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Abstract— This paper addresses the problem of
simultaneous localization and mapping (SLAM) for
teams of collaborating vehicles where the communi-
cation bandwidth is limited. We present a novel
SLAM algorithm that enables multiple vehicles to ac-
quire a joint map, but which can cope with arbitrary
latency and bandwidth limitations such as typically
found in airborne vehicle applications. The key idea
is to represent maps in information form (negative
log-likelihood), and to selectively communicate subsets
of the information tailored to the available communi-
cation resources. We show that our communication
scheme preserves the consistency, which has important
ramifications for data association problems. We also
provide experimental results that illustrate the effec-
tiveness of our approach in comparison with previous
techniques.

I. Introduction

The problem of simultaneous localisation and mapping
(SLAM) has received significant attention in the past few
years. While almost all research is focused on the single ve-
hicle case, the multi-vehicle case has almost entirely been
overlooked. This is at odds with the fact that many of
the most promising robotics domains (military and civil-
ian) involve teams of robots that jointly acquire maps [9],
[11], [1]. Decentralised SLAM addresses the problem in
which large numbers of vehicles cooperatively acquire a
joint map, while simultaneously localising themselves rel-
ative to the map. For a decentralised architecture to be
truly scalable, the individual communication requirements
must be independent of the number of vehicles in the sys-
tem. For it to be robust, it must be able to accommodate
arbitrary latencies and bandwidth limitations in the com-
munication network.

Most conventional SLAM algorithms are based on a
seminal paper by Smith and Cheeseman [10]. This pa-
per introduced the Extended Kalman filter (EKF) solu-
tion to the SLAM problem, which has been the basis of
hundreds of contemporary implementations [5]. The EKF
represents maps by the mean and covariance of a Gaussian
distribution. Unfortunately, the communication of these
entire maps for multi-vehicle problems is not scalable for

large map sizes, as it requires the transmission of all N2

elements in the covariance matrix to remain consistent.
This paper presents a new algorithm for multi-vehicle

SLAM. Just as in our previous work [8], we use the infor-
mation form of the EKF to represent information acquired
by the vehicle. The update of the information form is ad-
ditive; as a result, incremental new information can be
integrated across different vehicles with arbitrary network
latencies. However, our previous work required communi-
cation bandwidths quadratic in the size of the map. This
paper proposes an efficient communication scheme which
makes it possible to communicate updates whose size is
independent of the size of the map. By doing so, our ap-
proach can cope with arbitrary bandwidth limitations in
multi-vehicle SLAM. Our approach is fully decentralised
and can (in principle) scale to any number of vehicles.

The ability to communicate maps of arbitrary size
is obtained by implementing a hybrid information fil-
ter/Covariance Intersect (CI) [4] algorithm on each com-
munication link. This algorithm is implemented separately
from the SLAM filter and is used solely to manage the
inter-vehicle communication and ensure that information
vehicles have shared does not get ‘double counted’. The
formulation of the problem in information space is also
exploited by using information metrics to maximise the
amount of information in any communicated submap. Our
approach is to communicate those features with the great-
est information gain that has not yet been sent. The sim-
ulated results included in this paper illustrate that this
algorithm functions both consistently and accurately.

The work described in this paper is part of the Au-
tonomous Navigation and Sensing Experimental Research
(ANSER) project and is aimed at the development of
a multiple flight vehicle demonstration of decentralised
SLAM. The system under development consists of four un-
manned flight vehicles, each equipped with GPS and iner-
tial sensors and two terrain payloads; a vision system and
either a mm-wave radar or laser sensor. However, to imple-
ment decentralised SLAM on this system it is necessary to
have an algorithm which can operate in a bandwidth con-
strained environment. The approach presented here over-
comes this important obstacle and provides a technique



that is scalable.

II. The Decentralised Architecture

The decentralised architecture used in this research is
based on the information or inverse covariance form of the
Kalman filter, and builds on the work of Grime [2] on
decentralised tracking. It works by propagating ‘informa-
tion’ to all vehicles or nodes in the network. The informa-
tion is communicated using point-to-point links with no
loops in the network, as illustrated in Figure 1. The inter-
nal structure of each of these sensing nodes is illustrated
in Figure 2.

This section gives an overview of the key elements of the
architecture. A more detailed description can be found
in [7].
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Fig. 1. The general structure of a decentralised data fusion system
employing point-to-point communications.

A. The Information Filter
Using the conventional EKF representation of SLAM,

the augmented state vector of the vehicle and map at time
ti given observations up to time tj is written as x̂(i | j)
with an associated covariance P(i | j). However, when
written in its equivalent information form, the system is
given by the information vector ŷ(i | j) and information
matrix Y(i | j).

ŷ(i | j)
�
= P−1(i | j)x̂(i | j), Y(i | j)

�
= P−1(i | j).

A complete derivation of the non-linear information fil-
ter, its propagation and update equations and its applica-
tion to SLAM is contained in Thrun et al [12]. Maybeck [6]
also includes a derivation of the information filter from the
standard Kalman filter equations.

The interesting fact is that with regards to information
integration, all update operations are additive. Addition
is communicative. As a result, the specific order in which
updates from other vehicles are applied is irrelevant to the
results, provided the features do not change over time.
This observation is of central importance in multi-vehicle
SLAM, as the map features are specifically selected to be

stationary. If map update messages from other vehicles
arrive under arbitrary latency, they can still simply be
added on in the information form regardless of their “age.”

B. Local Filter
The local filter is the local implementation of the SLAM

algorithm, which generates information state estimates on
the basis of observed, predicted and communicated infor-
mation. Other infrastructure such as the channel filter and
channel manager exist only to support the communication
of information to and from other vehicles.
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Fig. 2. Structure of a decentralised node.

C. Channel Manager
The channel manager serves as the interface between

the local filter and the channel filters (and through these,
the other vehicles in the network). The channel manager
collects incoming data from the channels at the time hori-
zon, assimilates it using the additive update equations,
and then communicates the result to the local filter which
can update the SLAM estimate in a single step. It also
receives outgoing updated information states from the lo-
cal filter and disseminates this to the channel filters for
transmission.

D. Channel Filter
The channel filter is used to manage communication of

map information between nodes, and as such is the focus
of the algorithm presented in this paper. It serves two
main functions; to keep track of information previously
communicated on the channel (to ensure data is not dou-
ble counted), and to synchronize incoming and outgoing
information with the local SLAM filter. Information pre-
viously communicated is used to compute new information
gain from other vehicles in the network. Synchronization
serves to accommodate any delays in information or dif-
ferences in timing between node filters at remote sites.

Information arrives asynchronously at each channel from
remote vehicles. The channel filter calculates the new in-
formation received on any given channel and transmits this
to the channel manager, before updating itself. In the
event that the channel becomes blocked or disconnected,
the channel filter effectively fuses the new data and cycles
to the next available communication time.



The following section discusses the channel filter algo-
rithm and how it can be formulated to handle the commu-
nication of submaps of an arbitrary size.

III. Constant Time Communication

In SLAM, updates come in two forms: measurement and
motion updates. While each measurement update affects
only a small number of values in the information form, mo-
tion updates modify all such values. Thus, after each mo-
tion command, previous techniques communicate all val-
ues in the filter, of which there are quadratically many in
the size of the map. Such an approach imposes serious
scaling limitations on multi-vehicle SLAM.

Our approach communicates arbitrarily small maps by
carving out submaps of maximum information value. The
idea is that the vehicle operates in the vicinity of specific
landmarks in the map; hence communicating the submap
that corresponds to those landmarks yields small messages
whose size is independent of the total map size.

Unfortunately, such a scheme will inevitably lead to
over-confident estimates if implemented using a standard
information or Kalman filter: this is a side effect of the
approximation of sending submatrices of the full update
(which affects all parameters in the filter). Our new ap-
proach composes such sub-matrices in ways that maintain
map consistency, that is, they guarantee that no vehicle
ever overestimates its confidence in individual feature lo-
cations. This result is obtained by implementing a hybrid
information filter/covariance intersect (CI) [4] algorithm in
the communication channels. As the vehicles are commu-
nicating their information state estimates of selected map
features, they will have information in common which cor-
relates them. In order to cope with this issue, an informa-
tion estimate is maintained in the communication channel
which keeps a record of this ‘common information’ sepa-
rately from the SLAM filter. When information submaps
arrive from another vehicle, they are fused using CI with
this common information to yield a consistent, but conser-
vative update. Since the update of an information filter is
additive, the effective increment of new information that
the communicated submap contributed is given by the dif-
ference between the channel estimate before and after the
CI update. This increment of map information can then
be safely added to the SLAM filter, completing the update
cycle. It is important to note that the use of the conser-
vative CI update is limited strictly to the communication
algorithm, while the SLAM estimator is implemented us-
ing the information form of the Kalman filter.

Another key aspect of this algorithm is that the submaps
being communicated are not static submaps such as those
used to aid computational efficiency, but instead are a dy-
namically selected set of features chosen at each commu-
nication step based on some heuristic. It is this ability to

formulate submaps of arbitrary size that allows the com-
munication strategy to operate in constant time. Also, by
formulating the problem in its information form, it is a
simple matter to maximise the amount of information be-
ing transmitted in any given submap by selecting features
which have experienced the greatest information gain.

The ability to communicate constant time maps is also
achievable using other approaches such as that proposed
by Williams [13]. However, this approach is not robust
to communications failure as it essentially transmits in-
crements of map data. If any increment is lost, it is ir-
recoverable. When formulated in the information form
presented here it is possible to transmit the actual state
estimate that contains all prior information about the map
features. Using this approach, each communication auto-
matically contains all information in prior messages as well
as any new data. In order not to double count data, the
channel filter is used at reception to subtract the common
information and pass only the increment of new informa-
tion to the SLAM filter.

The Split Covariance Intersect (SCI) algorithm pro-
posed by Julier [3] is similar to the approach presented
here. In uses a hybrid CI/Kalman filter approach to man-
age the complexity of large maps, and in the process notes
that the same approach can be extended to multiple vehi-
cles. However, as the SCI method does not use the channel
filter concept to track any information nodes have in com-
mon, it is not able to make total use of information should
complete maps ever be transmitted.

A. Extracting the Submap to Communicate
Our approach to selecting features to communicate is

to dynamically select those which maximise the informa-
tion gain down any particular channel. This is done using
the features that have the greatest amount of information
that has not yet been communicated to other nodes. As
the problem is already formulated in information space,
this is a trivial exercise and can be done simply by sub-
tracting the amount of information transmitted (recorded
in the channel filter) from the current information state.
A submap of some arbitrary size M2, where 0 ≤ M ≤ N ,
can then formed using the M features with the greatest
information gain. This ability to form an arbitrary size
submatrix to communicate is a powerful concept as it al-
lows the algorithm to function without needing to com-
municate the entire map of size N2. While it is possible
to use practically any method of selecting the features to
send, the ‘maximum information gain’ technique is used
in this paper with highly satisfactory results.

Once the features to transmit have been selected, it is
necessary to integrate out the effect of all of the other
states from this submap. This can be done by defining a
projection matrix Gm such that Gmŷ(k | k) extracts only
those features in the map which are to be transmitted,



and another projection Gv such that Gvŷ(k | k) contains
all other states. Using the notation y∗(k | k) and Y∗(k | k)
to define the information vector and information matrix of
the submap to be sent, we integrate out the effect of the
other states:

y∗(k | k) = Gm[ŷ(k | k) − Y(k | k)GT
v

× (
GvY(k | k)GT

v

)−1
Gvŷ(k | k)]

Y∗(k | k) = Gm[Y(k | k) − Y(k | k)GT
v

× (
GvY(k | k)GT

v

)−1
GvY(k | k)]GT

m(1)

The small information submap given by y∗(k | k) and
Y∗(k | k) is now sent to the channel filters prior to trans-
mission to another node.

B. Channel Update
As the channel filter maintains an estimate of the com-

mon information between nodes, the only states it will
have are those that have been communicated. Since the
vehicle information is never communicated, the channel
filters will never maintain any states other than the map.
Therefore, as map features are by definition stationary, the
prediction model of the channel filter is an identity matrix
and the state at time tk+1 is equal to the state at tk.

If the full map of N2 features is being transmitted, the
channel filter can be updated simply using:

YChan(k | k) = YChan(k | k − 1) +
[Y∗(k | k) − YChan(k | k − 1)]

= Y∗(k | k)
ŷChan(k | k) = ŷChan(k | k − 1) +

[y∗(k | k) − ŷChan(k | k − 1)]
= y∗(k | k) (2)

This simple update is only possible as the map informa-
tion Y∗(k | k) and y∗(k | k) are of the dimension of the
complete map and all cross information terms are being
transmitted. For the constant time communication algo-
rithm this is not the case and a different update must be
performed.

The channel filter update when sending submaps of ar-
bitrary size is performed using CI. While this method will
yield a conservative result, it is necessary in the absence of
the complete N2 map information estimate. When the in-
formation submap given by y∗(k | k) and Y∗(k | k) arrives
the CI update of the channel filter can be done by inflating
the submap to the state dimension using an appropriate
projection Gm. Selection of the CI weighting parameter ω
is done to minimise the determinate of the result.

YChan(k | k) = ωYChan(k | k − 1) +
(1 − ω) GT

mY∗(k | k)Gm

ŷChan(k | k) = ωŷChan(k | k − 1) +
(1 − ω) GT

my∗(k | k) (3)

Following this process the channel filter is completely up-
dated and the information submap given by y∗(k | k) and
Y∗(k | k) is transmitted to other nodes. It is important
to note that this submap contains the entire state history
of those features in it and not simply an increment of in-
formation or a batch of observations. In formulating the
problem this way, the algorithm is robust to any commu-
nication failures as every message contains not only new
information, but all information in previous messages as
well. As the information from any previous messages is
stored in the channel filter as common information, it can
be removed easily by the receiving node to ensure that in-
formation is not fused more than once. For example, if a
particular submap of features is transmitted but for some
reason never received, the information in the lost mes-
sage is automatically recovered next time those features
are communicated.

When the receiving node gets the new submap informa-
tion, it updates its own channel filter using exactly the
same update steps as above. Once updated, it calculates
the increment of new information it has just received from
node i that has not already been fused locally at node j.

Yij(k | k) = YChan(k | k) − YChan(k | k − 1)
ŷij(k | k) = ŷChan(k | k) − ŷChan(k | k − 1) (4)

This information increment is then sent to the local filter
to be fused into the SLAM estimate.

C. Fusing Information from Other Nodes at the Local Fil-
ter

When the local filter receives the information Yij(k | k)
and ŷij(k | k) from the channel filter it must use this in-
formation in the SLAM estimate. In order to do this, it
is necessary to firstly define a matrix Gs that inflates the
map to the dimension of the entire SLAM state by padding
vehicle elements with zeros.

The update is then done by adding the new information
from the other node as:

ŷ(k | k) = ŷ(k | k − 1) + Gsŷij(k | k)
Y(k | k) = Y(k | k − 1) + GsYij(k | k)GT

s (5)

It is worth noting that this update step is identical to
updating with information from locally attached sensors.

IV. Results

The constant time communications algorithm was im-
plemented and run in a multi-vehicle simulation to test
and evaluate its performance with respect to a number of
other communication strategies. The different communi-
cations strategies used were:

1) No communication between platforms - each vehicle
operates independently using only its own observa-
tions.



2) Transmission of the complete information map of N2

elements at every communication step.
3) The constant time communications strategy where a

submap of only 5 features were transmitted at each
communication step. The features to include in the
transmitted submap were selected at transmission
time to be those which had the greatest amount of
information not yet sent.

The simulation used 100 vehicles moving in an environ-
ment of 100 features. Figure 3 (h) illustrates this simu-
lation world, marking the feature locations and a number
of the vehicle paths. A non-linear tricycle motion model
was implemented to estimate the position and orientation[

x y φ
]

of each vehicle within the map. Each was
equipped with a range/bearing sensor which gave observa-
tions to features in the forward hemisphere of the vehicle
at a frequency of 1Hz. Vehicles were able to communicate
map information to their neighbours in the network at a
frequency of 0.1Hz.

The results of the simulation are illustrated in Figure 3.
The benefit of communicating information can be seen in
Figure 3 (a)-(g) as the error and 2σ bounds of both the
N2 and constant time communication algorithms are sig-
nificantly better than the case when the vehicles do not
communicate at all. Of the communication schemes, the
N2 performs the best as it always propagates the entire
map. However, the constant time communications algo-
rithm can be seen to give results that are only slightly
worse than this. Furthermore, it does this by transmitting
submaps of at most 5 features each communication step,
instead of all 100. Since the number of elements required
for communication is quadratic in the size of the map, the
bandwidth savings for this problem are significant when
using the constant time method.

The results indicate that the constant time algorithm
approaches the N2 strategy quite quickly even though it
is not transmitting as much information. This occurs as
the submap that is transmitted is dynamically selected
to contain those features which will give the greatest in-
formation gain. This trend illustrates the idea that good
information about a small number of features increases the
map accuracy significantly. This concept is further illus-
trated in Figure 3 (i) which shows that although increas-
ing the size of the communicated submaps does increase
the quality of the estimates, the rate at which the qual-
ity changes decreases as the submaps get larger. This is
to be expected as communication of the whole map will
include features that have not been observed recently and
which will therefore not contribute large amounts of new
information. Communicating larger submaps using this
constant time algorithm simply has the effect allowing the
estimate to converge toward the N2 result faster.

V. Conclusion

This paper has presented an algorithm for constant time
communications in multiple vehicle SLAM problems. Us-
ing this method, the communication requirements for the
decentralised system are independent of the number of fea-
tures in the SLAM map. It was shown that the effect of
communicating these smaller submaps maintains map con-
sistency while providing only slightly less information than
transmitting the entire map. However, should there be an
opportunity to transmit the complete map of N2 features,
the algorithm is able to make complete use of the informa-
tion and recover any information discarded through previ-
ous conservative CI updates.
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Fig. 3. Simulation results. The error and 2σ bounds for the vehicle states are given for the (a) N2, (b) constant time and (c) no
communications strategies. The error and 2σ bounds for a typical feature are also given for the (d) N2, (e) constant time and (f) no
communications strategies. The covariance ellipse for a feature under the different communication strategies is illustrated in (g). The
simulation world is shown in (h). For clarity, only 10 of the 100 vehicle paths are shown. (i) shows the mean variance in x, y and φ from
all vehicles over the period of the simulation for different maximum map sizes using the constant time communications algorithm.


