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Abstract

For several years, our research group has been de-
veloping methods for automated modeling of 3D environ-
ments. In September, 2002, we were given the opportunity
to demonstrate our mapping capability in an underground
coal mine. The opportunity arose as a result of the Que-
creek mine accident, in which an inaccurate map caused
miners to breach an abandoned, water-filled mine, trap-
ping them for several days. Our field test illustrates the fea-
sibility and potential of high resolution three-dimensional
(3D) mapping of an underground coal mine using a cart-
mounted 3D laser scanner. This paper presents our experi-
mental setup, the automatic 3D modeling method used, and
the results of the field test. In addition, we address issues
related to laser sensing in a coal mine environment.

1 Introduction

For several years, our research group has been devel-
oping methods for automated modeling of 3D environ-
ments [3][4][5]. In September, 2002, we were given the
opportunity to demonstrate our mapping capability in an
underground coal mine, the Mine Safety and Health Ad-
ministration (MSHA) research mine in Bruceton, Pennsyl-
vania. The opportunity arose as a result of the Quecreek
mine accident in July, 2002, in which miners inadvertently
breached an abandoned, water-filled mine, trapping them-
selves amidst thousands of tons of water. After the min-
ers were safely rescued, an investigation was launched to
determine the cause of the accident and to identify new
procedures necessary to prevent mine breaches in the fu-
ture. Regulations already in place aim to prevent such an
accident: mapping the mine before ending operations, ex-
ploratory drilling, and so forth. Unfortunately, old maps
may be incorrect, incomplete, or simply lost. In the
end, the Quecreek accident was attributed to an inaccurate
map [2].

A collaborative effort by several research groups at
Carnegie Mellon University (CMU) has been formed to de-
velop robots to autonomously map abandoned mines and
active mines before operations are ended. Such robots
would be an important contribution to mining safety. De-
tails can be found in [1, 14, 9]. In this paper, we address
the problem of sensing and generating high-resolution 3D
models of an active mine. In September, 2002, we con-
ducted a field test to demonstrate the feasibility of high
resolution 3D mapping of an underground coal mine us-
ing a cart-mounted 3D laser scanner. The remainder of the
paper is organized as follows. First, section 2 reviews pre-
vious work on mine mapping and localization. Section 3
describes our experimental setup and the data collection
process. Section 4 explains our automatic modeling algo-
rithm and discusses the resulting 3D model. Finally, sec-
tion 5 presents an analysis of the issues relevant to laser
sensing in a coal mine environment.

2 Related work

In this section, we review the most relevant work on
mine mapping and localization. Early work by Shaffer [13]
described a method to localize a mobile robot in an un-
derground mine by registering terrain features (corner and
line segments) extracted from an a priori survey map with
cross-sections from an environment map produced by a
laser scanner. In [11, 12], Scheding extensively tested a set
of navigation sensors mounted on a Load, Haul, and Dump
truck (LHD) in the harsh underground mine environment.
Using the data from a laser line scanner coupled with the
navigation data of the vehicle, he produced a 3D model
of a section of the mine. In [7], two line scanners were
integrated on an LHD. The iterative closest point (ICP) al-
gorithm was used to register the 2D profiles to an existing
map. This implementation was extended to mine mapping
in [8]. The contributions presented above focused on vehi-
cle automation for active mines. In the context of mapping



Figure 1: The cart-mounted Z+F laser scanner used in the
data collection.

abandoned mines, Thrun [14] produced 2D maps and par-
tial 3D models of tunnels, using a SLAM approach with
two line scanning lasers mounted on a tele-operated robot
[1]. Several systems have been designed to map mines that
are inaccessible to a ground robot, for example, by map-
ping a cavity using a 3D laser sensor inserted through a
bore-hole. Such systems include the C-ALS (Cavity Au-
toscanning laser system) by Measurement Devices, Ltd.
and the Cavity monitoring system by Optech, Inc.1 A sim-
ilar approach has been followed in [9].

3 Data collection

For our field test, we used a high resolution 3D laser
scanner mounted on a cart as illustrated in figure 1. The
sensor, a Zoller and Fröhlich LARA 25200 (Z+F) scanner
[6], produces 8000×1400 pixel range and reflectance im-
ages with millimeter-level accuracy. The field of view is
360◦×70◦ with a range of 22.5 m. The laser scan head
was inclined to allow higher density scanning of the floor
and ceiling near the scanning platform. Unfortunately, in
some regions, the low roof was actually too close to the
scan head for the sensor to fully scan the ceiling.

We obtained 23 scans at three- to five-meter intervals
along a loop trajectory through a sequence of 4 hallways
(figure 2). The cart was kept stationary at each location for
the 90 seconds required to obtain each scan. Due to the ca-
pabilities of our modeling algorithms, it was not necessary
to record the position or attitude of the cart. This greatly
simplifies the data collection process. The entire procedure
only took about three hours, including setup and disassem-
bly of the equipment. For this experiment, the cart was
moved manually, but it would be straightforward to mount
the scanner on an autonomous mobile robot.

1www.mdl.co.uk, www.optech.on.ca, May 2003

50’

50’

Figure 2: Surveyed map of the Bruceton mine. The red
circle indicates the area mapped in our field experiment.

4 Automatic modeling from reality

Modeling-from-reality is the process of creating digital
three-dimensional (3D) models of real-world scenes from
3D views as obtained, for example, from range sensors or
stereo camera systems. Recently, we have developed a sys-
tem that fully automates the modeling-from-reality process
[4][5]. The key challenge of automatic modeling-from-
reality is the accurate and robust registration of multiple 3D
views. Although each input scan is an accurate representa-
tion of the 3D structure of the scene as seen from a single
viewpoint, the data is expressed in the local coordinate sys-
tem of the sensor. Our system automatically registers mul-
tiple 3D data sets in a common coordinate system without
requiring any knowledge of the viewpoints from which the
data was obtained. This capability is important in our case,
because we did not survey the scan locations during our
initial data collection. In a real system, where the sensor
would be mounted on a robot, an approximate estimate of
the motion between scans may be provided by the robot.
Our algorithm has the ability to employ such information
when it is available, but, more importantly, it will not break
down when the estimates are not available. The problem
of registering multiple 3D views obtained from unknown
viewpoints is called multi-view surface matching, and it
is analogous to assembling a 3D jigsaw puzzle, with each
view being a piece of the puzzle.

4.1 Automatic modeling method

Briefly, our automatic modeling-from-reality algorithm
works as follows2: First, the range images are converted
to 3D surfaces, which serve as the input views to the algo-
rithm. A pair-wise surface matching algorithm is then used
to identify potential alignments (called matches) between
view pairs. The difficulty is that these pair-wise matches

2Details of the algorithm are given in [4].
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Figure 3: Coal mine model graphs. Matches are hand-labeled for illustration: thick (blue) edges are correct matches, and
thin (red) edges are incorrect matches. (a) The model graph from exhaustive pair-wise registration; (b) After filtering the
matches for local consistency (GLR). (c) The solution found by our multi-view surface matching algorithm. (d) The solution
with all overlapping views used for verification. Here, the position of the nodes represents the x,y position of each view as
determined by our algorithm.

may be incorrect, and it is sometimes impossible to distin-
guish correct matches from incorrect ones just looking at
pairs of views. We overcome this problem by evaluating
the quality of an entire network of matches. This network
is a graph data structure called the model graph (figure 3).
It contains a node for each input view and an edge for each
pair-wise match.

Figure 3-(a) shows the model graph for exhaustive pair-
wise registration of the views from the mine data set.
Matches are hand-labeled as correct or incorrect for illus-
tration3. The worst pair-wise matches are then removed
using a local consistency test (figure 3-(b)). We call this
model graph GLR (LR stands for local registration). If we
can find a connected sub-graph of GLR that contains only
correct matches, it is straightforward to convert the relative
poses associated with the matches into absolute poses for
each view. We formulate this search as a mixed continu-
ous and discrete optimization problem. The discrete op-
timization performs a combinatorial search over the space
of connected sub-graphs of the model graph, using a global
consistency measure to detect and avoid incorrect, but lo-
cally consistent matches. The continuous optimization ad-
justs the absolute pose parameters to minimize the regis-
tration error between all overlapping surfaces, distributing
the pair-wise registration errors in a principled way.

Unfortunately, a connected sub-graph containing only
correct matches may not exist within GLR. This could hap-
pen if one of the input views is corrupted or if some subset
of the input views does not overlap sufficiently with any of
the remaining views (e.g., if the sensor is moved too far be-
tween two scans). We have developed a class of search al-
gorithms that handles these situations gracefully by search-
ing the space of all sub-graphs of GLR for the best model

3A match is defined to be correct if no point in either scan is displaced
more than 10% of the scene size from its correct location.

hypothesis rather than searching only for globally consis-
tent connected sub-graphs.

The output of the optimization is a set of rigid body
transforms that aligns the views in a common coordinate
system. If the best model hypothesis is not a connected
sub-graph of GLR, each component of the sub-graph is a
separate part of a multi-part model, and the algorithm out-
puts transforms that register the views within each part.
The redundant surfaces in the registered views can then be
merged to form a more compact, unified 3D model.

We have developed several different search algorithms
for finding the best model hypothesis within GLR. The
method used in this paper is called iterative merging. This
algorithm begins with a model hypothesis in which every
view is a separate part (i.e., a model graph with a node
for each view and no edges). Each iteration of the al-

Figure 4: Perspective view of the automatically con-
structed mine model. The model consists of 23 separate
views covering a region 43x42 m wide and 3 m high.



Figure 5: Close-up views of the 3D model from various viewpoints (top row) and photographs obtained from the same
viewpoints (bottom row).

gorithm merges two parts using the relative pose from a
pair-wise match. The chances of merging two parts us-
ing an incorrect match are minimized by merging the best-
matching parts first and by verifying that all of the views in
the merged part are mutually consistent. The model graph
produced by the iterative merging algorithm is shown in
figure 3-(c) and (d). The corresponding 3D model is shown
in figure 4.

4.2 Discussion

Figure 5 shows three close-up views of the 3D model
along with photographs taken from the same locations. The
details visible in the model highlight the quality possible
with high-resolution 3D scanning. In the left picture, a pair
of doors with z-braces can be seen. In the center picture,
stacks of bricks lie against the walls and on pallets. The
partially buried track rails run the length of the corridor
and a junction in the rails can be seen in the distance. In
the right picture, the rails are more pronounced, and several
large pipes are stored on both sides of the corridor.

The difference between the surveyed map of the mine
and the actual mine can be significant, as shown in fig-
ure 6. The surveyed map is topologically correct, but the
scale in parts of the map is significantly off. For example,
the trapezoidal column of rock in the center of the surveyed
map is actually much narrower near the bottom of the map,
which might be a safety concern. The 3D model allows
direct measurement of the wall thickness at any point. Fur-
thermore, the 3D model enables measurements that are not
possible on the 2D map. For example, it is straightforward
to compute the ceiling height throughout the mine or to
accurately measure the amount of material that has been
removed from the mine.

Although we do not have ground truth measurements of
the sensor positions, we can still perform some analysis of
the accuracy of the model. First, we can tell that the sen-
sor positions are qualitatively correct by looking at cross
sections of the model (e.g., figure 6-(b)). If any view were
incorrectly registered, some surfaces would not align well
with one another and would appear as errant surfaces in
the cross sections. The distance between overlapping sur-
faces gives a quantitative measure of the model accuracy.
For this data, the RMS distance between overlapping sur-
faces was 1.09 cm. Finally, we have performed analysis of
other data sets of environments of a similar size for which
we measured ground truth positions using a theodolite and
fiducials ([4], p. 160). In those experiments, we found the
pose error to be less than 0.25% of the model size. The
RMS error of the fiducial marker measurements using our
algorithm was comparable to the error in the same mea-
surements using bundle-block adjustment on the fiducial
points (2.7 cm RMS versus 2.5 cm RMS). This suggests
that the primary source of error in that experiment was the

(a) (b)

Figure 6: (a) A close-up view of the map from figure 2
showing the region mapped in our field test. (b) A hori-
zontal cross-section of the 3D model of the corresponding
area.



measurement of the fiducial position rather than a limita-
tion of our multi-view surface matching algorithm.

5 Laser sensing in mine environments

Coal mine environments present a number of unique
challenges for laser sensing systems, including the pres-
ence of explosive gas, widely ranging surface albedo,
metallic objects, and wet surfaces. In the field test mine,
the walls were coated non-uniformly with a white, water-
proofing material, and in many places, bare coal was ex-
posed. The roof was reinforced with metallic netting, and
the environment contained numerous metallic objects, such
as pipes and rails. Furthermore, regions of the walls and
ceiling were wet and dripping water. For additional exper-
iments, we collected samples of rocks and bituminous coal
for analysis in the controlled environment of our labora-
tory.

Open beam lasers can be a potential ignition source of
methane gas or coal dust, but studies have shown that be-
low 150 mW or 20 mW/mm2 methane gas or coal dust
cannot be ignited by a laser beam4. With an average power
of 22 mW [6], the Z+F laser poses no threat.

Our second concern was the level of noise and bias in
range measurements when scanning scenes with widely-
ranging surface albedo. We analyzed the noise and bias
using a calibration target made of 6 different color patches,
including black and white (figure 7-(a)). We positioned
the laser at 7.5 m from the target and collected 11 identical
scans to test the repeatability of the measurement. We mea-
sured the range for the pixels within each patch (725 pixels)
and computed the mean and standard deviation for each
patch over all the scans. Figure 7-(b) shows the distribution
of range measurements for the black and white patches. As
expected, the level of noise for the black target (σ = 5.80
mm) is larger than that of the white target (σ = 3.54 mm);
however, even the worst case noise, which occurred with
the black patch, was acceptable for a mine-mapping appli-
cation. We analyzed reflectance-based range bias by esti-
mating the difference in range between the white and black
patch. For this experiment, we fit planes to the two patches
using the total least squares method. Figure 7-(c) shows a
top view of the two estimated planes, which have an off-
set of 1.3 cm. As with the noise error, this bias is within
acceptable limits for mine-mapping.

Finally, we considered the effect of scanning specular
targets, such as bituminous coal (which is relatively shiny)
or wet surfaces. To test this, we scanned a flat piece of coal
twice – once when the sample was dry and again when
wet. The sample was positioned at 7.5 m from the sen-
sor and scanned at near-normal incidence. As expected

4NIOSH, May 2003, Laser Safety in Underground Mine,
www.cdc.gov/niosh/mining/lasersafety/default.htm

Sample Reflectance (min-mean-max)
Coal (dry) 152 411 1347
Coal (wet) 26 145 486

Rock 291 491 754
Wood 4413 5663 6709

Aluminum 3330 3698 4022
Black paper 283 355 470
White paper 5353 5571 5777

Table 1: Reflectance for different targets at 7.5 m

the dry sample produced erroneous range measurements
associated with specular reflections. Surprisingly, the wet-
ting the coal sample actually reduced the frequency of er-
roneous measurements. We hypothesize that the reason we
did not experience many specular reflections in our field
tests is due to the wall-coating and damp environment. Ta-
ble 1 shows a comparison of reflectance values for sev-
eral targets scanned at 7.5 m and near-normal incidence,
including the wet and dry coal samples.

6 Summary and future work

In this paper, we have shown that our automatic
modeling-from-reality algorithms can be successfully ap-
plied to the problem of high-resolution mapping of under-
ground mines. The model constructed from the 23 scans
obtained during our field test was estimated to contain ge-
ometric errors on the order of 1 cm. The results of our lab-
oratory experiments indicate that the various sensing chal-
lenges presented by the underground mining scenario may
introduce error of 1-2 cm into a 3D model. However, it
should be noted that these tests are only partially represen-
tative because the environment in our laboratory and in the
Bruceton coal mine do not fully mimic harsh environment
of an active coal mine.

The results of this paper are a proof of concept. The
next step would be to further specialize our automatic mod-
eling system for the purpose of mine mapping. First, a
ruggedized platform for the system must be developed, ei-
ther in the form of an electric cart or a tele-operated mobile
robot. Second, our automatic modeling algorithms should
be modified to operate in an online mode as opposed to the
current batch method. The immediate feedback of an on-
line algorithm would enable mine mappers to effectively
plan the scan locations. Finally, we are working on new
modeling algorithms that scale to very large numbers of
views. Our current algorithms have O(N2) complexity in
the number of input views, which limits processing to sub-
maps containing about 50 views.
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Figure 7: (a) Photograph of the calibration target with coal samples in the foreground. (b) Distribution of range mea-
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reflectance-based range bias.
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