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Summary. In this paper, we report on the design of a model-based controller
that can achieve dynamical self-righting of a hexapod robot. Extending on our ear-
lier work in this domain, we introduce a tractable multi-point contact model with
Coulomb friction. We contrast the singularities inherent to the new model with
other available methods and show that for our specific application, it yields dy-
namics which are well-defined. We then present a feedback controller that achieves
“maximal” performance under morphological and actuation constraints, while en-
suring the validity of the model by staying away from singularities. Finally, through
systematic experiments, we demonstrate that our controller is capable of robust
flipping behavior.
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1 Introduction

RHex is an autonomous hexapod robot that negotiates badly irregular terrain
at speeds better than one body length per second [12]. In this paper, we report
on efforts to extend RHex’s present capabilities with a self-righting controller.
Based on our earlier work in this domain [13, 14], we introduce a multi-point
contact model based on Coulomb friction so as to derive the maximum bene-
fit of our robot’s limited power budget. In designing a model-based feedback
controller, we highlight fundamental singularity problems in handling multi-
ple intermittent contacts under external actuation and illustrate a particular
solution for our application domain. In particular, we present experimental
results that demonstrate the practical implementation of a controller based
on the model which yields a reliable self-righting maneuver.

The primary motivation for this problem is to achieve autonomous opera-
tion of robotic platforms in unstructured environments. In addition to physical

*Portions of the material in this paper, in combination with material excerpted
from [14] have been submitted for publication to the International Journal of
Robotics Research.
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necessities such as onboard power and computation, the survivability of such
robots in the real world requires at least basic manueuverability capabilities to
remain functional in the absence (or inattention) of a human operator [1]. The
problem of recovering correct body orientation is one of the simplest among
such tasks and constitutes the focus of the present paper.

RHex’s morphology is roughly symmetric with respect to the horizontal
plane, and allows nearly identical upside-down or right-side up operation, a
solution adopted by other mobile platforms [7]. However, many application
scenarios such as teleoperation and vision based navigation entail a nominal
orientation arising from the accompanying instrumentation and algorithms.
In order to secure self-righting capabilities in such settings, most robotic plat-
forms manipulate their body orientation through special kinematic structures
(for example, long extension arms or reconfigurable wheels [3, 4, 18]). In con-
trast, the imperatives of dynamical operation that underly RHex’s design
and confer its unusual mobility performance [12] preclude such structural ap-
pendages. RHex must rely on its existing morphology and dynamic maneuvers
to achieve the necessary self-righting ability.

In this light, the central contributions of this paper include: i) introducing
a frictional multiple point collision/contact model that characterizes RHex’s
behavior during the flipping maneuver; and ii) the description of a new torque
control strategy that uses the model to maximize the energy injected into the
system in the face of these constraints (i.e., consistent with maintaining a set
of postural invariants integral to the task at hand). We contrast analytical
properties of the newly introduced model to a number of other approaches
proposed in our earlier work and highlight fundamental problems in their
application to the design of feedback controllers. We also present experimental
evidence to establish the validity of the present model.

2 Flipping with RHex

RHex is a relatively simple hexapod robot with only six actuators, directly
coupled to individual passively compliant legs. The rotation axes for the legs
are all parallel and aligned with RHex’s transverse horizontal body axis (see
Fig. 1). Consequently, the most natural backflip strategy for RHex pivots the
body around one of its endpoints. Pitching the body in this manner, while
keeping one of the body endpoints in contact with the ground, maximizes
contact of the legs with the ground for the largest range of pitch angles and
thus promises to yield the best utilization of available actuation. In contrast,
flipping by producing a sideways rolling motion suffers from early liftoff of
three legs on one side as well as the longer protrusion of the middle motor
shafts.

For surfaces with sufficiently low lateral inclination, RHex’s lateral sym-
metry and the line of body contact restrict this flipping motion to the saggital
plane, admitting the use of planar models for its analysis.
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Fig. 1. RHex 1.5

2.1 Basic Controller Structure
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Fig. 2. Sequence of states for the flipping controller

The model-based controller we present in this paper has a finite state
machine structure, illustrated in Fig. 2. Starting from a stationary position on
the ground, the robot quickly thrusts itself upward while maintaining contact
between the ground and the endpoint of its body (poses I and II in Figure
2) as the front and middle legs successively leave the ground. This thrust
results in some initial kinetic energy of the body that, depending on the
frictional properties of the leg/ground contact, may be sufficient to allow
“escape” from the gravitational potential well of the initial configuration,
allowing the robot to fall into the desired configuration. In cases where a
single thrust is not sufficient to flip the body over, the robot reaches some
maximum pitch, and falls back toward its initial state. Our controller then
brings the legs back to Pose I of Figure 2 and waits for the impact of the front
legs with the ground, avoiding negative work — a waste of battery energy given
the familiar power-torque properties of RHex’s conventional DC motors. The
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impact of the compliant front legs with the ground in their kinematically
singular configuration recovers some of the body’s kinetic energy, followed
by additional thrust from the middle and back legs, during the period of
decompression and flight of the front leg — i.e., during a phase interval when
it is possible for the legs in contact to perform positive work on the robot’s
mass center. The maximum pitch attained by the body increases with each
bounce up until the point where the robot flips or the energy that can be be
imparted by the thrust phase balances collision losses at which point it must
follow that flipping is not possible.

3 Planar Flipping Models

3.1 Assumptions and Constraints

Two assumptions constitute the basis for our modeling and analysis of the
flipping behavior.

First, we assume that the flipping behavior is primarily planar. The con-
troller structure described in Sec. 2.1 operates contralateral pairs of legs in
synchrony. On flat terrain, the robot’s response lies almost entirely in the sag-
gital plane and departures are rare enough to be negligible. Our models and
analysis are thus constrained to the saggital plane.

Second, we assume that the tail of the body should maintain contact with
the ground throughout the flipping action. This is motivated by a number of
observations gathered during our empirical flipping experiments. During the
initial thrust phases, the front and middle legs provide most of the torque.
Configurations where the tail endpoint of the body is in contact with the
ground yield the longest duration of contact for these legs, harvesting greatest
possible benefit from the associated actuators. Collisions of the body with the
ground, which introduce significant losses due to the high damping in the
body structure designed to absorb environmental shocks, can also be avoided
by preserving contact with the ground throughout the flipping action. Finally,
the body ground contact is essential for maintaining the planar nature of the
behavior and eliminating body roll. This is especially important for repeated
thrust attempts of the hybrid energy pumping scheme, which rely on the
robot body being properly aligned with as much of the impact kinetic energy
recovered as possible.

In light of these assumptions, the design of thrust controllers has to satisfy
two major constraints: keeping the tail endpoint of the body on the ground
and respecting the torque limitations of the actuators.

3.2 Generic Planar Flipping Model

In this section, we introduce a generic planar model that constitutes the basis
for our presentation for a number of more constrained variations.
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Fig. 3. Generic 3DOF planar flipping model

Figure 3 illustrates the model. Three rigid legs with small toe masses m;
— each representing a pair of RHex’s legs — are attached to a rectangular rigid
body with mass m and inertia I. The attachment points of the legs are fixed
at d;, along the midline of the rectangular body. This line also defines the
orientation of the body, a, with respect to the horizontal. The center of mass
is midway between the points N and T, defined to be the “nose” and the
“tail”. The body length and height are 2d and 2h. Finally, the body-ground
and toe-ground contacts experience Coulomb friction with coefficients p;, and
¢, respectively. Table 1 summarizes the notation used throughout the paper.

States and dependent variables

Ybs Zby O Body center of mass coordinates and pitch
ceX System configuration vector

q:=]c, ¢]7 [System state vector

biy Vi Hip and toe angles for " leg

Yi, Vi position and velocity of the i toe

Forces and model parameters

TER? Hip torque control vector
T(q) CR® |[Set of allowable torque vectors
FY, F;, FY, F?|GRF components on i'" toe and the tail

d,h,m, I Body length, height, mass and inertia
diyl,my Leg attachment offset, leg length and leg mass
Wty b Coulomb coeff. for toes and body

Table 1. Notation used throughout the paper

Our model requires both endpoints of the body as well as the toes to be
above the ground, and that a leg must reach the ground before it can apply
any torque to the body. We assume that the inertial effects of the toe masses
on the body during their flight phase is negligible.
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3.3 Framework and Definitions
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Fig. 4. Free body diagrams for the body and one of the legs

We use a Newton-Euler formulation in deriving the equations of motion
for all constrained models. Figure 4 illustrates the free-body diagrams for
the body link and one of the leg links. Based on whether a link is in flight,
in fixed contact with the ground or sliding on the ground, the associated
force and moment balances yield linear equations in the unknown forces and
accelerations, taking the form

A(c)v=b(c,¢)+D(c) 7. (1)

The definitions of the configuration vector ¢ and the vector of unknown forces
v, as well as the matrices A(c), b(c,¢) and D(c) are dependent on the par-
ticular contact state and will be made explicit in subsequent sections.

3.4 Simple Model with No Friction and No Toe Mass

As described in Sec. 2.1, flipping structurally relies on the slipping of the toes
and the body to achieve thrust. The simplest model that comes to mind is
a rigid body with massless and frictionless legs (i.e. m; = 0, uz = 0 and
up = 0). This yields a one degree of freedom system where the ground
reaction forces and thus the motion of the center of mass is strictly verti-
cal. The configuration and unknown force vectors are defined as ¢ : = « and
v:=[F, Fy, F3, & F?]T, respectively.

Unfortunately, in trying to derive the dynamics of such a system through
a Newton-Euler analysis, one quickly realizes that configurations in which
any one of the legs is vertical are singular and yield infinite ground reaction
forces. Intuitively, this singularity arises from the faulty assumption that we
can apply nonzero torque against a massless leg where the only external force is
the vertical ground reaction force. Clearly, this model is physically inaccurate
and is hence inappropriate for the analysis of the flipping behavior.
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3.5 Extended Model with No Toe Friction and Small Toe Masses

Based on the observations of the previous section, we attempt to add small
masses at the toes to counteract the action of the hip torque Assuming suffi-
cient friction the body-ground contact and zero friction at the toes, this results
in a one degree of freedom system. Defining the configuration and force vec-
torsasc:=a and v:=[F, Fy, F3, &, F?, FY]T, the moment balance for
leg i takes the form

(Icosv; + Li; siny;) Fy + (Imd? siny; )& = lmya! siny; — 7,

where ji; := —pu; sign(y;) and §; = a? — bYc is obtained by differentiating the
kinematic equations for the toe position y; twice. Note that the contact states
of the toes no longer depend only on the configuration, but also on the veloc-
ities in the system due to the coriolis terms in a! as well as the coupling with
the pitch acceleration through bY. This primarily results from the fact that
the hip torque necessary to produce the horizontal toe acceleration required
to maintain contact goes to infinity as the leg approaches its vertical configu-
ration. As a consequence, the leg must “lift off” before it reaches its vertical
configuration, at an angle which is a function of both the pitch angle and the
pitch velocity. Detailed discussions of the algorithms necessary to uniquely
identify contact states for this model and the derivation of its dynamics can
be found in [13].

For this model, the ability to uniquely determine the contact state allows
us to use the framework of Sec. 3.3 for computing the unknown forces. Sur-
prisingly, there are still configurations for which the matrix A (c) may become
singular. These singularities are much less intuitive and we have not been
able to identify a physical explanation for their characterization. Even though
for restricted ranges of operation on a particular morphology (such as flip-
ping with RHex) it is possible to show that the system stays away from these
singularities, they seem to be “inherent” to the family of models we have
investigated and persist even when we reintroduce toe friction. A unifying
explanation for this family of singularities remains an open question.

In any case, both the nonlinear kinematics of toe positions and the al-
gorithmic complexities in determining contact state significantly impair the
practicality of this model for an embedded implementation. Even though we
previously showed simulation evidence for the performance of the model [14],
its practical utility as a basis for implementing model-based flipping on RHex
is limited.

Fortunately, it turns out that reintroducing Coulomb friction at the toes
but maintaining the assumption of massless legs still yields a model wherein
the typical range of operation for RHex’s flipping is found to be away from
singularities. The models we describe in the following two sections constitute
the basis for our experimental flipping controllers.
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3.6 Frictional Dynamics with Sliding Body, Sliding Toe Contacts

In this section, we present a model with massless legs and Coulomb friction,
wherein both the leg and body contacts are sliding on the ground. Defining
the configuration and unknown force vectors as

vi=[F, Fy, F3, & FZ, 4, |" (2)
Cc = [04, yb]T,

yields a system with two degrees of freedom — the body pitch and the hor-
izontal position of the tail. For each leg, we can write the moment balance
equations as

(lcosvy; + L siny,)F; = —7; (3)

where fi; := —p; sign(y;) is the effective Coulomb friction coefficient and ~;
corresponds to the toe angle as shown in Fig. 3. In the operational range of the
flipping controller, these equations are solvable. However, there are interesting
“jamming” singularities in the remaining parts of the state space, which we
investigate in Sec. 3.8.

Similarly, force and moment balances for the body link yield

iy + o By + fisFs — iy FZ —mijp, = 0
F1+F2+F3+FCZ —méb =mg
3
Z(di cosa — d;fi; sin ) F; 4+ ((h + pd) sin «
i=1
. 4)
+(ph — d) cos)FZ—1é& = Zﬂ- ,
i=1
where, once again, system kinematics yields the body accelerations g and %,

as functions of & and ;. As before, the combination of (3) and (4) yields the
matrices A(c), b(c, ¢) and D(c).

3.7 Frictional Dynamics with Sliding Body, Fixed Rear Toe

The last model we consider still has massless legs and Coulomb friction, and
corresponds to cases where the rear toe is stationary under the influence of
stiction. This model is primarily motivated by the observed behavior of RHex’s
flipping, where the rear toe stops sliding following the liftoff of the front and
middle pairs of legs. We incorporate this model into our feedback controller
to be activated when the measured (or estimated) system state indicates that
the rear toe is indeed stationary. Defining

vi= [F F, Fs & F? FY] (5)
C :

a,
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leaves us with a system with one degree of freedom. The moment balance for
the rear leg includes the unknown horizontal ground reaction force, yielding

lcosyi Fy +Isiny FY = -1, (6)

while the moment balance equations for the middle and front legs remain the
same as (3). Finally, the balance equations for the body link take the form

FY + fioFy + i3 F3 — jiy F — mijy = 0
F1+F2+F3+Fcz—méb:mg

3 3
Z d; cos aF; — Z d;fi; sin oF; — dy sin Fy

=1 =2
.,

+((h+ ppd) sina + (ph — d) cos @) FZ — Iav = ZTi

=1

Similar to the previous two models, system kinematics yields the body
accelerations 4, and %, as functions of & we use (6) and (7) to compute the
matrices A(c), b(c, ¢) and D(c).

3.8 Existence of Solutions and Leg Jamming

It is not immediately obvious that the equations presented in Sects. 3.6 and
3.7 can be solved. In fact, a major singularity arises in computing the ground
reaction forces on sliding legs using the moment balance equation (3). To illus-
trate the inconsistency, suppose that leg ¢ is sliding forward with y; > 0 and
the leg is within the friction cone with cotvy; < p;. When 7, < 0, the mass-
less legs in our model require a positive vertical component for the ground
reaction force, F; > 0. However, solution of the leg moment balance equation
yields F; = —7;/(l cosy; — lug siny;) < 0, resulting in an inconsistency. Con-
sequently, when the leg is sliding forward and is inside the friction cone, there
are no consistent solutions for the unknown forces and accelerations.

It turns out that this problem is a special case of the well known Painlevé’s
problem of a rigid rod sliding on a frictional surface [6, 10]. For certain pa-
rameter and state combinations, it is impossible to find any consistent set of
finite forces and accelerations and one needs to seek impulsive solutions for
the unknown quantities. This problem and its variations stimulated a large
body of work in frictional collisions [2, 16, 17, 19], which hypothesize that the
rigid rod would “jam” in such cases and start pivoting around its toe.

Fortunately, empirical evidence accumulated over months of physical ex-
periments with the robot reveals that in the absence of dramatic external
disturbances, RHex operates in regions of its state space away from these
singularities. Starting from a stationary position, the front four legs always
slide backward which guarantees a solution for the associated ground reaction
forces. Furthermore, even though the rear legs usually slide forward, RHex’s
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kinematics ensure that the orientation of the rear two legs is always outside
the friction cone, yielding a consistent solution for the associated reaction
forces. Finally, the body link always slides forward and admits a consistent
solution once the toe reaction forces are identified.

4 Model Based Control of Flipping

Our goal in designing a model-based controller for flipping is to maximize the
acceleration of the body pitch, while maintaining contact of the body endpoint
with the ground and respecting actuator torque constraints. Depending on the
measured (or estimated) state of the rear toe, the appropriate model is chosen
among those presented in Sects. 3.6 and 3.7 in formulating the maximization
problem. The resulting feedback controller implicitly defines a switching law
based on the physical state of the rear toe, with no explicit discrete internal
states. On RHex, direct measurement of toe stiction is not possible and we
instead use an empirically designed estimator [15].

For both planar models, when the system is far from singular regions
described in Sec. 3.8, the unknown forces and accelerations can be computed
by directly solving (1), yielding

v=A"'(c)b(c,é) + A !(c)D(c) T . (8)

Both constrained systems are underactuated and direct inversion of these
dynamics to obtain torque solutions is generally not possible. Furthermore, our
task is not specified in terms of particular choices of ground reaction forces
and accelerations. Rather, we are interested in the (in)stability properties
of particular degrees of freedom in the system, particularly the body pitch,
as well as various constraints arising from our assumptions in Sec. 3.1. As a
consequence, our controller is based on a constrained optimization formulation
informed by the underlying dynamics.

4.1 Constraints on Control Inputs

The first set of constraints we impose in solving (8) are motivated by physical
limitations of RHex’s actuators. Torque limitations for the simplest, resistive
model of a geared DC motor arise from the interaction between the back EMF
voltage, the maximum available supply voltage and the armature resistance.
Our model based controller is designed to respect constraints based on this
simple model for each motor, yielding decoupled torque limits for each leg.

We introduce a second constraint to explicitly enforce body-ground con-
tact throughout the progression of the remaining degrees of freedom. Fortu-
nately, this requirement is easily captured through the constraint FZ > 0, an
inequality that is linear in the input torques.
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Definition 1. For a particular state q € Q, we define the corresponding set
of allowable torques, T(q) as the set of all torque input vectors T € R3 such
that

Fi(q,7) >0 (9)
Vi, ;""" (q) <7 < 7" (q) -

4.2 Maximal Thrust Control

For both models of Sec. 3.6 and 3.7, the solutions for & and ¢; are continuous
functions of the input torques. For any given state, this functional relationship
is defined through our hybrid toe contact model and the solutions for the
ground reaction forces. As a consequence, the problem of choosing hip controls
to maximize thrust becomes a constrained optimization problem over the
allowable input torque space.

Definition 2. Given the current state q € Q, we define the mazimal torque
input T as the torque vector that yields the maximum pitch thrust:

7*(q) : = argmax (&(q, 7)) .
T€7T(q)

Fortunately, the solutions of (8) depend linearly on the input torques. Con-
sequently, the constraints in Defn. 1 as well as the objective function, é&(q, 7),
are linear in the input torques as well. As a result, standard linear program-
ming techniques can be employed to identify efficiently the maximal torque
solution 7*. In particular, we use a simple geometric solution that exploits
the low dimension and the largely decoupled structure of the constraints [11].

Fig. 5. All possible arrangements of volumes for motor torque limits and the body
liftoff constraint. Simple geometric analysis yields the solution that yields the max-
imum thrust, while satisfying all the constraints.

As illustrated in Fig. 5, motor torque limits can be expressed as an axis-
aligned constraint volume in the hip torque space, which can then be inter-
sected with the half-space resulting from the inequality constraint of (9). The
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optimal solution can be obtained by simply evaluating the objective function
on the vertices of the resulting volume. There are only three possible arrange-
ments of these volumes corresponding to different geometric arrangements of
the cube relative to the body constraint half space. The only case where there
are no solutions that satisfy all the constraints is when these volumes do not
intersect at all, in which case we prioritize the motor torque limit constraint
and choose a solution that yields the smallest vertical force on the tail.

5 Experimental Results

5.1 Experimental Platform

The most recent version of the robot, RHex 1.5, adopted for the present
experiments, has a rigid body that measures 50x20x15 cm, and houses all the
computational and motor control hardware. The total weight of the robot
is roughly 8.5kg. Each of RHex’s six leg is directly actuated by a Maxon
RE118751 20 W brushed DC motor combined with a Maxon 114473 two-stage
33:1 planetary gear, delivering an intermittent stall torque of 6 Nm at 24 V.
We achieve approximate software torque control at 1 KHZ by adopting an
approximate feedforward model of the motor/amplifier stacks® — a variant of
the model described in [8]. RHex 1.5 also incorporates a three-axis gyro for
inertial sensing of the body orientation in addition to the motor encoders.

The legs on the current RHex are monolithic pieces of compliant fiberglass,
attached to motor shafts through aluminum hip fixtures. Each of the legs in
the set used for the experiments in this paper is roughly 16.5 cm long, weighs
80 ¢ and has a radial compliance* of 1900 N/m [9].

5.2 Thrust Phase Model Performance

In this section, we present experimental data to establish the performance of
our thrust controller on linoleum, a slippery surface with relatively consistent
frictional properties. For the experiments presented in this section, we fixed
the friction coefficient for the body contact as pp = 0.4, based on ranges
indicated in [5] for plastic on linoleum type surfaces. The maximal thrust
controller of Sec. 4.2 explicitly minimizes the ground reaction force on the tail.
Hence, the frictional force on the tail is also very small, significantly decreasing
the importance of our particular choice for the associated coefficient of friction
on the overall performance of the controller.

In contrast, in order to estimate the much more important toe friction
coefficient and assess the corresponding model performance, we ran a number

3See [15] for details.
4Even though compliance is critical in RHex’s dynamic locomotion performance,
it is not nearly as dominant for the flipping behavior.
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of experiments using approximate measurements of RHex’s kinematic and
dynamic parameters for different settings of the toe friction coefficient p;. Four
runs were recorded for 15 different settings in the range p; € [0.1,0.6]. Figure
6 displays a sequence of snapshots for one of these experiments, extracted
from the high speed video footage.

Fig. 6. Sequence of snapshots during flipping on linoleum with p; = 0.39, for the
period where the maximal thrust controller is active. Subsequent frames in which
the robot falls back and recovers are not included. White arrows indicate contact
points for the toes and the body

The best model performance was obtained for p; = 0.39 (see Fig. 7) with
a mean RMS error of 0.4rad/s between model predicted pitch velocity and
experimental measurements; surprisingly small considering various levels of
approximations used in our model, including the inaccuracies in the kinematic
and dynamic parameters, unmodeled leg compliance and the approximate
torque control.

These results suggest that our model provides an accurate representation
of the thrust phase. Nevertheless, there are a number of inaccuracies in its
prediction, visible in the pitch acceleration plots. Most significantly, our model
fails to predict the large overestimation of the initial acceleration and the
subsequent, relatively large oscillations in the measured acceleration.

We believe that the origin of both discrepancies is the compliance in
RHex’s legs. The initially uncompressed legs introduce some delay in respond-
ing to the torque commands, resulting in a delayed acceleration of the pitch.
A similar effect is visible subsequent to the liftoff of the middle legs which
also causes oscillations due to the sudden loading of the rear legs.

Nevertheless, most of these differences do not significantly influence the
average performance of the model. In addition to the accurate prediction of
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Fig. 7. Model predictions for the pitch velocity(left) and acceleration(right) com-
pared to the experiment with best model performance (u; = 0.39). Solid lines indi-
cate model prediction whereas dashed lines show the actual measurements. Shaded
regions indicate different number of legs in contact with the ground: dark(3), mid-
dle(2) and light(1)

the pitch velocity, the robot successfully keeps its tail on the ground and
consistently performs flips on linoleum in a single thrust (see Fig. 6).

6 Conclusion

In robotic locomotion research, autonomy is likely to impose some of the
most demanding constraints on design and limitations on behavior. It is very
difficult, often impossible to achieve in systems otherwise designed for non-
autonomous operation. RHex, our hexapedal platform, demonstrated that au-
tonomy as a design goal can achieve significant advances in real world perfor-
mance and robustness.

In this paper, we present a new controller to implement self-righting be-
havior on RHex, which is perhaps the simplest instance of maneuverability
other than locomotion itself. To this end, we investigate different options for
modeling the flipping behavior, each with different practical as well as analytic
properties. In doing so, we review a number of models we had introduced in
earlier work, and highlight their analytical properties and singularities with
respect to their potential implementation on RHex. A new, simpler model
still offers the advantages of some of these earlier approaches in its singular-
ity properties while being much more feasible for practical deployment. The
main focus of the paper is to identify common fundamental problems that
arise in models of dynamical systems with multiple contacts and external ac-
tuation, with an emphasis on the implications of these problems in the design
of feedback controllers.
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Our modeling efforts reveal two distinct types of singularities in the models
proposed for the self-righting behavior. The simplest approach with nonfric-
tional contacts and massless legs results in singular configurations which are
fairly straightforward to characterize and yield physically inaccurate model
predictions. The same problem persists even when we recover physical accu-
racy by introducing leg masses at the expense of model simplicity due to non-
linear kinematics and algorithmic complexities in determining contact state.

In contrast, a new class of singularities appear when we consider contacts
with Coulomb friction, resulting in ranges of inconsistent states wherein one
cannot find solutions for the dynamics. It turns out that this class of sin-
gularities is an instance of the relatively well-known Painlevé’s problem of a
rigid rod sliding on a frictional surface. Our flipping controller overcomes the
problematic consequences of this singularity by ensuring that the progression
of the robot state throughout the behavior stays away from singular regions.
The feasibility of this approach is demonstrated by systematic experiments on
RHex, which both demonstrate the performance of the controller and show
that model predictions closely match with experimental measurements during
flipping.

In parallel with most of the literature in modeling multiple contacts, our
approach is to present domain specific characterizations of various models and
equally specialized solutions for their usage in designing feedback controllers.
However, extensions to the flipping behavior such as uninterrupted rolling or
handstands are likely to require a much better analytical understanding of
the various proposed models. In particular, a more unified characterization
of singularities for generic classes of models with multiple contacts is criti-
cal for the ability to design robust controllers that explicitly avoid or exploit
singular configurations. We believe that understanding and resolving funda-
mental dynamical properties of robotic systems arising from their morphology
in conjunction with multiple intermittent contacts will be instrumental in the
design and deployment of robust and practical controllers for such systems.
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