 0 | 0
12 | Slice_0_0_2_1_prologue | 1 | 0 | 0
13 | Slice_0_0_2_1 | 1 | 0 | 0
14 | VS_2_1 | 0 | 0 | 0

Figure 5.6: The Targets table.

j_id | tar_id | comm_line | status | attrs
------+--------+-------------+--------+-------------------------

1 | 1 | echo | 0 |
2 | 2 | echo | 0 |
3 | 3 | 2100comp.sh | 0 | affinity=no#release=yes
4 | 3 | 2100ver.sh | 0 | affinity=yes#release=no
5 | 4 | echo | 0 |
6 | 5 | 2001comp.sh | 0 | affinity=no#release=yes
7 | 5 | 2001ver.sh | 0 | affinity=yes#release=no
8 | 6 | echo | 0 |
9 | 7 | 1110comp.sh | 0 | affinity=no#release=yes
10 | 7 | 1110ver.sh | 0 | affinity=yes#release=no
11 | 8 | echo | 0 |
12 | 9 | 1011comp.sh | 0 | affinity=no#release=yes
13 | 9 | 1011ver.sh | 0 | affinity=yes#release=no
14 | 10 | echo | 0 |
15 | 11 | 0120comp.sh | 0 | affinity=no#release=yes
16 | 11 | 0120ver.sh | 0 | affinity=yes#release=no
17 | 12 | echo | 0 |
18 | 13 | 0021comp.sh | 0 | affinity=no#release=yes
19 | 13 | 0021ver.sh | 0 | affinity=yes#release=no
20 | 14 | echo | 0 |

Figure 5.7: The Jobs table.

78

pre_id | dep_id | status
--------+--------+--------

1 | 2 | 0
2 | 3 | 0
3 | 4 | 0
4 | 5 | 0
3 | 6 | 0
6 | 7 | 0
5 | 8 | 0
7 | 8 | 0
8 | 9 | 0
7 | 10 | 0

10 | 11 | 0
9 | 12 | 0

11 | 12 | 0
12 | 13 | 0
13 | 14 | 0
11 | 14 | 0
9 | 14 | 0
7 | 14 | 0
5 | 14 | 0
3 | 14 | 0

Figure 5.8: The Before table.

j_id | comm_line | hostname | started | status | attrs |
------+-------------+-----------+---------------+--------+-------------------------+

3 | 2100comp.sh | machineA | 1045710325.46 | 3 | affinity=no#release=yes |

user_status | user_started | scheduler | sched_id | submit_host | last_signal
-------------+---------------+-----------+----------+-------------+--------------

| 1045710325.46 | sge | 1 | server | 1045710325.46

Figure 5.9: The Running table.

j_id | hostname
------+-----------

4 | machineA

Figure 5.10: The Cache table.

79

5.3 Services of the command-line server

Services of the command-line server (see Figure 4.1) are the programs that let the

user (or a placeholder) dynamically access and modify the jobs database. In this

respect, the most important operations are the ones that let us get a ready job’s � �

and notify the system upon completion of a job. These functions are made available

through the mqnextjob and mqdonejob services of the command-line server

(see Section 4.3). In this section, we give the pseudo-code for these services. The

complete code listing is provided in Appendix D.

5.3.1 Implementation of mqnextjob

The workings of this service can be described by the following steps of an algo-

rithm:

1. If the placeholder (which is uniquely identified by the values of sched,

sched id and submit host) that is requesting a job is already running a

job, then output the � � of that job and exit.

2. If there are no tuples in the Cache table or, if all tuples in the Cache table

correspond to running jobs, then look for targets whose dependencies have

been satisfied (this is done by querying the Before table) and put the first

ready jobs of these targets into the Cache table; otherwise, go to the next

step. If no tuples could be added to the Cache table, then go to the last step.

3. While there are tuples in the Cache table that correspond to the jobs with

echo command lines, mark these jobs as done (see Section 5.3.2) and put

the jobs that became ready due to this change into the table.

4. Select a non-running job in the Cache table, which has to be executed on the

same host as the placeholder requesting a job. If there is no such job, then

select a job for which the name of the host is not specified. In this version of

the system, whenever a choice is not unique we rely on PostgreSQL to select

a job with minimal job � � .

80

5. If a job is selected, then do the following:

(a) Output the job’s � � as a result.

(b) Change the status information in the Targets table (this may involve

changes to the status fields of the targets corresponding to the super-

groups up to the highest level).

(c) Change the status field in the Jobs table.

(d) Insert a tuple into the Running table.

(e) Change the lastStart attribute of the job to be the current system

time.

(f) Exit.

6. If there are still non-completed jobs, output 0 and exit. Otherwise, output -1

and exit.

The first step of the algorithm is a simple fault-tolerance measure that ensures

that the mqnextjob service is idempotent with respect to two calls in a row (i.e.

without a call to mqdonejob in between) to this service from the same place-

holder. It can happen that mqnextjob is executed in an ssh session that gets

broken after mqnextjob has succeeded. If the placeholder implements a retry

mechanism, it will try to obtain a job again, in which case this step of the algorithm

will be invoked.

The precondition of Step #2 is normally true only once at the beginning of the

computation. After that, the Cache table contains at least one ready job.

Step #4 is the implementation of a simple scheduling policy. Other policies can

be implemented (see Section 7.1).

5.3.2 Implementation of mqdonejob

mqdonejob does the following:

1. If a job with the given � � is not found in the Running table, then exit.

81

2. Remove the corresponding tuple in the Cache and Running tables and up-

date the status field in the Jobs table.

3. If this was the last job of its target or if the release attribute is set to yes,

then update the status field in the Before table. In the former case, also

update the status field in the Targets table.

4. Put into the Cache table the tuples corresponding to the jobs that became

available due to completion of the job. If the completed job was not the last

job in its target and its release attribute was not set to yes, then the only

job that could become available is the next job in the target; if that job has the

affinity attribute set to yes, then we also fill in the host field with the

name of the host where the completed job was run.

5. Set lastCompletion and lastHost attributes of the completed job to

the current system time and the host name on which the job was run, respec-

tively.

5.4 Services of mqdump

So far in this chapter we have been discussing the implementation of the features

that make the automatic submission and computation of a workflow possible. In

Section 4.4, we introduced utilities that the user can execute in order to conveniently

monitor the computation and perform some administrative tasks. In this section,

we discuss how a monitoring utility was implemented based on the jobs database’s

schema introduced in Section 5.2.

The only difficulty that we need to overcome here is that the information about

groups is not stored explicitly in the jobs database. Instead, we have a level number

associated with each target (level 0 corresponds to the highest level, level 1 to the

second highest, etc.).

All operations can be expressed in terms of these two:

1. Supergroup operator: Given the target corresponding to a group, find the

target corresponding to its supergroup and

82

2. Subgroups operator: Given the target corresponding a group, find the targets

corresponding to its subgroups.

For example, to find all groups that have the same supergroup as the given group, we

perform the above two operations in order. Although in practice many operations

do not require the use of the two operations above, by showing how these two

operations can be implemented, we show that the information stored in the jobs

database is sufficient to retrieve all information about groups and super-/subgroup

relationships.

The algorithm for the supergroup operator is as follows:

Starting with the given target, perform a breadth-first search of targets,

where the children of a target are the targets that depend on it. Stop

when a target with a higher level than that of the given target is en-

countered. That target is the target corresponding to the supergroup.

The algorithm for the subgroups operator is as follows:

1. Starting with the given target, perform a breadth-first search of targets, where

the children of a target are the targets on which it depends. Do not expand any

children at the same or higher level as the initial target. Store the expanded

targets in a list.

2. From the list formed in the previous step, select those targets whose level

number is greater by 1 than the level number of the given target. These targets

correspond to the subgroups of the group corresponding to the given target.

5.5 Concluding remarks

We presented a high-level description of our implementation of TrellisDAG. The

use of the technique of placeholder scheduling made for several easy design choices

(see Figure 2.2):

1. Service routines of the command-line server have to access and modify the

storage of the command lines and

83

2. Since multiple placeholders can invoke the services of the command-line

server at the same time, we can make use of the transaction-oriented prop-

erties of relational database management systems. We decided to use Post-

greSQL because it was free and readily available.

For the same reason (i.e. using placeholder scheduling), the implementation of

TrellisDAG is quite compact.

84

Chapter 6

Experimental Assessment of
TrellisDAG

In this chapter, we present three experiments that show how TrellisDAG can be

applied to compute different parts of the checkers endgame databases. The checkers

application provides a fertile ground for forming very different workflows and lets

us demonstrate how diverse the potential applications of our system can be.

6.1 Goals

The features of the system that we will show fall into three categories.

1. Simplicity of specifying dependencies. We will show that for simple work-

flows the dependencies and jobs can be easily submitted using the mqsub.py

utility. For other workflows, writing the DAG description script is a fairly

straightforward task.

2. Good use of opportunities for concurrent execution. We introduce the no-

tion of minimal schedule and use that notion to argue that TrellisDAG makes

good use of the opportunities for concurrency that are inherent in the given

workflow.

3. Small overhead of using the system and placeholder scheduling. We will

quantify the overhead that the user incurs by using TrellisDAG. This overhead

includes the overhead of running the placeholders.

85

The current version of TrellisDAG is not concerned with data movement. There-

fore, we factored the data movement out in all of our experiments. This is achieved

by predistributing the built checkers endgame databases to all the computation

nodes. This does not mean, however, that data transfer cannot be done with the

current version. It only means that the user has to take on the responsibility for the

data movement and we show how to do it in Section 6.8.2.

6.2 The experiments

We chose to perform three different experiments, from simple to complicated, to

show that the system covers the needs of many prospective users and applications:

1. We believe that many computations in practice are simple pipelines and the

small-size experiment shows how TrellisDAG can be used to perform a sim-

ple pipeline-like computation. We will see that the advanced features of the

system (such as the DAG description script) do not have to be used when sim-

pler mechanisms are sufficient. We will also use the small-size experiment to

introduce the two kinds of charts that we use to argue that the system makes

good use of concurrent execution: the degree of concurrency chart and the

resource utilization chart (see Section 6.6).

2. The medium-size experiment shows that the system can be efficiently used to

deal with more complicated workflows, such as DAGs. However, these work-

flows are still simple enough that they do not require the use of TrellisDAG’s

grouping capability. We will show that there is a trade-off of concurrency

versus convenience of monitoring and administration that has to be taken

into account when deciding on whether or not to use supergroups. Although

defining supergroups may add extra scheduling constraints and negatively af-

fect the degree of concurrency, the convenience benefits could be of higher

priority when the workflow is very complicated.

3. The last and largest experiment shows how the system can be used for the

most demanding applications. The system was designed with such applica-

86

tions in mind and provides a mechanism for specifying a hierarchical system

of dependencies with the advantage of simplifying the tasks of monitoring

and administering the computation. We show that writing the DAG descrip-

tion script for such a computation is not a complicated task either.

6.3 The minimal schedule

In this section we introduce the concept of minimal schedule. We use this concept

to tackle the following question: “What is a good utilization of opportunities for

concurrent execution?” Minimal schedule is a mapping of jobs to resources that is

made during a model run – an emulated computation where an infinite number of

processors is assumed and, whenever all prerequisites of a job are satisfied, the job

is run without any start-up overhead.

The algorithm for emulating a model run is as follows:

1. Set time to 0 (i.e. � � �
) and the set of running jobs to be empty;

2. Add all the ready jobs to the set of running jobs. For each added job, store

its completion time using the time measured during the sequential run. That

is, if a job � � took � � seconds to be computed in the sequential run, then the

estimated completion time of � � is � ��� � ;

3. Find the minimal of all completion times in the set of running jobs and set

the current time � to that time;

4. Remove those jobs from the set of running jobs whose completion time is � ;
these jobs are considered complete;

5. If there are more jobs to be executed, goto step 2;

No system that respects the workflow dependencies can beat the model compu-

tation as described above in terms of the makespan. Assume, on the contrary, that

some schedule � computed a set of jobs
�

faster than the minimal schedule � .

Let � � �
be the first job that was started by � earlier than by � and let � � be the

last workflow prerequisite of � completed by � . Since � is the first job with the

87

named property, � � could not have been completed earlier by � than by � . Since,

� is minimal, it starts computing � without any start-up overhead once it finished

computing � � and, therefore, it starts � no later than � , resulting in contradiction.

Therefore, if we show that our system results in a schedule that is close to the

minimal schedule, we will have shown that the opportunities for concurrency are

used well.

6.4 Experimental setup

All of the experiments were performed using the “Jasper” cluster at the Department

of Computing Science at the University of Alberta. The cluster consists of a server

machine brule (dual AMD Athlon 1.5GHz CPUs, 512MB of memory) that is

not used for computations and 20 machines with names jasper-00, jasper-

01, � � � , jasper-19 and similar characteristics as the server. The Sun Grid En-

gine (SGE) software was installed under the author’s user account, with the SGE

scheduler running on brule. The PostgreSQL database engine was running on

jasper-15, which was also used as a command-line server and not used for com-

putations. To simplify the placeholder and the model for data movement in Section

6.8.2, we used only one processor per machine. Thus we had � ��� ��
� ���

CPUs that

could be used for computations.

6.5 The placeholder

In this section, we provide pseudo code for the placeholder used in the experiments.

Figure 6.1 shows the high-level algorithmic description of the placeholder. Not

shown in the pseudo-code is the fact that all of the services of the command-line

server (e.g. steps 2, 3, and 7) are invoked through a retry mechanism. Steps 4 and

6 are concerned with obtaining and sending data to the central host and are only

invoked in the experiments with data movement. We explain these operations in

Section 6.8.2.

For different reasons, software or hardware, a placeholder may not execute

properly (e.g. it can be stopped due to local timing policies). Therefore, it is impor-

88

1. Run the nanny script in the background.

2. Invoke mqnextjob and get the job � � of the
job to run:

(a) If the returned � � is 0, then resubmit a
placeholder and exit.

(b) If the returned � � is -1, then exit.

3. Invoke mqgetjobcommand and get the command
line of the job.

4. Obtain the data from the central host.

5. Run the command line.

6. Send the newly computed data to the central
host.

7. Invoke mqdonejob.

Figure 6.1: The layout of the placeholder.

tant to have a fault tolerance mechanism by which TrellisDAG becomes aware of

such an event and can schedule the job again on some other machine (in this version

of TrellisDAG, such rescheduling requires user assistance).

The nanny script implements a simple fault tolerance mechanism. We give the

pseudo code for this script in Figure 6.2. The total time limit is the maxi-

mal time that we allow for any placeholder to run. Once this time is exceeded, the

nanny kills the placeholder and exits, so that mqsignal is not invoked any more

and the system can know that something went wrong. In this version of TrellisDAG,

the total time limit is set in advance. However, it is possible to use jobs’

attributes to set it to a reasonable value for each individual job.

While the total time limit is not exceeded, do:

1. Invoke the mqsignal service with the cur-
rent time as parameter.

2. Sleep for a specified delay interval.

Kill the placeholder that invoked this script.

Figure 6.2: The nanny script.

89

The complete placeholder can be found in Appendix A and the nanny script is

listed in Appendix B.

6.6 Small-size experiment: 2, 3, and 4 kings

In many cases, the applications of computational science are concerned with per-

forming a multi-stage computation. In such a computation, there are linear (i.e.

pipeline) dependencies between jobs – a job can start once the previous job of the

pipeline is completed.

The purpose of the small-size experiment is two-fold:

1. Showing that TrellisDAG can be used to submit and compute workflows with

pipeline-like dependencies, thereby addressing a common case for the appli-

cations of computational science and

2. Introducing the tools to argue the properties of Trellis DAG in the medium-

size and large-size experiments. The latter two experiments contain a larger

number of jobs with more complicated dependencies than the small-size ex-

periment; we prefer to use a simpler example to explain the resource utiliza-

tion and degree of concurrency charts – the tools for our argument.

Consider the task of computing the checkers endgame databases for all positions

with 2, 3 or 4 kings and no checkers on the board. The DAG for the corresponding

workflow is shown in Figure 6.3(a). This translates into the tasks in Figure 6.3(b).

Those in turn correspond to the commands in Figure 6.3(c). To demonstrate our

point, we ignore the fact that the commands of the lowest rectangle (i.e. 4 kings) in

Figure 6.3(c) can be executed concurrently. This workflow is clearly a pipeline, a

very common case in real-world applications.

Since there are only three jobs (corresponding to the stages of the pipeline), we

do not want to write a DAG description script. We can directly use the mqsub

utility to submit the jobs. The pipeline in Figure 6.3(c) can be submitted as shown

in Figure 6.4.

Note that we did not have to explicitly specify the dependencies between the

stages of the pipeline. Since all jobs of the pipeline are contained in one group

90

All kings for 4 pieces

All kings for 3 pieces

All kings for 2 pieces 1 king vs. 1 king

2 kings vs. 1 king

3 kings vs. 1 king

2 kings vs. 2 kings

Bin/run.it 1 1 0 0 0 0

Bin/run.it 2 1 0 0 0 0

Bin/run.it 3 1 0 0 0 0

Bin/run.it 2 2 0 0 0 0

(a) (b) (c)

Figure 6.3: The pipeline workflow for computing the endgame databases for up to
4 kings.

mqsub -l "pipe0" -deps "" -c "Bin/run.it 1 1 0 0 0 0"
mqsub -l "pipe0" -deps "" -c "Bin/run.it 2 1 0 0 0 0"
mqsub -l "pipe0" -deps "" -c "Bin/run.it 3 1 0 0 0 0; Bin/run.it 2 2 0 0 0 0"

Figure 6.4: The submission script for a simple pipeline using implicit dependencies.

pipe0, the implicit pipeline dependencies exist and the jobs will be executed in a

sequential manner. An alternative way of submitting the same pipeline would be

to define a group for each stage of the pipeline. Then the dependencies must be

explicitly specified. The submission script is shown in Figure 6.5.

6.6.1 The experiment without placement affinity

We would like to use a variation of the example in Figure 6.4 to demonstrate two

kinds of charts that we will use in order to argue some properties of TrellisDAG.

The experiment consists of running several copies of the pipeline in Figure 6.3(c)

and start these copies with a delay interval from each other. These delays are put in

to better explain the charts that we will introduce shortly.

Let us have 3 pairs of copies with 3 seconds delay between the starts of the

pairs. We show the experiment schematically in Figure 6.6. The idea is that the

pipelines start with a delay, resulting in observing different degrees of concurrency

throughout the experiment. The script for running this multi-pipeline experiment is

shown in Figure 6.7 (the $CHECKERS environmental variable refers to the directory

where the placeholder is found).

91

mqsub -l "pipe0" -deps "" -c "Bin/run.it 1 1 0 0 0 0"
mqsub -l "pipe1" -deps "pipe0" -c "Bin/run.it 2 1 0 0 0 0"
mqsub -l "pipe2" -deps "pipe1" -c "Bin/run.it 3 1 0 0 0 0; Bin/run.it 2 2 0 0 0 0"

Figure 6.5: The submission script for a simple pipeline using explicit dependencies.

St.1 St.1

St.1 St.1

St.1 St.1

pipe0 pipe1

St.2 St.2

St.3 St.3

pipe2 pipe3

St.2 St.2

St.3 St.3

pipe4 pipe5

St.2 St.2

St.3 St.3

Submission of pipes 0&1

Submission of pipes 2&3

Submission of pipes 4&5

Figure 6.6: The small-size experiment at a glance.

Since there are no dependencies between the six groups (pipe0, pipe1, pipe2,

pipe3, pipe4 and pipe5), the first job of each group can be started as soon as

the corresponding placeholder is submitted (lines 14-15 and 27-28). Note that we

only use 4 placeholders and so the maximal possible degree of concurrency is 4.

We run the experiment five times. Table 6.1 shows the makespans obtained in

the runs. All of the presented charts correspond to the median run #4. The largest

deviation from the makespan from the median run is � ���
� ��� � ��� ���
� ��� ���

� � � �
 � � �
 � � ��� .

This deviation is due to several factors:

1. Starting up placeholders by SGE takes different amounts of time (SGE has

its own scheduler),

2. Due to dynamic variations of the load of the command-line server, the ser-

vices of the command line server may take more or less time, and

3. The load of the network varies, affecting the time taken by establishing ssh

connections.

92

1 #!/bin/bash
2
3 PAUSE=3
4
5 # submit pipe0
6 mqsub -l "pipe0" -deps "" -c "Bin/run.it 1 1 0 0 0 0"
7 mqsub -l "pipe0" -deps "" -c "Bin/run.it 2 1 0 0 0 0"
8 mqsub -l "pipe0" -deps "" -c "Bin/run.it 3 1 0 0 0 0; Bin/run.it 2 2 0 0 0 0"
9 # submit pipe1

10 mqsub -l "pipe1" -deps "" -c "Bin/run.it 1 1 0 0 0 0"
11 mqsub -l "pipe1" -deps "" -c "Bin/run.it 2 1 0 0 0 0"
12 mqsub -l "pipe1" -deps "" -c "Bin/run.it 3 1 0 0 0 0; Bin/run.it 2 2 0 0 0 0"
13 # submit 2 placeholders
14 qsub $CHECKERS/template.sh
15 qsub $CHECKERS/template.sh
16 sleep $PAUSE #delay
17
18 # submit pipe2
19 mqsub -l "pipe2" -deps "" -c "Bin/run.it 1 1 0 0 0 0"
20 mqsub -l "pipe2" -deps "" -c "Bin/run.it 2 1 0 0 0 0"
21 mqsub -l "pipe2" -deps "" -c "Bin/run.it 3 1 0 0 0 0; Bin/run.it 2 2 0 0 0 0"
22 # submit pipe3
23 mqsub -l "pipe3" -deps "" -c "Bin/run.it 1 1 0 0 0 0"
24 mqsub -l "pipe3" -deps "" -c "Bin/run.it 2 1 0 0 0 0"
25 mqsub -l "pipe3" -deps "" -c "Bin/run.it 3 1 0 0 0 0; Bin/run.it 2 2 0 0 0 0"
26 # submit 2 placeholders
27 qsub $CHECKERS/template.sh
28 qsub $CHECKERS/template.sh
29 sleep $PAUSE #delay
30
31 # submit pipe4
32 mqsub -l "pipe4" -deps "" -c "Bin/run.it 1 1 0 0 0 0"
33 mqsub -l "pipe4" -deps "" -c "Bin/run.it 2 1 0 0 0 0"
34 mqsub -l "pipe4" -deps "" -c "Bin/run.it 3 1 0 0 0 0; Bin/run.it 2 2 0 0 0 0"
35 # submit pipe5
36 mqsub -l "pipe5" -deps "" -c "Bin/run.it 1 1 0 0 0 0"
37 mqsub -l "pipe5" -deps "" -c "Bin/run.it 2 1 0 0 0 0"
38 mqsub -l "pipe5" -deps "" -c "Bin/run.it 3 1 0 0 0 0; Bin/run.it 2 2 0 0 0 0"

Figure 6.7: The submission script for the small-size experiment.

Experiment # 1 2 3 4 5
Makespan, sec. 42.82 38.26 42.39 40.29 40.15

Table 6.1: The makespans for the small-size experiment. The median run is shown
in bold.

93

0
1

2
3

4
Resource

0
5

10
15

20
25

30
35

40

Time, sec.

1

4

2

5

7

10

3

6

8

11

12

9

13

16

14

17

15

18

Figure 6.8: Resource utilization chart for the small-size experiment. See Table 6.2
for the definition of jobs.

Resource utilization chart

The results of the experiment are summarized in Figures 6.8 and 6.9. Figure 6.8 is a

resource utilization chart and shows individual jobs. A job is represented by a green

(dark in the b/w copies) bar. It also shows what resources were used to compute

particular jobs. For example, Figure 6.8 shows that resource #3 got to execute 5

jobs, but was idle for about 4 seconds at the beginning of the experiment (the reason

being that the only jobs available for execution at the beginning of the experiment

were taken by the resources #1 and #4), at which point it started executing the job

with � � 2.

The corresponding job’s � � is provided together with each bar to improve the

readability of the resource utilization chart; furthermore, we provide a table by

which the correspondence of � � ’s to jobs is established. For our example, this is

Table 6.2.

Table 6.2 also shows how much time was used by the placeholders and how

much of that time was due to the overhead (both SGE and TrellisDAG). Note that

94

0
5

10
15

20
25

30
35

40

Time, sec.

0

1

2

3

4

C
on

cu
rr

en
cy

Figure 6.9: Degree of concurrency chart for the small-size experiment.

the overhead time is quite large compared to the computation time. In other words,

the granularity of our experiment is low. However, the computation-to-overhead

ratio was sufficient for our experiment to achieve a speedup. The time for a sequen-

tial run can be obtained by summing up all of the computation times. Hence, it

would take 64.16 seconds to execute this experiment on a single workstation of our

cluster. Our experiment, on the other hand, took 40.29 seconds (see Table 6.1) and

would certainly finish earlier if there were no delays between the starting times of

the pipelines.

Degree of concurrency chart

Figure 6.9 is a degree of concurrency chart and shows how the degree of concur-

rency changed over time during the experiment. Note that the same information can

be derived from the resource utilization chart, but the degree of concurrency chart

makes the trends easier to see. As an example of how to interpret a degree of con-

currency chart, Figure 6.9 shows that the concurrency level of 4 was first achieved

after about 6 seconds from the start of the experiment.

Observations

Note that when the first placeholder requested a job when the experiment just

started, there was a choice between 2 jobs that were ready for execution: the jobs

95

Job# Job name Computation Other time, Total time,
time, sec (overhead), sec

sec
1 2 kings of pipe0 1.35 2.67 4.02
2 3 kings of pipe0 2.82 2.50 5.32
3 4 kings of pipe0 6.54 3.09 9.63
4 2 kings of pipe1 1.36 2.67 4.03
5 3 kings of pipe1 2.80 2.52 5.32
6 4 kings of pipe1 6.53 3.36 9.89
7 2 kings of pipe2 1.35 2.61 3.96
8 3 kings of pipe2 2.83 2.55 5.38
9 4 kings of pipe2 6.51 2.88 9.39

10 2 kings of pipe3 1.36 2.56 3.92
11 3 kings of pipe3 2.82 2.45 5.27
12 4 kings of pipe3 6.51 2.98 9.49
13 2 kings of pipe4 1.34 2.40 3.74
14 3 kings of pipe4 2.84 2.54 5.38
15 4 kings of pipe4 6.54 2.40 8.94
16 2 kings of pipe5 1.34 2.40 3.74
17 3 kings of pipe5 2.81 2.63 5.44
18 4 kings of pipe5 6.51 2.45 8.96
� Total sum 64.16 47.66 111.82

Table 6.2: Time of computation and overhead for the small-size experiment. Job#
corresponds to annotations in Figure 6.8.

96

with � � s 1 and 4. Our scheduler simply chooses the job with minimal job � � .

However, any other scheduling policy could be implemented (see Section 7.1).

We now address two questions about the experiment:

1. Why would one want to separate a pipeline into individual jobs? and

2. After the separation is done, why not run all of the jobs of the pipeline on

the same machine? After all, the data produced by a job of the pipeline will

likely be needed by the next job and we can avoid data migration by running

the jobs on the same host.

We identify three reasons:

1. Although it was not the case in our experiment, there may be dependen-

cies between pipelines. Consider, for example, a multi-pipeline workflow

in which the first stage of a pipeline can only be executed after the second

stage of another pipeline is completed. In that case, we need to split the lat-

ter pipeline into at least two parts (provided, of course, that this pipeline has

more than two stages),

2. The intermediate results of the pipeline can be of value. The points of a work-

flow at which intermediate results are of value are called end-points (some-

times end-points are also exit nodes, but not always as in this example with

pipelines). For example, the user may want to look at the results of the com-

putation for 2 kings as soon as this result is available. Although none of the

currently implemented utilities of our system can give a per-job information

on the status of execution, the mechanisms are in place and such a utility can

be added in the next version of TrellisDAG, and

3. There may be a scheduling benefit in running the jobs of the pipeline on

different machines and we show this experimentally in Section 6.6.2.

6.6.2 The experiment with placement affinity

In the previous section, we gave three reasons for separating a pipeline into several

independent jobs that can run on different machines. In particular, we claimed that

97

Experiment # 1 2 3 4 5
Makespan, sec. 42.59 42.90 43.22 42.49 42.51

Table 6.3: The makespans for the small-size experiment with placement affinity.
The median run is shown in bold.

there may be a scheduling benefit in running the jobs of a pipeline on different

machines. In this section, we provide justification for this claim.

Let us force the jobs of each of our pipelines to run on the same host. We use

the affinity attribute to do that. The new submission script is shown in Figure

6.10.

We ran the experiment five times. Table 6.3 shows the makespans obtained in

the runs. All of the presented charts correspond to the median run #1. The largest

deviation from the makespan of the median run is ��� � � ��� � ��� ���
� ��� ���

� � � � ��� � � � � � ��� .

The resource utilization chart and the degree of concurrency chart for this ex-

periment are shown in Figures 6.12 and 6.13, respectively.

Let us concentrate on the resource utilization chart in Figure 6.12. There are two

resources (#1 and #3) that each executed 6 jobs, while the highest number of jobs

per resource in Figure 6.8 is 5. This is not a coincidence. In the present experiment,

there are 6 pipelines and 4 resources; hence, by the pigeon-hole principle, at least

one of the resources has to execute 2 pipelines because the pipelines are not split.

As a result, the computation took longer than the computation where stages of the

pipeline could be executed on different computational nodes.

The situation is illustrated in Figure 6.11. There are 6 pipelines and 4 resources.

With placement affinity as in our example, all stages of a pipeline must be scheduled

to one resource and, in effect, a pipeline is scheduled as one unit. Assume some

mapping of pipelines with numbers 0, 1, 2 and 3 to resources. Then, there is no

way of mapping the remaining pipelines without having one resource compute all

jobs of more than one pipeline.

98

1 #!/bin/bash
2
3 PAUSE=3
4
5 mqsub -l "pipe0" -deps "" -c "Bin/run.it 1 1 0 0 0 0"
6 mqsub -l "pipe0" -deps "" -c "Bin/run.it 2 1 0 0 0 0" \
7 -attr "affinity=yes"
8 mqsub -l "pipe0" -deps "" -c "Bin/run.it 3 1 0 0 0 0; Bin/run.it 2 2 0 0 0 0" \
9 -attr "affinity=yes"

10 mqsub -l "pipe1" -deps "" -c "Bin/run.it 1 1 0 0 0 0"
11 mqsub -l "pipe1" -deps "" -c "Bin/run.it 2 1 0 0 0 0" \
12 -attr "affinity=yes"
13 mqsub -l "pipe1" -deps "" -c "Bin/run.it 3 1 0 0 0 0; Bin/run.it 2 2 0 0 0 0" \
14 -attr "affinity=yes"
15 qsub $CHECKERS/template.sh
16 qsub $CHECKERS/template.sh
17 sleep $PAUSE
18
19 mqsub -l "pipe2" -deps "" -c "Bin/run.it 1 1 0 0 0 0"
20 mqsub -l "pipe2" -deps "" -c "Bin/run.it 2 1 0 0 0 0" \
21 -attr "affinity=yes"
22 mqsub -l "pipe2" -deps "" -c "Bin/run.it 3 1 0 0 0 0; Bin/run.it 2 2 0 0 0 0" \
23 -attr "affinity=yes"
24 mqsub -l "pipe3" -deps "" -c "Bin/run.it 1 1 0 0 0 0"
25 mqsub -l "pipe3" -deps "" -c "Bin/run.it 2 1 0 0 0 0" \
26 -attr "affinity=yes"
27 mqsub -l "pipe3" -deps "" -c "Bin/run.it 3 1 0 0 0 0; Bin/run.it 2 2 0 0 0 0" \
28 -attr "affinity=yes"
29 qsub $CHECKERS/template.sh
30 qsub $CHECKERS/template.sh
31 sleep $PAUSE
32
33 mqsub -l "pipe4" -deps "" -c "Bin/run.it 1 1 0 0 0 0"
34 mqsub -l "pipe4" -deps "" -c "Bin/run.it 2 1 0 0 0 0" \
35 -attr "affinity=yes"
36 mqsub -l "pipe4" -deps "" -c "Bin/run.it 3 1 0 0 0 0; Bin/run.it 2 2 0 0 0 0" \
37 -attr "affinity=yes"
38 mqsub -l "pipe5" -deps "" -c "Bin/run.it 1 1 0 0 0 0"
39 mqsub -l "pipe5" -deps "" -c "Bin/run.it 2 1 0 0 0 0" \
40 -attr "affinity=yes"
41 mqsub -l "pipe5" -deps "" -c "Bin/run.it 3 1 0 0 0 0; Bin/run.it 2 2 0 0 0 0" \
42 -attr "affinity=yes"

Figure 6.10: The submission script for the small-size experiment with placement
affinity.

99

pipe0 pipe2 pipe3 pipe4 pipe5

Resource 2 Resource 3Resource 1

pipe1

Resource 0

? ?

Figure 6.11: Placement affinity and pigeon-hole principle.

0
1

2
3

4

Resource

0
5

10
15

20
25

30
35

40

Time, sec.

1

4 5

2

7

10

6

3

8

11

9

12

13

16

14

17 18

15

Figure 6.12: Resource utilization chart for the small-size experiment with place-
ment affinity. See Table 6.2 for the definition of jobs.

100

0
5

10
15

20
25

30
35

40

Time, sec.

0

1

2

3

4

C
on

cu
rr

en
cy

Figure 6.13: Degree of concurrency chart for the small-size experiment with place-
ment affinity.

101

6.6.3 Summary

Although TrellisDAG is specifically designed for applications that exhibit compli-

cated workflows with a multitude of jobs and dependencies, it is well suited for

computing simple pipeline workflows. We showed that there are reasons (among

which are scheduling issues) that can justify splitting a large job into several jobs

with pipeline dependencies and even allowing those jobs to execute on different

machines. By the way of example, we introduced two charts – the resource utiliza-

tion chart and the degree of concurrency chart – that we will use as tools for arguing

the properties of TrellisDAG in the following sections.

6.7 Medium-size experiment: all-kings databases up
to 7 pieces

In this section, we show how the system can be used to execute a workflow that is

easily represented as a plain DAG. The example that we use is all-kings checkers

databases for positions with up to and including 7 pieces on the board. Consistent

with the explanation in Chapter 3, the DAG for our computation is shown in Figure

6.14. Note that the marked part of this DAG was used as a single pipeline for the

small-size experiment.

There are 12 groups (of 2 jobs each) and 15 dependencies in the DAG in Figure

6.14. Note that it can be viewed as a pipeline of 6 stages (see Figure 6.15(a)),

where all groups in each stage can be computed in parallel. Therefore, it is natural

to define supergroups that represent the individual stages of the pipeline. Then, the

workflow looks as shown in Figure 6.15(a). However, this workflow contains many

implicit dependencies and is, in fact, equivalent to the workflow in Figure 6.15(b).

The reader can see that this DAG has more dependencies compared to the DAG

shown in Figure 6.14. For example, the slice with 6 black kings and 1 white king

can be computed once the slice with 5 black kings and 1 white king is computed;

however, with the supergroups defined, the aforementioned slice cannot be started

until all of the slices with 6 kings on the board are computed.

We will show both how to run the computation with the workflow shown in

102

2100.00

3100.00

4100.00

2200.00

3200.00

4200.00 3300.00

4300.005200.006100.00

1100.00

5100.00

Figure 6.14: The DAG for the all-kings computation.

Experiment # 1 2 3 4 5 Minimal
schedule

Makespan, sec. 4005.88 4035.56 4020.09 4004.03 4024.54 3988.85

Table 6.4: The makespans for the medium-size experiment. The median run is
shown in bold.

Figure 6.14 and how to join the stages of the pipeline into supergroups and run the

computation with the workflow shown in Figure 6.15. Then we will conclude as to

when the grouping capability should be used.

6.7.1 The experiment without supergroups

The DAG description script for this computation is is shown in Figure 6.16.

We run the experiment five times. Table 6.4 shows the makespans obtained in

the runs. All of the presented charts correspond to the median run #3. The largest

deviation from the makespan of the median run is � � ����� ����� � ��� � � � �
� � ����� ���

� � � � � � � � � � � � .

The flow of computation is summarized with the resource utilization chart in

Figure 6.17 and the degree of concurrency chart in Figure 6.20. Because of the

103

2100.00

3100.00

4100.00

2200.00

3200.00

4200.00 3300.00

4300.005200.006100.00

1100.00

5100.00

All kings for 2 pieces

All kings for 4 pieces

All kings for 5 pieces

All kings for 6 pieces

All kings for 7 pieces

All kings for 3 pieces

(a) (b)

Figure 6.15: Using the grouping capability for the all-kings computation.

low granularity of jobs at the beginning of the experiment, we include Figures 6.18,

6.19, 6.21 and 6.22 that scale the portions of Figures 6.17 and 6.20 corresponding to

the beginning of the experiment. We noticed that the degree of concurrency in this

computation never exceeded 5 jobs. Therefore, in order to keep the graph simple,

we enabled only 5 SGE queues (each SGE queue corresponding to one machine)

and used 5 placeholders. As we see, some of the jobs are very short and some of

the jobs at the end of the computation were of considerable length. Of course, this

is a property of the application domain and not the schedule. The relative overhead

of using our system is different for such jobs. Table 6.5 summarizes the times used

for computation and the measured overhead.

Figure 6.20 shows that most of the time the degree of concurrency was 1. We

have to note that this results from the inherent limitations of the application rather

than our system. Specifically, the executions of the two longest jobs with � � s 35

and 36 cannot be overlapped, because job #36 is a verification stage of the compu-

tation made by job #35 (see Table 6.5).

104

Job# Job name Computation/ Other time Total time,
verification (overhead), sec.
time, sec. sec.

2 1100.00 computation 1.35 2.81 4.16
3 1100.00 verification 2.71 2.35 5.06
5 2100.00 computation 2.85 2.78 5.63
6 2100.00 verification 3.00 2.32 5.32
8 3100.00 computation 3.82 2.67 6.49
9 3100.00 verification 2.92 2.91 5.83

11 2200.00 computation 2.76 2.64 5.40
12 2200.00 verification 4.10 2.31 6.41
14 4100.00 computation 10.36 2.92 13.28
15 4100.00 verification 4.57 2.43 7.00
17 3200.00 computation 45.19 2.86 48.05
18 3200.00 verification 15.56 2.32 17.88
20 5100.00 computation 44.12 2.59 46.71
21 5100.00 verification 13.14 2.33 15.47
23 4200.00 computation 124.05 2.63 126.68
24 4200.00 verification 86.47 2.29 88.76
26 3300.00 computation 154.77 2.44 157.21
27 3300.00 verification 103.11 2.31 105.42
29 6100.00 computation 188.72 2.37 191.09
30 6100.00 verification 47.80 2.26 50.06
32 5200.00 computation 688.47 2.31 690.78
33 5200.00 verification 328.72 2.27 330.99
35 4300.00 computation 2952.50 2.36 2954.86
36 4300.00 verification 828.36 2.34 830.76
� Total sum 5659.42 59.82 5719.24

Table 6.5: Time of computation and overhead for the medium-size experiment.

105

1 #!/usr/bin/python
2
3 import sys
4 import math
5 import string
6
7 nPieces = int(sys.argv[1])
8
9 def isDependentRank(rank1, rank2):

10 if rank1[0] >= rank2[0] and rank1[1] >= rank2[1]:
11 return 1
12 return 0
13
14 #THE INTERFACE PART
15 Groups = [[’Rank’, 6]]
16
17 def generateGroup(level, parentGroup):
18 result = []
19 for np in range(2, nPieces + 1):
20 for b in range(1, np/2 + 1):
21 result.append([np - b, b, 0, 0, 0, 0])
22 return result
23
24 def getPrologueExecutables(level, group): return []
25 def getPrologueAttributes(level, group): return []
26 def getPrologueParameters(level, group): return []
27 def getEpilogueExecutables(level, group): return []
28 def getEpilogueAttributes(level, group): return []
29 def getEpilogueParameters(level, group): return []
30
31 def getJobsExecutables(level, group):
32 return ["Bin/run.it", "Bin/ver.it"]
33
34 def getJobsAttributes(level, group):
35 return [["release=" + "yes"], ["release=" + "no"]]
36
37 def getJobsParameters(level, group):
38 return [string.join(map(str, group), " "),
39 string.join(map(str, group), " ")]
40
41 def isDependent(level, group1, group2, parentGroup):
42 return isDependentRank(group1, group2)

Figure 6.16: The DAG description script for the all-kings computation.

106

0
1

2
3

4
5

Resource

0
300

600
900

1200
1500

1800
2100

2400
2700

3000
3300

3600
3900

4200

Time, sec.

23

26

29

32

35

33 36

Figure 6.17: Resource utilization chart for the medium-size experiment. See Table
6.5 for the definition of jobs.

0
1

2
3

4
5

Resource

0
30

60
90

120
150

180
210

240
270

300
330

360

Time, sec.

8

14

17

20

18

23

26

21

29

24

32

27

35

30

Figure 6.18: Resource utilization chart for the medium-size experiment. This is a
scaled version of the beginning part of the chart in Figure 6.17. See Table 6.5 for
the definition of jobs.

107

0
1

2
3

4
5

Resource

0
5

10
15

20
25

30
35

40
45

50
55

60

Time, sec.

2 3

5 6

8

11 12

9

14

17

15

20

Figure 6.19: Resource utilization chart for the medium-size experiment. This is a
scaled version of the beginning part of the chart in Figure 6.18. See Table 6.5 for
the definition of jobs.

0
300

600
900

1200
1500

1800
2100

2400
2700

3000
3300

3600
3900

4200

Time, sec.

0

1

2

3

4

5

C
on

cu
rr

en
cy

Figure 6.20: Degree of concurrency chart for the medium-size experiment.

108

0
30

60
90

120
150

180
210

240
270

300
330

360

Time, sec.

0

1

2

3

4

5

C
on

cu
rr

en
cy

Figure 6.21: Degree of concurrency chart for the medium-size experiment. This is
a scaled version of the beginning part of the chart in Figure 6.20.

0
5

10
15

20
25

30
35

40
45

50
55

60

Time, sec.

0

1

2

3

4

5

C
on

cu
rr

en
cy

Figure 6.22: Degree of concurrency chart for the medium-size experiment. This is
a scaled version of the beginning part of the chart in Figure 6.21.

109

6.7.2 The use of opportunities for concurrency

We will now compare the computation in Section 6.7.1 to the one that results from

the minimal schedule. The resource utilization chart for the model run is shown in

Figure 6.23. The lines over the bars show when the corresponding jobs started and

stopped in during the real run. Figures 6.24 and 6.25 show the scaled versions of

the chart.

We first concentrate on Figure 6.25. First look at job #2. We see that it took

more time in the real run than in the minimal schedule. The reason is that the

running time in the real time is measured from the time when the job is inserted

into the Running table to the time when it is deleted from that table. In contrast,

the minimal schedule only takes into account the time taken to run the executable

itself.

The minimal schedule shows that the jobs #3 and #5 can be started simultane-

ously without violating any dependencies. However, in the real run, job #5 started

well after job #3 started. The main reason of such delay is the scheduling delay of

SGE. As can be seen in the placeholder (see Appendix A), we save the time when a

placeholder starts and when a placeholder finishes. We found that the placeholder

that executed job #5 started after a significant delay from the moment when the

placeholder that submitted this placeholder finished.

Now, let us look at Figure 6.23. We note that the last job with � � 36 started not

much later in the real run compared to the minimal schedule. This seems strange

after we saw big differences in Figure 6.25. However, we have to note that the

overhead accumulates only on the paths that go from the entry nodes of the DAG

to the exit nodes (see Figure 6.14). For job #36, this corresponds to more than one

path. However, the overheads of the paths are not added; instead, the maximum

of the overheads of the paths should be taken. Likely, this is the overhead that

results from a maximal (in terms of the number of nodes) path. For example, the

following path is maximal in our case: 1100.00 -> 2100.00 -> 2200.00

-> 3200.00 -> 3300.00 -> 4300.00 with length 7. Thus, only 7 jobs

(including the verification stage of 4300.00) constitute most to the delay of the last

job. The result is that model computation would take 3988.85 seconds to run, while

110

the real computation took 4020.09 seconds which is only about 0.78% slower than

the model experiment.

The degree of concurrency chart and its scaled versions are presented in Figures

6.26, 6.27 and 6.28. The dashed graph represents the corresponding degrees of

concurrency of the real run. The general patterns of the two runs shown in Figure

6.26 are very close. When we look at more detailed Figures 6.27 and 6.28, we see

that there are differences, but the minimal schedule does not have a clear advantage

over the real run in terms of the achieved degrees of concurrency.

0
1

2
3

4
5

Resource

0
300

600
900

1200
1500

1800
2100

2400
2700

3000
3300

3600
3900

4200

Time, sec.

26
26

29
29

32
32

35
35

33
33

36
36

Figure 6.23: Resource utilization chart for the medium-size experiment. Model run.
The lines over bars represent the real run (see Figures 6.17, 6.18, and 6.19). See
Table 6.5 for the definition of jobs.

111

0
1

2
3

4
5

Resource

0
30

60
90

120
150

180
210

240
270

300
330

360

Time, sec.

17
17

20
20

18
18

23
23

26
26

21
21

29
29

24
24

32
32

27
27

35
35

30
30

Figure 6.24: Resource utilization chart for the medium-size experiment. Model run.
This is a scaled version of the beginning part of the chart in Figure 6.23. The lines
over bars represent the real run (see Figures 6.17, 6.18, and 6.19). See Table 6.5 for
the definition of jobs.

0
1

2
3

4
5

Resource

0
5

10
15

20
25

30
35

40
45

50
55

60

Time, sec.

2
2

3
3

5
5

6
6

8
8

11
11

12
12

9
9

14
14

17
17

15
15

20
20

18

23

26

Figure 6.25: Resource utilization chart for the medium-size experiment. Model run.
This is a scaled version of the beginning part of the chart in Figure 6.24. The lines
over bars represent the real run (see Figures 6.17, 6.18, and 6.19). See Table 6.5 for
the definition of jobs.

112

0
300

600
900

1200
1500

1800
2100

2400
2700

3000
3300

3600
3900

4200

Time, sec.

0

1

2

3

4

5
C

on
cu

rr
en

cy

Figure 6.26: Degree of concurrency chart for the medium-size experiment. Model
run. The dashed graph represents the corresponding levels of concurrency for the
real run (see Figures 6.20, 6.21, and 6.22).

0
30

60
90

120
150

180
210

240
270

300
330

360

Time, sec.

0

1

2

3

4

5

C
on

cu
rr

en
cy

Figure 6.27: Degree of concurrency chart for the medium-size experiment. Model
run. This is a scaled version of the beginning part of the chart in Figure 6.26. The
dashed graph represents the corresponding levels of concurrency for the real run
(see Figures 6.20, 6.21, and 6.22).

113

0
5

10
15

20
25

30
35

40
45

50
55

60

Time, sec.

0

1

2

3

4

5

C
on

cu
rr

en
cy

Figure 6.28: Degree of concurrency chart for the medium-size experiment. Model
run. This is a scaled version of the beginning part of the chart in Figure 6.27. The
dashed graph represents the corresponding levels of concurrency for the real run
(see Figures 6.20, 6.21, and 6.22).

114

Experiment # 1 2 3 4 5 Minimal
schedule

Makespan, sec. 4034.93 4029.07 4070.02 4035.57 4064.66 4002.35

Table 6.6: The makespans for the medium-size experiment with supergroups. The
median run is shown in bold.

6.7.3 The experiment with supergroups

The DAG description script for running the all-kings computation with supergroups

is shown in Figure 6.29.

We run the experiment five times. Table 6.6 shows the makespans obtained

in the runs. All of the presented charts correspond to the median run #4. The

largest deviation from the makespan of the median run is � �
� ��� � ��� � � � ��� �

�

� � � ��� �
�

� � � � � ��� �
� � ��� � .

The resource utilization chart for the computation is shown in Figure 6.30. The

lines over the bars show when the corresponding jobs started and stopped during

the run without supergroups. Figures 6.31 and 6.32 show the scaled versions of the

chart.

At the first glance, the schedules for the runs with and without supergroups do

not differ much. Suppose, however, that the investigators of the checkers project

are interested in the databases for the cases of 4 kings versus 3 kings, 5 kings

versus 2 kings, and 6 kings versus 1 king (i.e. three end-points). We compare

the times of achieving these end-point results with and without using supergroups.

This comparison is summarized in Table 6.7. We see that, although in our exam-

ple the makespan of the computation is almost the same without supergroups and

with supergroups (the difference between the makespans of the median runs being
� � ��� � �	� � � � � � � � � � � � � � � seconds, see Tables 6.4 and 6.6), certain end-points can

be achieved faster without supergroups.

The degree of concurrency chart and its scaled versions are presented in Figures

6.33, 6.34 and 6.35. The dashed graph represents the corresponding degrees of

concurrency of the run without supergroups.

One noticeable difference between the computations without supergroups and

115

Job# Job# Job Reached w/o Reached with
w/o super- with super- name supergroups, sec supergroups, sec

groups groups
29 40 6100.00 278.66 428.14

computation
32 43 5200.00 895.27 920.09

computation
35 46 4300.00 3189.28 3202.85

computation

Table 6.7: Comparison of the times of reaching the end-points of the all-kings
computation with and without supergroups.

with supergroups is seen in Figure 6.35. We see that, after 44 seconds of execution,

the degree of concurrency stays at 2 without supergroups and at 1 with supergroups.

The reason becomes clear when we look at Figure 6.31. Job with � � 29 started

earlier in the run without supergroups and contributed to the degree of concurrency

of the mentioned time interval. The job could start earlier because it did not depend

on the jobs for the 5-piece databases, while when we use supergroups, all of the 5-

piece (and, in particular, the job with � � 24) databases have to be computed before

any job for the 6-piece databases can start.

We conclude that there is a trade-off when using the TrellisDAG’s grouping

capability. Once the supergroups are defined, the user is provided with tools to

monitor the execution in a convenient way. However, the scope of opportunities for

concurrency used by the system will possibly be below optimal. In the all-kings

computation, the total execution time is not affected by introducing supergroups

and corresponding extra dependencies. However, if we take the standpoint that the

faster time of completion of individual jobs increases user’s satisfaction, then it

is beneficial to not define supergroups. After all, the workflow in this experiment

is pretty simple and monitoring will not be too cumbersome even without super-

groups.

116

Job# Job name Computation/ Other time Total time,
verification (overhead), sec.
time, sec. sec.

3 1100.00 computation 1.33 2.82 4.15
4 1100.00 verification 2.69 2.36 5.05
8 2100.00 computation 2.85 2.91 5.76
9 2100.00 verification 3.13 2.35 5.48

13 3100.00 computation 3.90 2.70 6.60
14 3100.00 verification 2.91 2.87 5.78
16 2200.00 computation 2.68 2.66 5.34
17 2200.00 verification 4.21 2.31 6.52
21 4100.00 computation 10.33 2.94 13.27
22 4100.00 verification 4.58 2.34 6.92
24 3200.00 computation 45.13 2.86 47.99
25 3200.00 verification 15.40 2.38 17.78
29 5100.00 computation 44.52 2.40 46.92
30 5100.00 verification 13.20 2.32 15.52
32 4200.00 computation 124.30 2.53 126.83
33 4200.00 verification 85.70 2.38 88.08
35 3300.00 computation 156.20 3.11 159.31
36 3300.00 verification 103.25 2.38 105.63
40 6100.00 computation 190.46 2.69 193.15
41 6100.00 verification 48.04 2.29 50.33
43 5200.00 computation 682.09 2.62 684.71
44 5200.00 verification 328.91 2.32 331.23
46 4300.00 computation 2963.39 2.37 2965.76
47 4300.00 verification 829.55 2.35 831.96
� Total sum 5668.75 61.26 5730.01

Table 6.8: Time of computation and overhead for the medium-size experiment with
supergroups.

117

6.7.4 Summary

By means of writing a simple DAG description script (such as the one shown in

Figure 6.16), a workflow represented by a plain directed acyclic graph can be sub-

mitted to TrellisDAG. We showed that TrellisDAG can execute this workflow and

satisfy inter-job dependencies in such a way that the resulting makespan is close to

that of the model run.

We also showed how one can define supergroups in order to introduce a logical

structure to the workflow; we pointed out that one has to weigh the convenience

benefits from defining supergroups against the possible reduction of the degree

of concurrency due to additional scheduling constraints introduced by the super-

groups.

118

1 #!/usr/bin/python
2
3 import sys
4 import math
5 import string
6
7 nPieces = int(sys.argv[1])
8
9 def isDependentPiece(piece1, piece2):

10 if (piece1[0] > piece2[0]):
11 return 1
12 return 0
13
14 #THE INTERFACE PART
15 Groups = [[’Piece’, 1], [’Rank’, 6]]
16
17 def generateGroup(groupName, parentGroup):
18 result = []
19 if groupName == ’Piece’:
20 for np in range(2, nPieces + 1):
21 result.append([np])
22 else:
23 np = parentGroup[0]
24 for b in range(1, np/2 + 1):
25 result.append([np - b, b, 0, 0, 0, 0])
26 return result
27
28 def getPrologueExecutables(level, group): return []
29 def getPrologueAttributes(level, group): return []
30 def getPrologueParameters(level, group): return []
31 def getEpilogueExecutables(level, group): return []
32 def getEpilogueAttributes(level, group): return []
33 def getEpilogueParameters(level, group): return []
34
35 def getJobsExecutables(groupName, group):
36 if groupName == ’Rank’:
37 return ["Bin/run.it", "Bin/ver.it"]
38 return []
39
40 def getJobsAttributes(groupName, group):
41 if groupName == ’Rank’:
42 return [["release=" + "yes"], ["release=" + "no"]]
43 return []
44
45 def getJobsParameters(groupName, group):
46 if groupName == ’Rank’:
47 return [string.join(map(str, group), " "),
48 string.join(map(str, group), " ")]
49 return []
50
51 def isDependent(groupName, group1, group2, parentGroup):
52 if groupName == ’Rank’:
53 return 0
54 return isDependentPiece(group1, group2)

Figure 6.29: The DAG description script for the all-kings computation with super-
groups.

119

0
1

2
3

4
5

Resource

0
300

600
900

1200
1500

1800
2100

2400
2700

3000
3300

3600
3900

4200

Time, sec.

32
32

35
35

40
40

43
43

46
46

44
44

47
47

Figure 6.30: Resource utilization chart for the medium-size experiment with super-
groups. The lines over bars represent the real run (see Figures 6.17, 6.18, and 6.19).
See Table 6.8 for the definition of jobs.

0
1

2
3

4
5

Resource

0
30

60
90

120
150

180
210

240
270

300
330

360

Time, sec.

21
21

24
24

25
25

29
29

32
32

35
35

30
30

33
33

36
36

40
40

43
43

46
46

Figure 6.31: Resource utilization chart for the medium-size experiment with super-
groups. This is a scaled version of the beginning part of the chart in Figure 6.30.
The lines over bars represent the real run (see Figures 6.17, 6.18, and 6.19). See
Table 6.8 for the definition of jobs.

120

0
1

2
3

4
5

Resource

0
5

10
15

20
25

30
35

40
45

50
55

60

Time, sec.

3
3

4
4

8
8

9
9

13
13

16
16

17
17

14
14

21
21

24
24

22
22

Figure 6.32: Resource utilization chart for the medium-size experiment with super-
groups. This is a scaled version of the beginning part of the chart in Figure 6.31.
The lines over bars represent the real run (see Figures 6.17, 6.18, and 6.19). See
Table 6.8 for the definition of jobs.

0
300

600
900

1200
1500

1800
2100

2400
2700

3000
3300

3600
3900

4200

Time, sec.

0

1

2

3

4

5

C
on

cu
rr

en
cy

Figure 6.33: Degree of concurrency chart for the medium-size experiment with su-
pergroups. The dashed graph represents the corresponding degrees of concurrency
of the run without supergroups (see Figures 6.20, 6.21, and 6.22).

121

0
30

60
90

120
150

180
210

240
270

300
330

360

Time, sec.

0

1

2

3

4

5
C

on
cu

rr
en

cy

Figure 6.34: Degree of concurrency chart for the medium-size experiment with
supergroups. This is a scaled version of the beginning part of the chart in Figure
6.33. The dashed graph represents the corresponding degrees of concurrency of the
run without supergroups (see Figures 6.20, 6.21, and 6.22).

0
5

10
15

20
25

30
35

40
45

50
55

60

Time, sec.

0

1

2

3

4

5

C
on

cu
rr

en
cy

Figure 6.35: Degree of concurrency chart for the medium-size experiment with
supergroups. This is a scaled version of the beginning part of the chart in Figure
6.34. The dashed graph represents the corresponding degrees of concurrency of the
run without supergroups (see Figures 6.20, 6.21, and 6.22).

122

6.8 Large-size experiment: all 4 versus 3 pieces endgame
databases

In this section, we are concerned with computation of all checkers endgame databases

with 4 pieces of one color and 3 pieces of the other color on the board. We use the

grouping capability of TrellisDAG and define 3 levels: VS (see Figure 3.3), Slice

(see Figure 3.5) and Rank (see Figure 3.6).

The DAG description script for this computation is shown in Figure 6.36. We

do not show the functions for the prologue and epilogue jobs that return empty lists.

123

1 #!/usr/bin/python
2
3 import sys
4 import math
5 import string
6
7 nPieces = int(sys.argv[1])
8
9 def getDependentRank(rank):

10 return [rank[:4] + [rank[4] + 1, rank[5]],
11 rank[:4] + [rank[4], rank[5] + 1]]
12
13 def getDependentSlice(slice):
14 return [[slice[0] + 1, slice[1], slice[2] - 1, slice[3]],
15 [slice[0], slice[1] + 1, slice[2], slice[3] - 1]]
16
17 def getDependentVS(vs):
18 return [[vs[0] - 1, vs[1]], [vs[0], vs[1] - 1]]
19
20 #THE INTERFACE PART
21 Levels = [[’VS’, 2], [’Slice’, 4], [’Rank’, 6]]
22
23 def generateGroup(level, parentGroup):
24 result = []
25 if level == ’VS’:
26 for np in range(2, nPieces + 1):
27 for b in range((np + 1)/2, np):
28 result.append([b, np - b])
29 if level == ’Slice’:
30 b = parentGroup[0]; w = parentGroup[1]
31 for bk in range(0, b + 1):
32 for wk in range(0, w + 1):
33 bc = b - bk; wc = w - wk
34 if bk + bc < wk + wc: continue
35 if bk + bc == wk + wc and bc < wc: continue
36 result.append([bk, wk, bc, wc])
37 if level == ’Rank’:
38 brc = wrc = 1
39 if parentGroup[2] != 0: brc = 7
40 if parentGroup[3] != 0: wrc = 7
41 for br in range(0, brc):
42 for wr in range(0, wrc):
43 result.append(parentGroup + [br, wr])
44 return result
45
46 def getJobsExecutables(level, group):
47 if level != ’Rank’: return []
48 return ["Bin/run.it", "Bin/ver.it"]
49
50 def getJobsAttributes(level, group):
51 if level != ’Rank’: return []
52 return [["release=yes"], ["release=no"]]
53
54 def getJobsParameters(level, group):
55 if level != ’Rank’: return []
56 return [string.join(map(str, group), " "),
57 string.join(map(str, group), " ")]
58
59 def getDependent(level, group, parentGroup):
60 if level == ’VS’: return getDependentVS(group)
61 if level == ’Slice’: return getDependentSlice(group)
62 if level == ’Rank’: return getDependentRank(group)

Figure 6.36: The DAG description script for the 4 pieces versus 3 pieces computa-
tion.

124

Experiment # 1 2 3 Minimal schedule
Makespan, sec. 32824.16 32857.36 32911.53 32362.38

Table 6.9: The makespans for the large-size experiment. The median run is shown
in bold.

6.8.1 The experiment without data movement

Table 6.9 shows the makespans obtained in the runs. All of the presented charts

correspond to the median run #2. The largest deviation from the makespan of the

median run is � ��� � ��� � � � � �
� � � � ���

� �
� � � � ���

� � � � � �
 � � � �
�� .

The flow of computation is summarized with the resource utilization chart in

Figure 6.37. We note that resources #1 and #16 were not used. The machine corre-

sponding to the former resource did not have enough disk space left and the machine

corresponding to the latter resource was used as a command-line server. Thus we

used a total of
� � � � � � �

processors and the same number of placeholders.

We point out a major difference between the workflow of this experiment and

the workflow of the medium-size experiment. In the medium-size experiment, the

shorter jobs tended to be at the beginning of the computation and the longer jobs

tended to be closer to the end of the computation. There is no such pattern in the

current experiment. Hence we do not provide the scaled versions of our charts.

Note, however, that the first job of the current experiment is the same computation

as the last job of the medium-size experiment, namely computing the slice 4300.

The degree of concurrency chart is shown in Figure 6.39. We note that the

maximal degree of concurrency achieved in the experiment is 18. Since this is

exactly the number of placeholders that we used, the degree of concurrency could

not possibly be higher and one may argue that there was a potential for a higher

degree of concurrency if we used more processors. However, the total time when

the degree of concurrency was 18 (or greater than 12 to that end) is very small and

adding several more processors would not significantly affect the makespan.

We proceed to compare the results obtained in the current experiment with the

minimal schedule that was obtained based on the pure computation/verification

times in the median run of the experiment. The model run took 32362.38 sec-

125

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18
19

20
Resource

0
3000

6000
9000

12000
15000

18000
21000

24000
27000

30000
33000

Time, sec.

Figure 6.37: Resource utilization chart for the large-size experiment.

onds, which is only � �
� � � � ��� � � � ��� ��� �

�

� �
� � � � ���

� � � � � � � � � � � � � faster than the makespan

achieved in the real run.

The resource utilization chart in Figure 6.38 and the degree of concurrency chart

in Figure 6.40 correspond to the minimal schedule. Note that the maximal degree

of concurrency achieved by the minimal schedule is 19 and that the peak levels of

concurrency were achieved approximately at the same time by the model compu-

tation and by the real run (compare Figure 6.39 and Figure 6.40). The degree of

concurrency chart for the model run looks like a slightly condensed version of the

chart for the real run.

126

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18
19

20

Resource

0
3000

6000
9000

12000
15000

18000
21000

24000
27000

30000
33000

Time, sec.

Figure 6.38: Resource utilization chart for the large-size experiment. Model run.

0
3000

6000
9000

12000
15000

18000
21000

24000
27000

30000
33000

Time, sec.

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18

C
on

cu
rr

en
cy

Figure 6.39: Degree of concurrency chart for the large-size experiment.

127

0
3000

6000
9000

12000
15000

18000
21000

24000
27000

30000
33000

Time, sec.

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18
19

C
on

cu
rr

en
cy

Figure 6.40: Degree of concurrency chart for the large-size experiment. Model run.

128

6.8.2 The experiment with data movement

We have demonstrated that TrellisDAG can efficiently perform the computation

while respecting the application-specific workflow dependencies. However, thus

far we did not concern ourselves with data movement. Since data movement is not

integrated into the current version of TrellisDAG, we present the experiments with

data movement separately in Appendix E. There we show how data movement can

be performed within the framework of TrellisDAG and placeholder scheduling and

explore the effect of using the affinity attribute on computing the 4 pieces versus 3

pieces checkers endgame databases. To summarize, we can draw two conclusions

from our experiments with data movement:

1. Data movement can be performed within the framework of TrellisDAG and

placeholder scheduling and

2. The benefits of using the affinity attribute due to the reduced number of copy

operations is outweighted by the overheads due to the increased number of

scheduling constraints. This conclusion is checkers-specific.

6.8.3 Summary

The large-size experiment is an example of using TrellisDAG for computing a com-

plicated workflow with hundreds of jobs and inter-job dependencies. Writing a

DAG description script of only several dozens of lines is enough to describe the

whole workflow. As in the medium-size experiment, the makespan of the computa-

tion was close to that of the model run. At the end, we showed that the system can

be used for real computations involving data movement.

6.9 Concluding remarks

We have shown how TrellisDAG can be effectively used to submit and execute

three different workflows. Although all of these workflows correspond to different

parts of the checkers computation, we believe that many prospective applications

are represented by these workflows.

129

1. Multi-stage pipeline. Most of the applications of computational science fall

in this category. We saw that such a pipeline can easily be submitted to the

system without even using the DAG description script.

2. Plain DAG. Automatic building and testing of software could be an example

of such a workflow.

3. Large DAG with a structure imposed by supergroups. This is the kind of

workflow that we are dealing with when computing the checkers endgame

databases – our motivating application.

In all cases, writing the DAG description scripts for the workflows turned out to

be a straightforward task. The lessons gained from the execution of our experiments

can be summarized as follows:

1. The makespans achieved by TrellisDAG are consistently close to the makespans

achieved by the minimal schedule. We conclude that the system effectively

utilizes the opportunities for concurrent execution,

2. Using the supergroups capability of the system may involve a trade-off be-

tween convenience of monitoring and efficiency of computation, and

3. Data movement can be incorporated into a computation under TrellisDAG.

Using the affinity attribute involves a trade-off between the time savings due

to making fewer data movements and potential reduction of the degree of

concurrency due to extra scheduling constraints.

130

Chapter 7

Future Work and Concluding
Remarks

In the previous chapters, we described the design and implementation of the Trel-

lisDAG system and put this work in perspective with previous work in the field

of high-performance computing; furthermore, we evaluated the features of Trel-

lisDAG through experimental studies in Chapter 6. In this chapter, we provide

directions for future work and make concluding remarks for the thesis.

7.1 Future work

In this section, we briefly summarize some possible directions for future efforts to

improve the TrellisDAG system.

1. Separation of convenience issues from scheduling issues. We saw exam-

ples when defining supergroups was convenient from the monitoring point

of view, but degrading from the scheduling point of view. This problem can

be resolved by enabling the user to define supergroups that are only used for

monitoring and administering, but do not add any implicit workflow depen-

dencies.

2. Implementing known scheduling policies. Using the mechanisms for schedul-

ing introduced in this thesis, we can implement several known policies for

DAG scheduling, e.g. shortest/largest job first [17].

131

3. Group-level scheduling. Since we define dependencies between groups rather

than between jobs, it is natural to make scheduling decisions in group terms.

Moreover, since we have groups at several levels, we can make scheduling de-

cisions at several levels. For example, we could define partitions of resources

and assign groups at the highest level to partitions. Later, we could sched-

ule groups at lower levels within their respective partitions. The partitions

could correspond to administrative domains and match to groups according

to some properties of such domains (i.e. timing constraints). In order to take

most benefit from group-level scheduling, TrellisDAG would be augmented

with several features:

(a) Groups have to be stored explicitly in the jobs database,

(b) Groups at all levels have to support attributes, and

(c) The interface of the command-line server has to be modified to support

scheduling all jobs of a group at once.

7.2 Concluding remarks

We have designed and implemented TrellisDAG – a system that combines the use

of placeholder scheduling and a subsystem for describing workflows to provide the

necessary mechanisms for computing non-trivial workloads with inter-job depen-

dencies.

The design of TrellisDAG allows it to handle many prospective applications and

we used computing the checkers end-game databases as a motivation and proof-

of-concept. The checkers application gives rise to a rich variety of workflows –

from simple to rather complicated – and, effectively, lets us show how generic the

TrellisDAG’s design is. We used three such workflows to establish that Trellis-

DAG provides a convenient tool for describing complicated workflows, executes

the workflow without violating any inter-job dependencies, and achieves a schedule

that is close to the minimal schedule (i.e. makes good utilization of the application-

specific opportunities for concurrent execution of jobs).

132

TrellisDAG provides a modular architecture for describing scheduling policies.

We believe that the combination of this mechanism with the mechanism of jobs’

and groups’ attributes creates a generic framework in which static and dynamic

(e.g. learning) scheduling policies can be implemented (see Section 7.1).

133

Bibliography

[1] D. Abramson, R. Sosic, J. Giddy, and B. Hall. Nimrod: A tool for perform-

ing parametised simulations using distributed workstations. In The 4th IEEE

Symposium on High Performance Distributed Computing, Virginia, August

1995.

[2] B. A. Kingsbury. The Network Queueing System (NQS).

http://ory.ph.biu.ac.il/manuals/NQS/, 1992.

[3] Condor. http://www.cs.wisc.edu/condor/.

[4] CondorG. http://www.cs.wisc.edu/condor/condorg.

[5] DAGMan Metascheduler.

http://lxmi.mi.infn.it/condor/manual/2 10Interjob Dependencies.html.

[6] DataTAG home page. http://datatag.web.cern.ch/datatag/.

[7] DOE Science Grid. http://doesciencegrid.org/.

[8] D. G. Feitelson, L. Rudolph, U. Schwiegelshohn, K. C. Sevcik, and P. Wong.

Theory and Practice in Parallel Job Scheduling. In D. G. Feitelson and

L. Rudolph, editors, Job Scheduling Strategies for Parallel Processing, vol-

ume 1291 of Lecture Notes in Computer Science, pages 1–34. Springer-

Verlag, 1997.

[9] I. Foster. What is the grid? A three point checklist. Daily News and In-

formation for the Global Grid Community, 1(6), July 2002. Available at

http://www.gridtoday.com/02/0722/100136.html.

134

[10] I. Foster and C. Kesselman. The Globus project : A status report. Proc.

IPPS/SPDP ’98 Heterogeneous Computing Workshop, pages 4–18, 1998.

[11] I. Foster, C. Kesselman, J. M. Nick, and S. Tecke. The Physiology of the Grid:

An Open Grid Services Architecture for Distributed System Integration, June

2002.

[12] Global Grid Forum. http://www.gridforum.org/.

[13] Globus. http://www.globus.org/.

[14] Grid Physics Network. http://www.griphyn.org.

[15] HPCC Grand Challenges. http://www.nhse.org/grand challenge.html.

[16] iVDGL - International Virtual Data Grid Laboratory. http://www.ivdgl.org.

[17] Y. Kwok and I. Ahmad. Static Scheduling Algorithms for Allocating Directed

Task Graphs to Multiprocessors. ACM Computing Surveys, 31(4):406–471,

December 1999.

[18] R. Lake and J. Schaeffer. Solving the Game of Checkers. In Richard J.

Nowakowski, editor, Games of No Chance, pages 119–133. Cambridge Uni-

versity Press, 1996.

[19] R. Lake, J. Schaeffer, and P. Lu. Solving Large Retrograde Analysis Problems

Using a Network of Workstations. Advances in Computer Chess, VII:135–

162, 1994.

[20] Legion. http://www.cs.virginia.edu/˜legion/.

[21] M. Lewis and A. Grimshaw. The core Legion object model. In Proceedings

of the Fifth IEEE International Symposium on High Performance Distributed

Computing, August 1996.

[22] M. Lewis, W. A. Wulf, and the whole Legion team. Legion – a view from

50,000 feet. In Proceedings of the Fifth IEEE International Symposium on

High Performance Distributed Computing, August 1996.

135

[23] M. Livny, J. Basney, R. Raman, and T. Tannenbaum. Mechanisms for high

throughput computing. SPEEDUP, 11, 1997.

[24] Load Sharing Facility (LSF). http://www.platform.com/.

[25] LoadLeveler. http://www.mhpcc.edu/training/workshop/loadleveler/MAIN.html.

[26] P. Lu. Parallel Search of Narrow Game Trees. Master’s thesis, Dept. of Com-

puting Science, University of Alberta, Edmonton, Alberta, Canada, 1993.

[27] NASA Information Power Grid (IPG). http://www.ipg.nasa.gov/.

[28] P. Gburzynski. Operating Systems Concepts.

http://www.cs.ualberta.ca/˜pawel/COURSES/379/.

[29] Particle Physics Data Grid. http://www.ppdg.net.

[30] C. Pinchak. Placeholder Scheduling for Overlay Metacomputers. Master’s

thesis, Dept. of Computing Science, University of Alberta, Edmonton, Al-

berta, Canada, 2002.

[31] C. Pinchak and P. Lu. Adaptive Job Scheduling in Overlay Metacomputers.

in preparation.

[32] C. Pinchak, P. Lu, and M. Goldenberg. Practical Heterogeneous Placeholder

Scheduling in Overlay Metacomputers: Early Experiences. In 8th Workshop

on Job Scheduling Strategies for Parallel Processing, Edinburgh, Scotland,

U.K., July 24 2002.

[33] C. Pinchak, P. Lu, J. Schaeffer, and Mark Goldenberg. The canadian internet-

worked scientific supercomputer. In 17th Annual International Symposium on

High Performance Computing Systems and Applications (HPCS), Sherbrooke,

Quebec, Canada, May 2003.

[34] Portable Batch System. http://www.openpbs.org/.

[35] PostgreSQL Database Management System. http://www.postgresql.org/.

136

[36] J. Siegel and P. Lu. User-Level Remote Data Access in Overlay Metacom-

puters. In Proceedings of the 4th IEEE International Conference on Cluster

Computing, September 2002.

[37] A. Silberschatz and P. B. Galvin. Operating System Concepts. Addison-

Wesley, 1998.

[38] Sun Grid Engine. http://www.sun.com/software/gridware/sge.html.

[39] TeraGrid. http://www.teragrid.org/.

[40] The DataGrid Project. http://eu-datagrid.web.cern.ch/eu-datagrid/.

[41] The Nimrod/G project. http://www.csse.monash.edu.au/˜sgaric/nimrod/.

[42] The Trellis Project. http://www.cs.ualberta.ca/˜paullu/Trellis/.

[43] S. Zhou, X. Zheng, J. Wang, , and P. Delisle. Utopia: A load sharing facility

for large heterogeneous distributed computer systems. In Software Practice

and Experience, December 1993.

137

Appendix A

The Placeholder for the Checkers
Computation

1 #!/bin/sh
2
3 # (c) Mark Goldenberg 2002
4
5 # SGE Placeholder template
6
7 # request Bourne shell as shell for job
8 #$ -S /bin/sh
9

10 exec 2>&1
11
12 #the path to the directory used at this machine, this placeholder is there
13 LOCAL_PATH=/usr/scratch/checkers
14 cd $LOCAL_PATH
15 . ./common.sh # listed in Figure A.2.
16
17 function submitPlaceholder {
18 if [$SUBMIT != $host]; then
19 $SSH -l $user $SUBMIT $SGE_BIN/qsub $SUBMIT_PATH/$placeholder
20 else
21 $SGE_BIN/qsub $LOCAL_PATH/$placeholder
22 fi
23 }
24
25 function runApplication {
26 echo Running $@
27 output=‘csh -c "$@"‘
28 result=$?
29
30 if [$result -eq 255]; then
31 echo "Failed $@; return value: $result"
32 submitPlaceholder
33 exit 1
34 fi
35 }
36
37 #take complete file name as parameter and set $dir to be the path part
38 function dirName {
39 dir=‘/usr/bin/dirname $1‘
40 }
41
42 #this does not support proxy; for thesis experiment only
43 #uses NFS
44 function sendData {
45 cd $LOCAL_PATH

138

46
47 #remove uncompressed databases
48 rm -f ‘find ? | egrep -v v1‘ 2>/dev/null
49
50 files=‘find ?‘
51
52 if [-z "$files"]; then
53 echo "No data to send!"
54 return
55 fi
56 md5sum $files > md5.res 2>/dev/null
57
58 files=‘cat md5.res | colrm 1 34‘
59 if [-z "$files"]; then
60 echo "No data to send!"
61 return
62 fi
63
64
65 #copy the files to jasper-reserve/
66 data_dir=$SERVER_PATH/jasper-reserve
67 md5res=1
68 while [$md5res -ne 0]; do
69 /usr/bin/rcp -r $LOCAL_PATH/? $user@brule:$data_dir/
70 echo $data_dir
71 md5sum --check $LOCAL_PATH/md5.res #>&/dev/null
72 md5res="$?"
73 done
74
75 #create links in jasper-??/
76 $SSH $user@brule "cd $SERVER_PATH; ./links.sh $host "$files""
77
78 cd $LOCAL_PATH
79
80 for name in $files; do
81 toBuild=‘echo $name | grep idx | colrm 1 11 | colrm 8‘
82 Bin/build $toBuild >& /dev/null
83 done
84
85 rm -rf ?
86 }
87
88 #this does not support proxy; for thesis experiment only
89 #uses NFS
90 function getData {
91 files=‘$SSH $user@brule "cd $SERVER_PATH/$host; find ?"‘
92
93 if [-z "$files"]; then
94 echo "No data to get!"
95 return
96 fi
97
98 $SSH $user@brule "cd $SERVER_PATH/$host; md5sum "$files" > md5.res"
99
100 cd $SERVER_PATH/$host
101 files=‘cat md5.res | colrm 1 34‘
102 if [-z "$files"]; then
103 echo "No data to get!"
104 return
105 fi
106
107 cd $LOCAL_PATH
108
109 md5res=1
110 while [$md5res -ne 0]; do
111 #copy everything; later we still use only the ones in $files
112 /usr/bin/rcp -r $user@brule:$SERVER_PATH/$host/* .
113 md5sum --check $SERVER_PATH/$host/md5.res #>& /dev/null

139

114 md5res="$?"
115 done
116
117 for name in $files; do
118 rm -f $SERVER_PATH/$host/$name
119 toBuild=‘echo $name | grep idx | colrm 1 11 | colrm 8‘
120 Bin/build $toBuild >& /dev/null
121 done
122
123 rm -rf ?
124 }
125
126 setTimer 0
127 dateMessage "STARTING_ON_$host"
128
129 #make sure that the server knows about this placeholder and
130 #make sure that this placeholder does not exceed the time limit
131 #./nanny.sh $JOB_ID &
132
133 setTimer 1
134 dateMessage "GETTING_NEXT_JOB"
135 retry invokeMQService mqnextjob.py sched=SGE "sched_id=$JOB_ID" \

submit_host=$SUBMIT host=$host
136 timeMessage 1 "GOT_NEXT_JOB_($output)"
137
138 id=$output
139
140 if [$id -lt 0]; then
141 rm -f $HOME/$placeholder.?$JOB_ID
142 exit 111
143 fi
144
145 if [$id -eq 0]; then
146 sleep 5
147 submitPlaceholder
148 rm -f $HOME/$placeholder.?$JOB_ID
149 exit 0
150 fi
151
152 setTimer 1
153 dateMessage "GETTING_COMMAND_LINE"
154 retry invokeMQService mqgetjobcommand.py "id=$id"
155 OPTIONS="$output"
156 timeMessage 1 "GOT_COMMAND_LINE"
157
158 setTimer 1
159 dateMessage "GETTING_AFFINITY_ATTRIBUTE"
160 retry invokeMQService mqgetjobattribute.py "id=$id" attribute=affinity
161 affinity="$output"
162 timeMessage 1 "GOT_AFFINITY_ATTRIBUTE"
163
164 if ["$affinity" != "yes"]; then
165 setTimer 1
166 dateMessage "GETTING_DATA"
167 getData
168 timeMessage 1 "DATA_HAS_BEEN_OBTAINED"
169 fi
170 cd $LOCAL_PATH
171
172 setTimer 1
173 echo $OPTIONS
174 runApplication "$OPTIONS"
175 timeMessage 1 "DONE_WITH_computation/verification"
176 seqTime=${diff[1]}
177
178 setTimer 1
179 dateMessage "SENDING_DATA"
180 sendData

140

181 timeMessage 1 "DATA_HAS_BEEN_SENT"
182 cd $LOCAL_PATH
183
184 setTimer 1
185 dateMessage "CALLING_mqdonejob.py"
186 retry invokeMQService mqdonejob.py "id=$id"
187 timeMessage 1 "mqdonejob.py_IS_SUCCESSFUL"
188
189 setTimer 1
190 submitPlaceholder
191 rm -f $HOME/$placeholder.e$JOB_ID
192 timeMessage 1 "removed stderr file and resubmitted"
193
194 timeMessage 0 "FINISHED_SUCCESSFULLY!"
195 echo GANTT:${id}_${host}_${start[0]}_${diff[0]}_$seqTime

Figure A.1: The placeholder for the checkers computation.

1
2 #the host to use for submission
3 SUBMIT=‘hostname‘
4
5 #the path to the placeholder at $SUBMIT,
6 #empty if same machine (i.e. if SUBMIT==‘hostname‘)
7 SUBMIT_PATH=
8
9 HOME="/usr/brule18/grad/goldenbe"

10
11 #where the qsub program is located
12 SGE_BIN="$HOME/SGE/bin/glinux/"
13
14 #name of the placeholder at $SUBMIT/$SUBMIT_PATH
15 placeholder=template.sh
16
17 #the path to the directory used at this machine, this placeholder is there
18 LOCAL_PATH=/usr/scratch/checkers
19
20 #the host with the command-line server
21 SERVER=jasper-15
22
23 #the path at the server
24 SERVER_PATH=$HOME/build/Exp
25
26 #submit host
27 SUBMIT=‘hostname‘
28
29 #the path to MQ services on the server
30 MQ_PATH=$HOME/build/Bin/server
31
32 #the public key to be used for connections
33 KEY=$HOME/.ssh/temp
34
35 SSH="ssh -i $KEY"
36 SCP="scp -i $KEY -r"
37 host=‘hostname‘
38 user=‘whoami‘
39
40 #job ID initialized to be empty
41 id=
42
43 function mytime {
44 /usr/brule18/grad/goldenbe/build/QCheckers/mytime
45 }

141

46
47 function retry {
48 try=0
49 result1=1
50 result2=0
51 while [$result1 -ne 0 -o $result2 -ne 0]; do
52 if [$try -gt 0]; then
53 dateMessage "Operation failed; retrying..."
54 fi
55 "$@"
56 try=$[$try + 1]
57 done
58 }
59
60 function invokeMQService {
61 if [-z $PROXY]; then
62 output=‘$SSH $SERVER -l $user "$MQ_PATH/$*"‘
63 result1=$?
64 else
65 output=‘$SSH $PROXY -l $user $SSH $SERVER -l $user "$MQ_PATH/$*"‘
66 result1=$?
67 fi
68 }
69
70 function setTimer {
71 start[$1]=‘mytime‘
72 }
73
74 #$1 - timer number
75 #$2 - message, the same message goes to the database as status
76 function timeMessage {
77 timerUpdate $1
78 echo TIMER MESSAGE: $2 in ${diff[$1]}\sec. ‘date "+at %H:%M:%S on %y/%m/%d"‘ \

\(‘mytime‘\)
79 if [! -z $id]; then
80 :
81 #invokeMQService mqstatus.py "id=$id" "status=$2"
82 fi
83 }
84
85 #$1 - timer number
86 function timerUpdate {
87 end[$1]=‘mytime‘
88 diff[$1]=‘python -c "print ’%.2f’ % (${end[$1]} - ${start[$1]})"‘
89 }
90
91 #$1 - message, the same message goes to the database as status
92 function dateMessage {
93 echo MESSAGE: "$1" ‘date "+at %H:%M:%S on %y/%m/%d"‘ \(‘mytime‘\)
94
95 if [! -z $id]; then
96 :
97 #invokeMQService mqstatus.py "id=$id" "status=$1"
98 fi
99 }

Figure A.2: common.sh: Routines used in the placeholder and elsewhere.

142

Appendix B

The Placeholder Nanny

1 #!/bin/bash
2
3 . common.sh
4
5 TOTAL_TIME_LIMIT=7200
6 DELAY=10
7 sched_id=$1
8
9 exec >$HOME/$placeholder.o$sched_id

10
11 echo "The nanny started"
12 setTimer 99
13
14 while [1]; do
15 retry invokeMQService mqsignal.py \
16 sched=SGE sched_id=$sched_id submit_host=$SUBMIT
17 timerUpdate 99
18 #converting the real time to an integer
19 diff[99]=‘python -c "print int(${diff[99]})"‘
20 if [${diff[99]} -gt $TOTAL_TIME_LIMIT]; then
21 echo "Over time limit"
22 break
23 fi
24 sleep $DELAY
25 done
26
27 echo "Killing my placeholder" 1>&2
28 $SSH -l $user $SUBMIT "$SGE_BIN/qdel $sched_id"
29

Figure B.1: The placeholder nanny. See Figure A.2 for the listing of common.sh

143

Appendix C

Rules of Checkers in Brief

Figure C.1: This figure provides the brief description of the rules of checkers as it
appeared in Paul Lu’s Masters thesis [26].

144

Appendix D

Code Listing for mqnextjob and
mqdonejob Services of the
Command-Line Server

1 #!/usr/bin/python
2
3 # Written by Mark Goldenberg, April 2002
4
5 import sys
6 import pg
7 import os
8 import string
9 import time

10 from Bin import common
11 from Bin import schema
12 from Bin.common import myquery
13
14 def setStartTime(j_id):
15 query_str = "SELECT * FROM Jobs WHERE j_id = " + str(j_id)
16 query_result = myquery(query_str)
17 jobTuple = (query_result.dictresult())[0]
18 attrs = common.getDictFromString(jobTuple[’attrs’])
19 attrs["lastStart"] = str(time.time())
20 query_str = "UPDATE Jobs SET attrs =" + \
21 "’" + common.getStringFromDict(attrs) + "’" + \
22 " WHERE j_id = " + str(j_id)
23 query_result = myquery(query_str)
24
25 def setEndTime(j_id):
26 query_str = "SELECT * FROM Jobs WHERE j_id = " + str(j_id)
27 query_result = myquery(query_str)
28 jobTuple = (query_result.dictresult())[0]
29 attrs = common.getDictFromString(jobTuple[’attrs’])
30 attrs["lastCompletion"] = str(time.time())
31 query_str = "UPDATE Jobs SET attrs =" + \
32 "’" + common.getStringFromDict(attrs) + "’" + \
33 " WHERE j_id = " + str(j_id)
34 query_result = myquery(query_str)
35
36 def setHost(j_id, host):
37 query_str = "SELECT * FROM Jobs WHERE j_id = " + str(j_id)
38 query_result = myquery(query_str)
39 jobTuple = (query_result.dictresult())[0]
40 attrs = common.getDictFromString(jobTuple[’attrs’])
41 attrs["lastHost"] = host
42 query_str = "UPDATE Jobs SET attrs =" + \

145

43 "’" + common.getStringFromDict(attrs) + "’" + \
44 " WHERE j_id = " + str(j_id)
45 query_result = myquery(query_str)
46
47 def findFirstJob(tar_id):
48 query_str = "SELECT MIN(j_id) FROM Jobs WHERE tar_id = " + \
49 str(tar_id) + " AND status = " + str(schema.MQ_NOT_STARTED)
50 query_result = myquery(query_str)
51 # if empty, min is 0, so no need for try block
52 return query_result.dictresult()[0][’min’]
53
54 def noJobs():
55 query_str = "SELECT * FROM Jobs WHERE status <> " + \
56 str(schema.MQ_DONE)
57
58 query_result = myquery(query_str)
59 if query_result.ntuples() == 0:
60 print -1
61 common.closeConnection()
62 sys.exit(0)
63 else:
64 print 0
65 common.closeConnection()
66 sys.exit(0)
67
68 def restoreCache():
69 tar_ids = common.readTable("Targets", [’tar_id’, ’status’])
70 #Have to get all with NOT_STARTED and SUBGROUPS_IN_PROGRESS
71 #That is not DONE or DISABLED or RUNNING
72 tar_ids = common.getTuplesGivenNotField(tar_ids, 1, schema.MQ_DONE)
73 tar_ids = common.getTuplesGivenNotField(tar_ids, 1, schema.MQ_DISABLED)
74 tar_ids = common.getTuplesGivenNotField(tar_ids, 1, schema.MQ_RUNNING)
75 tar_ids = common.getProjectionList(tar_ids, 0)
76 tar_ids.sort()
77
78 dep_ids = common.readTable("Before", [’dep_id’, ’status’])
79 dep_ids = common.getTuplesGivenField(dep_ids, 1, schema.MQ_ACTIVE)
80 dep_ids = common.getProjectionList(dep_ids, 0)
81 dep_ids.sort()
82
83 goodTargets = []
84 tarCounter = 0
85 depCounter = 0
86 while tarCounter < len(tar_ids) and depCounter < len(dep_ids):
87 if tar_ids[tarCounter] < dep_ids[depCounter]:
88 while tar_ids[tarCounter] < dep_ids[depCounter]:
89 goodTargets.append(tar_ids[tarCounter])
90 tarCounter = tarCounter + 1
91 if tarCounter >= len(tar_ids):
92 break
93 elif tar_ids[tarCounter] > dep_ids[depCounter]:
94 while tar_ids[tarCounter] > dep_ids[depCounter]:
95 depCounter = depCounter + 1
96 if depCounter >= len(dep_ids):
97 break
98 else:
99 tarValue = tar_ids[tarCounter]
100 while tar_ids[tarCounter] == tarValue:
101 tarCounter = tarCounter + 1
102 if tarCounter >= len(tar_ids):
103 break
104 depValue = dep_ids[depCounter]
105 while dep_ids[depCounter] == depValue:
106 depCounter = depCounter + 1
107 if depCounter >= len(dep_ids):
108 break
109
110 if depCounter == len(dep_ids):

146

111 for j in range(tarCounter, len(tar_ids)):
112 goodTargets.append(tar_ids[j])
113
114 return goodTargets
115
116 def newTargets(tar_id):
117 result = []
118
119 query_str = "SELECT dep_id FROM BEFORE WHERE pre_id = " + str(tar_id)
120 query_result = myquery(query_str)
121 targets = query_result.dictresult()
122 for target in targets:
123 target = target[’dep_id’]
124 query_str = "SELECT pre_id FROM BEFORE WHERE dep_id = " + \
125 str(target) + " AND " + \
126 "status = " + str(schema.MQ_ACTIVE)
127 query_result = myquery(query_str)
128 #print target
129 #print query_result
130 if (query_result.ntuples() == 0):
131 query_str = "SELECT status FROM Targets WHERE tar_id = " + \
132 str(target)
133 query_result = myquery(query_str)
134 if (query_result.dictresult()[0][’status’] ==
135 schema.MQ_NOT_STARTED or
136 query_result.dictresult()[0][’status’] ==
137 schema.MQ_SUBGROUPS_IN_PROGRESS):
138 result.append(target)
139 #print "new targets are ", result
140 return result
141
142 def addToCache(goodTargets):
143 for target_id in goodTargets:
144 insert_id = findFirstJob(target_id)
145 # because of insertion in mqdonejob.py, need a check
146 # not to instroduce dublicates
147 query_str = "SELECT j_id FROM Cache WHERE j_id = " + str(insert_id)
148 query_result = myquery(query_str)
149 if query_result.ntuples() == 0:
150 query_str = "INSERT INTO Cache VALUES(" \
151 + str(insert_id) + ", " + "’’" + ")"
152 query_result = myquery(query_str)
153 #print insert_id, "is put in!"
154
155 def done(j_id, host):
156 query_str = "SELECT * FROM Jobs WHERE j_id = " + \
157 str(j_id)
158 query_result = myquery(query_str)
159 jobTuple = (query_result.dictresult())[0]
160 target_id = jobTuple[’tar_id’]
161 attrs = common.getDictFromString(jobTuple[’attrs’])
162 target = common.getField("Targets", "tar_id", target_id,
163 "tar_name")
164 command = jobTuple[’comm_line’]
165
166 #delete from Cache (it could still be there)
167 query_str = "DELETE FROM Cache WHERE j_id = " + str(j_id)
168 query_result = myquery(query_str)
169
170 #delete from Running
171 query_str = "DELETE FROM Running WHERE j_id = " + str(j_id)
172 query_result = myquery(query_str)
173
174 # Update the status field in Jobs, Before
175 query_str = "UPDATE Jobs SET status = " + str(schema.MQ_DONE) + " " + \
176 "WHERE j_id = " + str(j_id)
177 query_result = myquery(query_str)
178

147

179 #check if this was the last job for the target
180 query_str = "SELECT * FROM Jobs WHERE tar_id = " + str(target_id) + \
181 " AND status <> " + str(schema.MQ_DONE)
182 query_result = myquery(query_str)
183 isLast = (query_result.ntuples() == 0)
184
185 # Update the status field in Targets and Before Table
186 query_str1 = "UPDATE Targets SET status = " + \
187 str(schema.MQ_SUBGROUPS_IN_PROGRESS) + \
188 " " + "WHERE tar_id = " + str(target_id)
189 query_str2 = "UPDATE Targets SET attr_status = " + \
190 str(schema.MQ_ATTR_NONE) + " " + \
191 "WHERE tar_id = " + str(target_id)
192 release = "no"
193
194 try:
195 release = attrs["release"]
196 except:
197 pass
198
199 if isLast or release == "yes":
200 query_str = "UPDATE Before SET status = " + \
201 str(schema.MQ_NOT_ACTIVE) + " " + \
202 "WHERE pre_id = " + str(target_id)
203 query_result = myquery(query_str)
204
205 if isLast:
206 query_str1 = "UPDATE Targets SET status = " + \
207 str(schema.MQ_DONE) + " " + \
208 "WHERE tar_id = " + str(target_id)
209 if release == "yes" and not isLast:
210 query_str2 = "UPDATE Targets SET attr_status = " + \
211 str(schema.MQ_ATTR_RELEASED) + " " + \
212 "WHERE tar_id = " + str(target_id)
213
214 myquery(query_str1)
215 if query_str2 != "":
216 myquery(query_str2)
217
218 #fill the Cache table with jobs that became available
219 if not isLast:
220 query_str_aff = "SELECT * FROM Jobs WHERE j_id = " + str(j_id + 1)
221 query_result_aff = myquery(query_str_aff)
222 jobTuple = (query_result_aff.dictresult())[0]
223 attrs = common.getDictFromString(jobTuple[’attrs’])
224 affinity = "no"
225 try:
226 affinity = attrs["affinity"]
227 except:
228 pass
229 if affinity <> "yes":
230 host = ""
231 query_str = "INSERT INTO Cache VALUES(" + \
232 str(j_id + 1) + ", " + \
233 "’" + host + "’" + ")"
234 myquery(query_str)
235 #print j_id + 1, "is put in!"
236
237 if isLast or release == "yes":
238 #if isLast:
239 # print "Last!"
240 #else:
241 # print "Release!"
242 targets = newTargets(target_id)
243 addToCache(targets)
244
245 return command
246

148

247 def next(stamp):
248 #delete the entry from Cache
249 #query_str = "DELETE FROM Cache WHERE j_id = " + stamp
250 #query_result = myquery(query_str)
251
252 # get the job tuple
253 query_str = "SELECT * FROM Jobs WHERE j_id = " + stamp
254 query_result = myquery(query_str)
255 jobTuple = query_result.dictresult()[0]
256 command = jobTuple[’comm_line’]
257 attrs = jobTuple[’attrs’]
258 target_id = jobTuple[’tar_id’]
259 target = common.getField("Targets",
260 ’tar_id’, target_id, ’tar_name’)
261
262 #change status field in Jobs, Targets
263 query_str = "UPDATE Jobs SET status = " + str(schema.MQ_RUNNING) + " " + \
264 "WHERE j_id = " + stamp
265 query_result = myquery(query_str)
266
267 query_str = "UPDATE Targets SET status = " + str(schema.MQ_RUNNING) + " " + \
268 "WHERE tar_id = " + str(target_id)
269 query_result = myquery(query_str)
270
271 #update parents’ status fields
272 while 1:
273 level_id = common.getField("Targets", "tar_name", target,
274 "level_id")
275 if level_id == 0:
276 break
277
278 parent = schema.getParent(target)
279 status = common.getField("Targets", "tar_name", parent,
280 "status")
281
282 if status == schema.MQ_NOT_STARTED:
283 common.updateField("Targets", "tar_name", parent,
284 "status", schema.MQ_SUBGROUPS_IN_PROGRESS)
285 target = parent
286 else:
287 break
288
289 #insert a tuple into Running
290 started = str(time.time())
291
292 query_str = "INSERT INTO Running VALUES (" + \
293 stamp + ", " + \
294 "’" + command + "’" + ", " + \
295 "’" + (sys.pairs)["host"] + "’" + ", " + \
296 str(time.time()) + ", " + \
297 str(schema.MQ_RUNNING) + ", " + \
298 "’" + attrs + "’" + ", " + \
299 "NULL" + ", " + \
300 str(time.time()) + ", " + \
301 "’" + (sys.pairs)["sched"] + "’" + ", " + \
302 "’" + (sys.pairs)["sched_id"] + "’" + ", " + \
303 "’" + (sys.pairs)["submit_host"] + "’" + ", " + \
304 str(time.time()) + \
305 ")"
306 myquery(query_str)

Figure D.1: Listing of server.py: The module used by both mqnextjob and
mqdonejob.

149

1 #!/usr/bin/python
2
3 # Written by Mark Goldenberg, April 2002
4
5 import sys
6 import pg
7 import os
8 import string
9 import time

10 from Bin import common
11 from Bin import schema
12 from Bin.common import myquery
13 from Bin.common import FAILURE_EXIT_STATUS
14 import server
15
16 def schedule():
17 #debugging
18 query_str = "SELECT * FROM Cache where j_id NOT IN (select j_id from running)"
19 query_result = myquery(query_str)
20
21 query_str = "SELECT * FROM Cache WHERE " + \
22 "j_id NOT IN (select j_id from running) AND " + \
23 "hostname = " + "’" + (sys.pairs)["host"] + "’"
24 query_result = myquery(query_str)
25
26 try:
27 cacheTuple = query_result.dictresult()[0]
28 except:
29 query_str = "SELECT * FROM Cache WHERE " + \
30 "j_id NOT IN (select j_id from running) AND " + \
31 "hostname = ’’"
32 query_result = myquery(query_str)
33 try:
34 cacheTuple = query_result.dictresult()[0]
35 except:
36 server.noJobs()
37
38 jobId = cacheTuple[’j_id’]
39
40 return jobId
41
42 common.getConnection(schema.DBNAME, schema.HOST,
43 schema.LOCK_TABLE)
44
45 #FAULT TOLERANCE TEST 1
46 #if (int(time.time()) % 100 < 50):
47 # sys.exit(FAILURE_EXIT_STATUS)
48 #-------------------------------
49
50 j_id = schema.checkRunning()
51 if j_id != 0:
52 print j_id
53 common.closeConnection()
54 sys.exit(0)
55
56 query_str = "SELECT * FROM Cache where j_id NOT IN (select j_id from running)"
57 query_result = myquery(query_str)
58
59 if query_result.ntuples() == 0:
60 server.addToCache(server.restoreCache())
61
62 query_str = "SELECT * FROM Cache where j_id NOT IN (select j_id from running)"
63 query_result = myquery(query_str)
64
65 if query_result.ntuples() == 0:
66 server.noJobs()
67
68 while 1:

150

69 query_str = "SELECT * FROM Cache, Jobs WHERE Cache.j_id = Jobs.j_id" + \
70 " AND " + "Jobs.comm_line = ’echo’"
71 query_result = myquery(query_str)
72
73 if (query_result.ntuples() == 0):
74 break
75 replaceSet = query_result.dictresult()
76 for id in replaceSet:
77 id = id[’j_id’]
78 #print id, "is done!"
79 server.done(id, "")
80
81 stamp = schedule()
82
83 print stamp
84 server.setStartTime(stamp)
85 server.next(str(stamp))
86
87 common.closeConnection()
88
89 log_str = "echo " + str(stamp) + " " + str(time.time()) + " " + \
90 ">> ˜/starts.log"
91 os.system(log_str)
92
93 log_str = "echo " + str(stamp) + " " + (sys.pairs)["host"] + " " + \
94 ">> ˜/hosts.log"
95 os.system(log_str)
96 sys.exit(0)

Figure D.2: Listing of mqnextjob.py.

1 #!/usr/bin/python
2
3 # Written by Mark Goldenberg, April 2002
4
5 import sys
6 import pg
7 import os
8 import string
9 import time

10 from Bin import common
11 from Bin import schema
12 from Bin.common import myquery
13 import server
14
15 common.getConnection(schema.DBNAME, schema.HOST,
16 schema.LOCK_TABLE)
17
18 stamp = sys.pairs["id"]
19 jobId = int(stamp)
20
21 query_str = "SELECT * FROM Running WHERE j_id = " + \
22 stamp
23 query_result = myquery(query_str)
24
25 if query_result.ntuples() == 0:
26 print "done_job.py: Probably wrong stamp; exiting..."
27 sys.exit(0)
28
29 # The only thing that we need from the last query is the hostname
30 host = query_result.dictresult()[0]["hostname"]
31
32 command = server.done(jobId, host)
33 server.setEndTime(jobId)

151

34 server.setHost(jobId, host)
35
36 if command != "echo":
37 log_str = "echo " + stamp + " " + str(time.time()) + " " + ">> ˜/ends.log"
38 os.system(log_str)
39
40 common.closeConnection()
41
42 sys.exit(0)

Figure D.3: Listing of mqdonejob.py.

152

Appendix E

The Experiment with Data
Movement

In this appendix, we show that data movement can be performed within the frame-

work of TrellisDAG and placeholder scheduling.

We start by describing how data movement can be organized and encoded in

the placeholder. Then we run experiments with data movement followed by experi-

ments in which data movement is combined with placement affinity for verification

jobs.

E.1 Organization of data movement

In this section, we describe how the problem of data transfer was addressed.

The local directory for the checkers computation contains two main directories:

Bin/ and DataBases/. All the executables can be found in Bin/, while the

compressed databases (see Chapter 3) are accumulated in DataBases/. We put

the precomputed 2, 3, 4, 5, and 6-piece databases into DataBases/ and predis-

tribute these two directories and all other directories and files that are necessary

for the computation to the /usr/scratch/checkers directory on each of the

nodes in the cluster.1

When a new part of the checkers databases is computed, some new files are

formed in the local directory. For example, assume that the part 2122.66 is com-

1Our system does not make an assumption that the locations of the application on the computa-
tional nodes are same; we did it in order to easily automate the experiments.

153

puted. Then we get 3 new files:

1. 7/2122/BASE2122.66 -- the uncompressed databases.

2. 7/2122/BASE2122.66.v1 -- the compressed databases.

3. 7/2122/BASE2122.66.v1.idx -- the index file for the com-

pressed databases.

We need to make sure that the built databases with all prerequisite slices are

locally available to every computation. We have two choices:

1. Maintain a central version of the built databases. Whenever a computation is

ready to start, it has to obtain a global lock, move the built databases to the

local directory, and release the lock. When the computation is done, it has to

obtain a global lock, copy again the central version of the built databases, add

the computed databases, copy the updated built databases to the central loca-

tion, and finally release the lock. The need for global locking substantially

reduces the benefit of concurrency.

2. Have each execution node maintain its own copy of the built databases. We

will show that this approach can be implemented without using the tools for

locking that our system provides.

We choose the second approach. Each execution node has its own copy of the

built databases. Whenever a computation is about to start on an execution node, the

parts of the databases that have been computed between the previous computation

and the current one are copied from the central location and integrated into the

local copy of the built databases. When a computation is finished, the computed

uncompressed databases are copied to the central location. In order to completely

avoid locking, the following scheme is used:

1. At the central location, there is a directory for each execution node: jasper-

00/, jasper-01/, etc. As well, there is a directory jasper-reserve/

that is used to accumulate all computed parts of the checkers databases.

154

Experiment # 1 2 3
Makespan, sec. 33999.46 33998.90 34055.44

Table E.1: The makespans for the large-size experiment with data movement. The
median run is shown in bold.

2. Whenever a computation is finished, the computed parts of the databases are

built into the local built databases and the two files corresponding to the com-

pressed form of the newly computed databases are copied to the jasper-

reserve/ directory in the central location. Links to the newly created

copies are created in all the jasper-xx directories except for the one cor-

responding to the node that completed the computation. Then the local copy

of the computed databases is removed. We use the md5sum utility in order to

make sure that the data has been copied correctly (see the getData function

of the placeholder, Appendix A).

3. Suppose that a computation is about to start on jasper- � . Then all the files

are copied from the jasper- � / directory in the central location to the local

directory. Upon success (i.e. when md5sum reports no errors) the copied

databases are integrated into the local built databases and removed from both

the local and the central location.

The described mechanism is implemented in the functions getData and send-

Data of the placeholder (see Appendix A).

E.2 The experiment with data movement and no place-
ment affinity

Table E.1 shows the makespans obtained in the runs. All of the presented charts

correspond to the median run #1. The largest deviation from the makespan of the

median run is � � � � ��� � � � � � ������� � �
� � ������� � �

� � � � � �
 � � � �
�� .

The flow of computation is summarized with the resource utilization chart in

Figure E.1 and the degree of concurrency chart in Figure E.2.

Let us compare this experiment with the experiment without data movement

155

and see how the total computation time was affected by the introduction of data

movement into the picture. Recall that the makespan of the median run without

data movement was 32857.36 seconds (see Table 6.9). Then the median run of the

current experiment with data movement is only � � ������� � � � � �
� � � � ���

� �
� � � � ���

� � � � � � � � � � � ���

slower than the corresponding run without data movement.

Finally, the charts in Figures E.1 and E.2 look very similar to the corresponding

charts in Figures 6.37 and 6.39.

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18
19

20

Resource

0
3000

6000
9000

12000
15000

18000
21000

24000
27000

30000
33000

Time, sec.

Figure E.1: Resource utilization chart for the large-size experiment with data move-
ment.

156

0
3000

6000
9000

12000
15000

18000
21000

24000
27000

30000
33000

Time, sec.

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18

C
on

cu
rr

en
cy

Figure E.2: Degree of concurrency chart for the large-size experiment with data
movement.

157

Experiment # 1 2 3
Makespan, sec. 33899.57 34057.43 34053.61

Table E.2: The makespans for the large-size experiment with data movement and
placement affinity. The median run is shown in bold.

E.3 The experiment with data movement and place-
ment affinity

The discussion of this section is laid out as follows. We start by reminding the

reader how the introduction of placement affinity can reduce the makespan. Then,

we present the experimental results and note that the makespan has actually in-

creased in comparison to the makespan achieved in the experiment without place-

ment affinity. Finally, we explain why this result is possible and give some numbers

that justify our speculations.

Placement affinity can result in improved makespan because it allows reuse of

data produced by one job by the next job in the same group. For example, a ver-

ification job only needs the data produced by the preceding computation job and,

if the verification job is executed on the same machine where the corresponding

computation job just completed, then there is no need to obtain any data from the

central location.

Table E.2 shows the makespans obtained in the runs. All of the presented charts

correspond to the median run #3. The largest deviation from the makespan of the

median run is � � � � � � � � � � �
� ����� � �

� � � � � � � �
� � � � � � � � � � � � � .

The flow of computation is summarized with the resource utilization chart in

Figure E.3 and the degree of concurrency chart in Figure E.4.

Let us first compare the makespans achieved in this experiment with the makespans

achieved in the experiments without placement affinity (i.e. compare Tables E.2 and

E.1). The computation with placement affinity is marginally slower than the com-

putation without placement affinity. For the median runs, the computation with

placement affinity is � � � � � � � � � � � ������� � �
� � ������� � �

� � � � � �
 � � � �
�� slower than the computa-

tion without placement affinity.

Before trying to explain this result, we note that the difference is really marginal

158

and can be attributed to experimental error.

1. The databases produced by each computation job end up being copied to

17 out of 18 execution hosts. Hence, the affinity only saves
� � � �

of the

copying time. Let us estimate this time. We use the median runs for the

experiment without data movement and the experiment with data movement

and no placement affinity to estimate the overhead related to data movement

at
��� � � � � �
 � � � ����� � ��
 � � � � � � � seconds (see Tables 6.9 and E.1) and thus

our savings cannot be higher than
� ��� � � � � � � �
�� � � � seconds. Furthermore,

the introduction of placement affinity does not save any time on integrating

the newly computed databases into the local built databases, which further

reduces the savings.

2. By the very definition of placement affinity, a job with a set affinity attribute

can only be given out for execution to a placeholder that runs on the same

machine on which the previous job of the job’s group was run. Suppose that

� � and � � are consecutive jobs in the same group and the affinity attribute of � �
is set. When � � is completed (i.e. mqdonejob has been invoked), there may

be a placeholder that is already running on some other machine and is about

to invoke mqnextjob. Thus, without placement affinity, the gap between

the completion time of � � and the start time � � could have been close to 0.

With placement affinity, however, the placeholder that hosted the execution

of � � has to complete and some other placeholder has to be scheduled on

the same machine before � � can start. Given the large number of jobs in the

experiment, this overhead can accumulate.

Still using placement affinity can be advantageous. The first of our speculations

assumes our model of data movement, where a computed part of checkers databases

is copied to each of the execution nodes disregarding of whether this part will ever

be used on that particular node or not. A different data movement model can be

used for other applications, thereby making the savings due to placement affinity

much greater. Our model of data movement is justified for the checkers application

because:

159

1. There is a large chance for each node to partake in computing the last 0043

slice of the 4 versus 3 pieces databases, whence it is likely that each node is

going to require almost all parts of the databases,

2. The model is simple.

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18
19

20

Resource

0
3000

6000
9000

12000
15000

18000
21000

24000
27000

30000
33000

Time, sec.

Figure E.3: Resource utilization chart for the large-size experiment with data move-
ment and placement affinity.

160

0
3000

6000
9000

12000
15000

18000
21000

24000
27000

30000
33000

Time, sec.

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18

C
on

cu
rr

en
cy

Figure E.4: Degree of concurrency chart for the large-size experiment with data
movement and placement affinity.

161

Appendix F

The Fault Tolerance Daemon

1 #!/usr/bin/python
2
3 from Bin import common
4 from Bin import schema
5 import os
6 import sys
7 import time
8 import string
9 from Bin.common import myquery

10
11 def mail(message):
12 command = "ssh -i ˜/.ssh/temp brule \"echo " + message + \
13 " | mail -s ’DAG Computation’ ‘whoami‘\""
14 os.system(command);
15
16 MAX_NO_HEAR_TIME = 60 # Have to hear from a job at least this often
17 MAX_TOTAL_TIME = 7200 # No job should run longer than this
18 STOP_TIME = 100 # stop if there is nothing running for this many seconds
19 last = time.time()
20
21 mail("Daemon started")
22 common.getConnection(schema.DBNAME, schema.HOST)
23 while [1]:
24 time.sleep(10)
25
26 query_str = "SELECT j_id FROM Running"
27 result = myquery(query_str)
28 if result.ntuples() == 0:
29 if time.time() - last > STOP_TIME:
30 break
31 else:
32 last = time.time()
33
34 query_str = "SELECT j_id FROM Running WHERE " + \
35 "float8larger(user_started, last_signal) < " + \
36 str(time.time() - MAX_NO_HEAR_TIME)
37 result1 = myquery(query_str)
38
39 query_str = "SELECT j_id FROM Running WHERE " + \
40 "started < " + \
41 str(time.time() - MAX_TOTAL_TIME)
42 result2 = myquery(query_str)
43
44 ids = []
45
46 for entry in result1.dictresult():
47 ids = ids + entry.values()
48 message = "Did not hear from job " + str(entry.values()) + " for " + \

162

49 str(MAX_NO_HEAR_TIME) + " seconds."
50 mail(message)
51
52 for entry in result2.dictresult():
53 ids = ids + entry.values()
54 message = "Job " + str(entry.values()) + " has been running for " + \
55 str(MAX_TOTAL_TIME) + " seconds."
56 mail(message)
57
58 if ids != []:
59 os.system("˜/build/Bin/mq/suspend.sh") # suspend all placeholders
60 mail("All placeholders are suspended and daemon is exiting due to errors...")
61 common.closeConnection()
62 sys.exit(0)
63
64 common.closeConnection()
65
66 mail("Daemon is done")

Figure F.1: The fault tolerance daemon

163

