
5 Intelligent Neurofuzzy Control of a Robotic
Gripper

J. A. Domínguez-López, R.I. Damper, R.M. Crowder and C.J. Harris

Department of Electronics and Computer Science, University of South-
ampton, Southampton, UK.
email: {jadl00r|rid|rmc|cjh}@ecs.soton.ac.uk.

5.1 Introduction

One of the major challenges of robotics is the grasping and manipulating
of objects in an unstructured environment, in particular where the physical
properties of the object are not known a priori. The resultant uncertainty
makes it difficult to control contact forces, and the relative position be-
tween the object and the gripper’s point of contact. As part of the grasping
process, force control is required. This will avoid the risk of the object
slipping out of the end effector as well as any possible damage to the ob-
ject. The means of defining the required grasp force is crucial and can be
posed as an optimisation problem, [1].

Various techniques have been applied to solve this problem [2-4] Some
approaches are analytic and cannot be easily implemented in real-time ap-
plications, when dynamic adaptation to external disturbances is an impor-
tant requirement. Also, the analytic approach cannot be used if variables
such as the object’s weight and end effector acceleration are unknown. To
overcome this situation, other approaches using fuzzy controllers have
been developed using a number of different sensors to measure the physi-
cal variables which provide feedback to the system. Fuzzy systems have a
number of advantages over traditional techniques that make them an
attractive approach to solve this type of problem. Some of these general
advantages are their ability to model complex and/or non-linear problems,
to mimic human decisions handling vague concepts, rapid computation
due to intrinsic parallel processing, capacity to deal with imprecise
information, improved knowledge representation and better uncertain
reasoning than traditional techniques. However, fuzzy systems have also
several disadvantages including mathematical opaqueness, they are highly
abstract and heuristic, and they need an expert (or operator) for rule

156 J. A. Domínguez-López, R.I. Damper, R.M. Crowder and C.J. Harris

and heuristic, and they need an expert (or operator) for rule discovery.
They are unable to adapt by themselves in response to changes in process
parameters because in a purely fuzzy system the parameters do not appear
in an analytical form so they cannot be easily modified for learning and
tuning the fuzzy rules, [5]. Nevertheless, fuzzy control can be used in con-
junction with powerful automatic learning methods (i.e., neural networks)
as a neurofuzzy system [6-8].

In this chapter, we explore these issues using a very simple two-fingered
gripper as an experimental system. Work is conducted both using a real
gripper and, because of the high degree of flexibility it affords, in software
simulation. The structure of the chapter is as follows. In Section 5.2, we
describe these two experimental systems. Section 5.3 then outlines aspects
of neurofuzzy systems as they impact on this study. Since machine learn-
ing methods to allow such systems to adapt to their environment are a ma-
jor concern, these are discussed in some detail in Section 5.4. Results of
applying our methods to the design of an adaptive neurofuzzy controller
for the real gripper are described in Section 5.5. We then turn to the simu-
lation of the gripper mounted on a six degree of freedom robot in Section
5.6, before concluding in Section 5.7.

5.2 Experimental Systems

The work reported in this chapter has used two different experimental sys-
tems: a simple, low-cost two-fingered gripper and a simulation system
written by the first author. Ideally, we would have liked to do all our work
with real robotic systems but this is inflexible and expensive in terms of
hardware. Hence, the simple system was used to prove our ideas which
were then further explored in simulation.

5.2.1 Two fingered gripper

The simple, low-cost, two-finger gripper is shown in Figure 5.1; which has
one degree of freedom: the fingers can either open or close. It is fitted with
a slip sensor [9] and force sensors. The slip sensor is located on one finger
and is based on a rolling contact principle. Slip induces rotation of a
stainless steel roller on a spring mounting, which is sensed by an optical
shaft encoder. The slip sensor has an operational range of 0 to 80 mm s-1
and sensitivity of 0.5 mm s-1. The applied force is measured using a strain
gauge bridge on the other finger. The force sensors have a range of 0 to
2500 mN with a resolution of 2 mN. Control of the end effector was

5 Intelligent Neurofuzzy Control of a Robotic Gripper 157

achieved using a personal computer (Pentium 75 MHz, 64 MB RAM) fit-
ted with a high-speed analogue input/output card (Eagle Technologies
PC30GAS4). Control software ran under the MS-DOS operating system,.
The sampling period for the system was set conservatively to 17 ms to al-
low adequate time for all processing to be complete between consecutive
samples.

Figure 5.1 The experimental, two-fingered gripper. The slip sensor appears on the
left of the picture, attached to one of the fingers. The force sensors (strain gauges)
are attached approximately midway along the finger shown on the right of the pic-
ture.

Figure 5.2 A metal can being gripped by the experimental system.

158 J. A. Domínguez-López, R.I. Damper, R.M. Crowder and C.J. Harris

Figure 5.2 shows metal can being gripped by the experimental system.
The roller of the slip sensor is clearly visible, together with its spring
mounting which prevents the sensor from seizing during gripping. This
metal can was found to be an effective vehicle for our experiments, as the
total weight of the gripped object could be conveniently manipulated by
placing various weights in it (see Section 5.5).

5.2.2 Simulation

In this part of the work, a simulated gripper was subjected to a range of
identical load disturbances. The gripper was the simple two-fingered, sin-
gle degree of freedom system with slip and force sensors, as described
above. Full details of the simulation’s kinematics equations can be found
in Appendix A of [10]. The simulation was validated against results of the
real gripper handling a range of weights.

The gripper was simulated holding a 0.1kg object. An external transient
force of 10 N was applied to the load 3 seconds into the simulation, and a
second force of -10 N was applied at 5 seconds. Between 6 and 10 sec-
onds, the gripper was moved, thereby applying acceleration forces along
its z-axis.

5.3 Neurofuzzy Systems

Neurofuzzy systems combine the advantages of fuzzy systems, such as
transparent representation of knowledge, and those of neural networks,
which deal with implicit knowledge that can be acquired by means of
learning [8, 11, 12]. They mimic human decision processes, in that they
manage imprecise, partial, vague or imperfect information. Also, they are
able to resolve conflicts by collaboration and aggregation. Moreover, they
have self-learning, self-organising and self-tuning capabilities, with no re-
quirement for prior knowledge of relationships of data although they can
use this if it is available. They have fast computation using fuzzy number
operations. As do fuzzy systems, neurofuzzy systems embody rules (de-
fined in a linguistic way) so that system operation can be interpreted in a
transparent fashion.

5 Intelligent Neurofuzzy Control of a Robotic Gripper 159

.

.

.

.

.

.

Inputs

Fuzzification

layer
Fuzzy rule

layer

Weight
of rules

Defuzzification layer

OutputRules
Antecedent
(IF is)x A

.

.

.

.

.

.

.

Consequent
(THEN y is B)

Antecedent
weight

Consequent
weightGrade

11

12

1N1

iNi

i2

i1

� (x)A11
1

1

11

12

1M

w

w

w

11

22

MP

a11

a22

a1R+1

a2R+2

aP2

a
PQ

b
11

b12

b1M

B

B

B
� (x)A12

1

� (x)A1N
1A

OR

Rule P

Rule 2

Rule 1

� (x)Ai1
i

� (x)Ai2
i

i

� (x)AiN i

A

A

A

A

A

Y(t)

x (t)

x (t)

1

i

Figure 5.3 Architecture of a typical neurofuzzy system. The number of rules is
given by ii NP ∏= where i is the number of inputs and Ni is the number of an-
tecedent fuzzy sets for input i while M is the number of consequent fuzzy sets. In
addition, ∑= i iNQ and ∑= −

=
1i
0k kNR

Figure 5.3 shows the implementation of a neurofuzzy system as a feed
forward network with three layers, namely: the fuzzification layer, the
fuzzy rule layer and defuzzification layer. The mapping between the first
two layers is nonlinear and linear between the last two layers [13]. The
fuzzification layer consists of two components: the measurements ix ,
which are the input signals from the system under control and the envi-
ronment, and the computation of the antecedent membership function
value,)x(iAij

µ termed the grade of membership. The fuzzy rule layer

then calculates the rule firing strength, which indicates how well the condi-
tions in the antecedent are satisfied. An input x fires a rule to a degree,

]1,0[w∈ . The calculation of the rule firing strength is performed using
the membership function values for fuzzy sets used in the rule antecedent.

160 J. A. Domínguez-López, R.I. Damper, R.M. Crowder and C.J. Harris

It is dependent on how the antecedents are combined (i.e., using AND,
OR). The product combiner is the fuzzy implication method, used because
it preserves the original shape of the fuzzy set and it is differentiable. Fi-
nally, the defuzzification layer converts the values delivered by the fired
rules at the previous layer into analogue output values. Centre of sums
(CoS) and centre of gravity (CoG) are the most often used defuzzification
techniques. The CoS approach has some advantages over CoG; in particu-
lar, CoS is faster because it is simpler to program [14]. The resulting de-
fuzzified values are combined by some averaging method (denoted OR in
Figure 5.3).

The antecedent and consequent weights (kia and mnb respectively),
and the rule confidences)w(ij can be updated. In fact, there are two main
possibilities for learning: adjust these weights, or adjust the shape of the
membership functions. The latter can be achieved only if the membership
functions are parametric. In this work, we fix all antecedent and conse-
quent values, and membership functions; only rule confidences are
learned.

5.4 Training Methods

A neurofuzzy controller is able to learn about its environment through a
process of adjusting its weights and bias levels. The learning paradigms
used to tune the network weights are commonly divided into three main
classes: supervised, unsupervised and reinforcement [15]. These learning
algorithms can be used individually or in conjunction[16, 17]. In super-
vised learning, a teacher gives the system a representative collection of in-
put-output examples constituting knowledge of the problem environment.
For unsupervised learning, no such specification is made of which output
should be associated with particular inputs. Rather, the system bases its
free-parameter updating on some quality measure of the representation of
the learning goal. Reinforcement learning (RL) is a broad class of machine
learning techniques in which the ‘teacher’ is replaced by an evaluative sig-
nal (or signals) derived from the environment. Hence, it is eminently suit-
able for on-line robot learning applications in which continuous interaction
with the environment is all-important. Furthermore, RL is fully automatic,
doing away with the need for intervention of an expert (the ‘teacher’) to
provide a suitable training dataset. The evaluative (or reinforcement) sig-
nals do not specify what the correct answer should be, since this is un-
known. Rather, they specify whether the system output is right or wrong,
as well as (possibly) providing a scalar indication of the degree of correct-

5 Intelligent Neurofuzzy Control of a Robotic Gripper 161

ness. This evaluative signal is often couched in terms of a reward or a pun-
ishment, for being right or wrong respectively. Because there is no explicit
provision of a correct answer by a ‘teacher’, we take RL to be distinct from
supervised learning—although some researchers do treat it as supervised
“because the network does, after all, get some feedback from the environ-
ment” [18, p188].

In our work, we have used both supervised and reinforcement learning
to produce neurofuzzy controllers for the gripper. We have also used a hy-
brid of the two. Hence, we have a total of three learning systems: off-line
supervised learning, reinforcement on-line learning and a hybrid of super-
vised and reinforcement on-line learning.

5.4.1 Supervised learning

In supervised learning, knowledge of the problem environment is repre-
sented by a set of input-output examples—the training dataset. The task of
the learning algorithm is to adjust the system parameters in response to the
given inputs so as to reproduce the desired output [15, p63]. To achieve
high system performance, the training data must be consistent and com-
plete. This is an obvious shortcoming of the supervised learning approach
for our problem. In the real environment, we will not be able to anticipate
all conditions which will be met, so it is not possible to guarantee com-
pleteness.

To collect the training data, a simple C program was written to control
the gripper manually using several keys of the PC keyboard. Six keys were
used for a fixed applied motor voltage (i.e., -5, 0, 1.5, 2.7, 3.9, 5V) and
four to increase/decrease the applied voltage by 0.1V or 0.25V. The opera-
tor (the first author), using personnel judgment and the current object
status (e.g., gripper or not, crushed, etc.), manually increased/decreased the
applied voltage so the gripper could grasp the object properly (i.e. fast,
stable, with minimum finger force and without allowing the object to fall).
An extra (stop) key was included to allow the operator to pause and rethink
the action to be taken to be taken as well as to check the object status. The
data collected during the stopped time was not used for training because
they are not actually part of the control action.

Several trials were carried out to obtain several collections of training
data. Every trial started with the gripper fingers completely opened. The
object used was an empty can with uneven surface and variable weight.
The weight was varied using cans with different mass (i.e., 50, 125 and
210 grams). During the manual control, several disturbances of different
magnitude were applied on the object to induce slip. Each experiment was

162 J. A. Domínguez-López, R.I. Damper, R.M. Crowder and C.J. Harris

finished once the gripper was gripping the object properly. In total, 15 col-
lections were selected to be used as training data because very good man-
ual control was achieved. Some other collections were eliminated because
the operator failed to control the gripper properly (i.e., the object fell or
was crushed).

The parameters of the network are updated under the combined influ-
ence of the available training examples, and the error signal,)n(ey

which is defined as the difference between the desired response,)n(ŷ
and the actual response, y(n) at iteration n,

)n(y)n(ŷ)n(e jjj −=

This error signal,)n(e j is used to apply a sequence of corrective ad-
justments to the weights. This sequence is carried out until a stopping cri-
terion is met. The commonest and best-understood approach for off-line
supervised learning is the gradient descent method: back-propagation [19].
Also, its computational cost is lower than the other methods (i.e., Newton,
conjugate gradient) which leads to a faster convergence[20]. The weight
correction,)n(w ji∆ applied to the weights connecting neuron i to neuron
j is defined by the delta rule:

)1n(wm)n(x)n(j)n(w jijji −+= ∆ηδ∆

where η is the learning-rate parameter,)n(jδ is the local gradient, m is
the momentum constant, and)n(x j the input signal of neuron j in the
defuzzification layer. In this work, η and m are both set to 0.5. Network
training is considered converged when the average squared error (between
desired and actual output voltages) is less than or equal to 0.2V2.

5.4.2 Reinforcement learning

Reinforcement learning (RL) is the natural framework for the solution of
the on-line learning problem [21]. It encompasses a broad range of tech-
niques with the common feature that a goal-oriented system adapts its on-
line behaviour in such a way as to maximise some ‘reward’ signal derived
from its environment. Because the reward reflects the system’s interaction
with its environment, learning can be unsupervised, without manual inter-
vention to indicate correct versus erroneous behaviour. Negative rewards,
i.e., ‘punishments’, can also be conveniently incorporated into the para-

5 Intelligent Neurofuzzy Control of a Robotic Gripper 163

digm. In view of its generality and on-line nature, RL has found wide ap-
plication in robotics and autonomous system studies (e.g., [22-24]).

In many formulations of RL, the system is supposed to decide the best
action to select based on its current state. When this step is repeated, the
problem is known as a Markov decision process [25]. A finite Markov de-
cision process (MDP) is defined by the state and action sets, and by the
one-step dynamics of the environment. The components of an MDP are:

• a set of states S;
• a set of actions A;
• a reinforcement function ℜ→× AS:R ; and
• a state transition function ∏→×)S(AS:T where ∏)S(is a prob-

ability distribution over the set S.

At each decision point, the controller has to select an action based on the
environmental information (i.e., state). After performing the action ia the
system receives an immediate reinforcement, ir . The action taken affects
the subsequent state, 1is + . The probability distribution of the reinforce-
ment tr and the subsequent state 1is + .depends only on the starting state

1is + and the taken action ia . The objective of the system is to maximise
the sum of discounted rewards [26, 27]. The reinforcement at time t is
given by:

∑=
∞

=
+

0i
1i

i
i rr γ

where 10 ≤≤ γ is a discount factor that determines the relative contribu-
tions of delayed rewards. If 0=γ only the immediate reward is consid-
ered. Long-running systems that learn from delayed rewards generally
achieve the best state-action [28].
The dynamics of a finite MDP can be summarised in a high-level form,
namely an MDP transition graph, which has to be designed ‘by hand’ to
suit the system’s intended purposes. Figure 5.4 illustrates the transition
graph for the gripper system. For our problem, the state set is defined as:

164 J. A. Domínguez-López, R.I. Damper, R.M. Crowder and C.J. Harris

S2
crushing

S0
not_touching

S1
slipping

S3
OK

grip

grip

grip

grip

release

release

release
()crushingt12, +−β

()crushingt110,1 +−

161 −β+α−),(

)t1(10, crushing+α

)t1(2),(1 slip+−β+α−

()slipt15, +−β

()OKt12,1 +−α−

GRIPR,α RELEASER,α

161 −β+α−),(

1,α

0,1 α−

161 −β− ,

()slipt110, +−β

()OKt15, +−β

)t1(10, slip+α

Figure 5.4 Transition graph specifying the dynamics of the finite MDP. The large
open circles denote state nodes and the small filled circles denote action nodes.
Arcs are labelled with an ordered pair consisting of a transition probability and a
reward. Punishments are implemented as negative rewards. In this work, we sim-
plify the MDP by making all transition probabilities functions of just two parame-
ters, α and β .

S = {S0, S1, S2, S3}

= {not_touching, slipping, crushing, OK}

and the system decisions (actions) are given by the action set:

A = {grip, release}

There is a state node (a large open circle labelled by the name of the
state) for each possible state, and an action node (a small solid circle la-
belled by the action name) for each action associated with those states.
Each arc is labelled with an ordered pair consisting of the transition prob-
ability of moving from state S to state S ′ with associated action A ,
and the expected reward for that transition, SSR ′ .

Two transition-probability parameters, α and β , are used. Note that
at least 2 parameters are required because the maximum outdegree of an

5 Intelligent Neurofuzzy Control of a Robotic Gripper 165

action node is 3, and 1 degree of freedom is fixed since the transition prob-
abilities must sum to 1. Accordingly, α is set relatively high, as it de-
notes a transition probability into a desired state (i.e., OK), while β is set
relatively low. In many cases, but not all, β indicates a transition prob-
ability into a undesirable state (i.e., slipping or crushing). In some
cases, the transition probability into these states will be)(1 βα +− , so a
further requirement is that 1<+ βα to ensure that these transition prob-
abilities do not vanish. In this work, α and β have been set by trial and
error to 0.85 and 0.12, respectively.

Rewards and punishments are either fixed, or made to depend upon the
time spent in the originating state for that transition. This is to increase the
rewards and punishments if the system keeps in a good or bad state-action,
respectively. Rewards are attached to transitions into the OK state. Punish-
ments are attached to transitions into the undesirable (slipping,
crushing and not_touching) states. Time-dependent rewards have
the effect of increasing the reward for moving to the OK state according to
the length of time spent in an undesirable state, and conversely for pun-
ishments. Both time-dependent and fixed rewards/punishments have been
set empirically. Transitions with a -16 punishment are included in the
MDP specification for completeness; it is envisaged that they would never
occur in the trained network. When the object is being satisfactorily
gripped, i.e., the system remains in the state OK for t

OK
, the rewards for the

two associated actions grip and release are:

)t1(
2500

F2500cRR OK
RELEASE

SS
GRIP

SS 3333
+

−
==

where t
OK

 is the time without both slipping and crushing, F is the applied
force and c is a constant empirically set equal to 20 in this work. With this
scheme, the rate of increase of the reward decreases as the applied force
approaches its upper limit of 2500, corresponding physically to 2500 mN.

There are three fundamental classes of methods that tackle the rein-
forcement learning problem: dynamic programming (DP), Monte Carlo
methods and temporal difference (TD) learning. TD methods are based on
learning the difference(s) between temporally-successive predictions. As
TD learning combines characteristics of dynamic programming (i.e., pol-
icy evaluation, value iteration) and Monte Carlo methods, it can approxi-
mate the value function using update estimates from other learned esti-
mates, like those found from dynamic programming. Also, like Monte
Carlo methods, TD methods can learn from experience following a policy
without the dynamics of the environment. Accordingly, TD has some ad-

166 J. A. Domínguez-López, R.I. Damper, R.M. Crowder and C.J. Harris

vantages over the other methods [21]. The most important ones are: TD
methods do not require a model of the environment, rewards and next-state
probability distribution while DP methods do; TD methods can be imple-
mented in an on-line fashion while Monte Carlo methods can not.

Policy

Value
Function

Environment

ActionState
Critic

Actor

TD
Error

Reward

Figure 5.5 Block diagram of the actor-critic reinforcement learning system.

In this work, we have used an actor-critic framework. Actor-critic
methods are temporal difference learning methods [29]. To solve the pre-
diction problem, TD methods compute the state-value function using the
experience of following a policy (i.e., the mapping between states and ac-
tions). At the next time step, based on the obtained reward or punishment,
the estimated value function for a given policy is updated. Actor-critic
methods have two separate memories in order to represent the policy inde-
pendently of the value function. This leads to the following most important
advantages of actor-critic methods over other TD techniques: minimal
computation required to select actions and its ability to learn an explicitly
stochastic policy, allowing the optimal probability of selecting appropriate
actions to be learned [21, p153]. Figure 5.5 shows the architecture of the
actor-critic method. The policy structure is the actor and the estimated
value function is the critic. The former selects actions and the latter criti-
cises those actions. This criticism has the form of an ‘internal’ (TD-error)
signal to drive the learning process.

5 Intelligent Neurofuzzy Control of a Robotic Gripper 167

Action Selection

Network
(neurofuzzy controller)

Action Evaluation
Network

(neural predictor)

Stochastic Action
Modifier

Motor Voltage

Sample
and
hold

v(t - 1)

Environment

failure(t-1)

state(t - 1)

Weight Updating

)t(r̂

)t(f ′

)t(s

)t(f

)t(state

Figure 5.6 Block diagram of GARIC architecture which combines actor-critic and
neurofuzzy methods

The GARIC (Generalised Approximate Reasoning-based Intelligent
Control) architecture of [30] is used here as the basis for the developed
controller. Figure 5.6 shows the block diagram of this architecture which
has been widely used in intelligent control because of the facility it gives
to implement a neurofuzzy controller in an actor-critic framework. GARIC
consists of a fuzzy controller, the Action Selection Network (ASN), which
operates as the actor, and a neural network, the Action Evaluation Network
(AEN), which criticises the actions made by the ASN. Outputs of these
two networks feed into the Stochastic Action Modifier (SAM) which
solves stochastically the exploration-exploitation dilemma: Neither explo-
ration nor exploitation can be pursued exclusively. Exploiting experience,
a reward can be obtained but perhaps missing a possibly larger reward.
Exploring the space of actions, a better action may be found but with the
risk of failing and, consequently, getting a punishment.

168 J. A. Domínguez-López, R.I. Damper, R.M. Crowder and C.J. Harris

Action Selection Network

The Action Selection Network is the fuzzy controller that performs all the
control operations. The fuzzy controller is expanded into a neurofuzzy
controller so its parameters can be updated according to the signal received
from the Action Evaluation Network. The employment of a (neuro)fuzzy
network as critic gives transparency to the system. That is, the behaviour
of the physical system is described by a set of easily-interpreted linguistic
rules. These can then be used to understand and validate the process under
control, or to modify it.

The ASN output is)t(f , which determines the ‘provisional’ voltage to
be applied to the gripper motor. By ‘provisional’, we mean that this value
is subject to random modification by the Stochastic Action Module as de-
scribed immediately below. The updating of the ASN modifiable parame-
ters (i.e., the rule confidence vector of connection weights between rule
and defuzzification layers) is in the direction which increases the future
reward)t(v , predicted by the AEN. Hence, to effect gradient descent op-

timisation, the weight update should be proportional to
)t(w

)t(v

ij∂
∂ , giving:

∑
∂
∂

=
=

−n

0k ij

kn
ij)n(w

)k(v)k(s)k(r̂m)n(w η∆
(1)

where k is an index that runs from the initial time 0 up to the current time
n , [15],)t(r̂ is the ‘internal’ reinforcement signal,)t(s is an output of
the SAM, and η and m are the learning and momentum constants which
were empirically set to 0.75. Equation (1) is similar to equation (29) of
[30], except that they modify the antecedent and consequent membership
functions whereas here we are updating the rule confidence vector.

Action Evaluation Network

The Action Evaluation Network (AEN), or critic, is a neural predictor. Its
structure is shown in detail in Figure 5.7. The AEN indicates the current
state ‘goodness’, mapping the input state vector to the reward signal from
the environment,)t(r . This mapping produces a scalar score, which is a
prediction of future reinforcements,)t(v . This is combined with)t(r to
generate an ‘internal’ reinforcement signal,)t(r̂ :

5 Intelligent Neurofuzzy Control of a Robotic Gripper 169









−−+−
−−−=

otherwise)1t(v)t(v)t(r
statefailure)1t(v)t(r

statestart0
)t(r̂

γ

(2)

where γ , set here to 0.47, is a discount rate used to control the balance
between long-term and short term consequences of the system’s action [15,
p606]. Here, ‘start’ sate means the sate encountered on power-up, and
‘failure’ state indicates that the system has to restarted, i.e. the gripper has
to grip the object anew because it is either crushing it or dropped it. The
system detects that is has dropped the object when the force signal changes
from a positive value to zero. Unfortunately, however, crushing is not so
easy to detect automatically. We hope to develop methods for this in the
future. In the meantime, to allow progress to be made, we simplify the
problem for the failure situation of crushing: The operator indicates to the
system that it has crushed the object.

This network fine-tunes the rule confidence vector. Its input variables
are the normalised measurements of the slip rate, the applied force to the
object and the applied motor voltage. The hidden layer activation function
is sigmoidal. Using a gradient descent algorithm, the formulae for updating
the AEN weights are:

5.....1jand3,2,1ifor

)1t(y)t(r̂)1t(cc
)1t(x)t(r̂)1t(b)t(b

)1t(x))1t(csgn())1t(y1)(1t(y)t(r̂)1t(a)t(a

j2j)t(j

i2ii

ijjj1ijij

==

−+−=

−+−=

−−−−−+−=

β
β

β

where 1β and 2β were set empirically to 0.68 and 0.45 respectively.
The signum function, sgn(), takes the value 1 when its argument is positive
and 0 otherwise.

170 J. A. Domínguez-López, R.I. Damper, R.M. Crowder and C.J. Harris

y2

y1

y3

y4

y5

Markov Desision Process

a11

a35

a12

v(t)

b2

b1

b3

r(t)

)t(r̂

System State

x1
Slip

x3
Motor

Voltage

x2
Force

c3

c5

c4

c2

c1

∑

Combinational
Rules

Equation 2

Failure Signal

Figure 5.7. The Action Evaluation Network consists of a neural network predict-
ing future reward,)t(v , which is combined with the reward signal,)t(r , from
the environment to produce an ‘internal’ reward signal,)t(r̂ , as described by
equation (2).

Stochastic Action Modifier

The Stochastic Action Modifier gives a stochastic deviation to the output
of the ASN, so the system can have a better exploration of the state space
and a better generalisation ability [16]. The numerical amount of deviation,
which is used as a learning factor for ASN, is given by,

)1t(r̂

**'

e
)t(y)t(y)t(s

−−
−

=

where instead of using)t(y* as output, the control action applied to the

system is)t(y*' a Gaussian random variable with mean)t(y* and stan-

dard deviation)1t(r̂e −− This leads to the action having a large deviation
when the last taken action was bad, and conversely when the action was
good.

5 Intelligent Neurofuzzy Control of a Robotic Gripper 171

Weight Updating

Labelled
Training Data

Supervised Learning
Network

Action Selection
Network

(neurofuzzy controller)

Action Evaluation
Network

(neural predictor)

Stochastic Action
Modifier

Motor Voltage

Sample
and
hold

v(t-1)

Environment

Weight Updating

)t(r̂

)t(f ′

)t(f

)t(s

)1t(failure −

)t(state 1−

)t(state

Figure 5.8 Block diagram of the hybrid supervised/reinforcement system in which
a Supervised Learning Network (SLN), trained on pre-labelled data, is added to
the basic GARIC architecture

5.4.3 Hybrid learning

Looking to have a faster adaptation to environmental changes, we have
implemented a hybrid learning approach which uses both supervised and
reinforcement learning. The combination of these two training algorithms
allows the system to have a faster adaptation [16]. The hybrid approach
has not only the characteristic of self-adaptation but the ability to make
best use of knowledge (i.e., pre-labelled training data) should they exist.
The proposed hybrid algorithm is also based on the GARIC architecture.
An extra neurofuzzy block, the supervised learning network (SLN), is
added to the original structure (Figure 5.8). The SLN is a neurofuzzy con-
troller which is trained in non-real time with (supervised) back-
propagation. When new training data are available, the SLN is retrained
without stopping the system execution; then it sends a parameter updating

172 J. A. Domínguez-López, R.I. Damper, R.M. Crowder and C.J. Harris

signal to the action selection network. The ASN parameters can now be
updated if appropriate.

As new training data become available during system operation (see be-
low), the SLN loads the rule-weight vector from the ASN and starts its
(re)training, which continues until the stop criterion is reached (average er-
ror less than or equal to 0.2V2, see Section 5.4.1). The information loaded
(i.e, rule confidence vector) from the ASN is utilised as a priori knowl-
edge by the SLN. Once the SLN training has finished, the new rule weight
vector is sent back to the ASN. Elements of the confidence vector (i.e.,
weights) are transferred from the SLN to the ASN only if the difference
between them is lower than or equal to 5%:

i
SLN
i

ASN
i

SLN
i

ASN
i

SLN
i

ASN
i

w95.0wthen

)w05.1w()w95.0w(if

∀←

<∧>

(3)

where i counts over all corresponding ASN and SLN weights.
Neurofuzzy techniques do not require a mathematical model of the sys-

tem under control. The major disadvantage of the lack of this model is the
impossibility to derive a stability criterion. Consequently, the use of a 5%
threshold as in equation (3) was proposed as an attempt to minimise the
risk of system instability. This allows the hybrid system to ‘ignore’ pre-
labelled data if they were inconsistent with current-encountered conditions
(given by the AEN). The value of 5% was set empirically, although the
system was not especially sensitive to this value. For instance, during a se-
ries of tests with the value set to 10%, the system still maintained correct
operation.

5.5 Results with Real Gripper

To validate the performance of the various learning systems, various ex-
periments have been undertaken to compare the resulting controllers used
in conjunction with the simple, low-cost, two-finger end effector (Section
5.2.1). The information provided by the force and slip sensors forms the
inputs to the neurofuzzy controller, and the output is the applied motor
voltage. Inputs are normalised to the range [0, 1].

Experiments were carried out with a range of weights placed in one of
the metal cans (Figure 5.2). Hence, the weight of the object was different
from that utilised in collecting the labelled training data (when the cans
were empty). This is intended to test the ability of neurofuzzy control to

5 Intelligent Neurofuzzy Control of a Robotic Gripper 173

maintain correct operation robustly in the face of conditions not previously
encountered. In addition, information concerning the object to be gripped
and the end effector itself were never given to the control system.
To recap, three experimental conditions were studied:

i. off-line supervised learning with back-propagation training;
ii. on-line reinforcement learning;
iii. hybrid of supervised and reinforcement learning.

In (i), we learn ‘from scratch’ by back-propagation using the neurofuzzy

network depicted in Figure 5.9. The linguistic variables used for the term
sets are simply value magnitude components: Zero (Z), Very Small (VS),
Small (S), Medium (M) and Large (L) for the fuzzy set slip while for the
applied force they are Z, S, M and L. The output fuzzy set (motor voltage)
has the set members Negative Very Small (NVS), Z, Very Small (VS), S,
M, L, Very Large (VL) and Very Very Large (VVL). This set has more
members so as to have a smoother output. In (ii), reinforcement learning is
seeded with the rule base obtained in (i), to see if RL can improve back-
propagation. The ASN of the GARIC architecture is a neurofuzzy network
with structure as in Figure. 5.9. In (iii), RL is again seeded with the rule
base from (i), and when RL discovers a ‘good’ action, this is added to the
training set for background supervised learning. Specifically, when t

ok

reaches 3 seconds, it is assumed that gripping has been successful; and in-
put-output data recorded over this interval are concatenated onto the la-
belled training set. In this way, we hope to ensure that such good actions
do not get ‘forgotten’ as on-line learning proceeds. Typical rule-base and
rule confidences achieved after training are presented in tabular form in
Table 5.1. In the table, each rule has three confidence values correspond-
ing to conditions (i), (ii) and (iii) above. We choose to show typical results
because the precise findings depend on things like the initial start points
for the weights [31], the action of the Stochastic Action Modifier in the re-
inforcement and hybrid learning systems, the precise weights in the metal
can, and the length of time that the system runs for. Nonetheless, in spite
of these complications, some useful generalisations can be drawn.

One of the virtues of neurofuzzy systems is that the learned rules are
transparent so that it should be fairly obvious to the reader what these
mean and how they effect control of the object. For example, if the slip is
large and the fingertip force is small, it means that we are in danger of
dropping the object and the force must be increased rapidly by making the
motor voltage very large. As can be seen in the table, this particular rule
has a high confidence for all three learning strategies (0.9, 0.8 and 0.8 for
(i), (ii) and (iii) respectively). Network transparency allows the user to ver-

174 J. A. Domínguez-López, R.I. Damper, R.M. Crowder and C.J. Harris

ify the rule base and it permits us to seed learning with prior knowledge
about good actions. This seeding accelerates the learning process [16].

Motor
Voltage

VVLRule
20L

NVS

Force

Slip

Fuzzification
Layer Fuzzy Rule Layer Defuzzification Layer OutputInputs

Rule
2

Rule
3

Rule
1

M

S

Z

L

M

S

AN

Z

VL

L

M

S

VS

Z

Figure 5.9 Structure of the neurofuzzy network used to control the gripper. Con-
nections between the fuzzification layer and the rule layer have fixed (unity)
weight. Connections between the rule layer and the defuzzification layer have
their weights adjusted during training.

Fingertip force Voltage

Z S M L

Z

L (0.0, 0.1, 0.0)
VL(0.1, 0.6, 0.05)
VVL (0.9, 0.3, 0.95)

S (0.05, 0.1, 0.0)
M (0.1, 0.4, 0.5)
L (0.8, 0.5, 0.5)
VL (0.05, 0.0, 0.0)

NVS (0.2, 0.4, 0.3)
Z (0.8, 0.6, 0.7)

NVS (0.9, 0.8, 0.8)
Z (0.1, 0.2, 0.2)

VS
L (0.2, 0.2, 0.0)
VL (0.7, 0.8, 0.6)
VVL (0.1, 0.0, 0.4)

S (0.3, 0.2, 0.2)
M (0.6, 0.6, 0.7)
L (0.1, 0.2, 0.1)

Z (0.1, 0.2, 0.0)
VS (0.9, 0.5, 0.6)
S (0.0, 0.3, 0.4)

NVS (0.0, 0.2, 0.3)
Z (0.75, 0.7, 0.6)
VS (0.25, 0.1, 0.2)

S
M (0.2, 0.1, 0.2)
L (0.8, 0.6, 0.4)
VL (0.0, 0.3, 0.4)

M (0.25, 0.3, 0.2)
L (0.65, 0.7, 0.7)
VL (0.1, 0.0, 0.1)

S (0.4, 0.3, 0.4)
M (0.6, 0.7, 0.6)

VS (0.4, 0.5, 0.4)
S (0.6, 0.5, 0.6)

M
L (0.08, 0.1, 0.2)
VL (0.9, 0.7, 0.4)
VVL (0.02, 0.2, 0.4)

L (0.2, 0.3, 0.2)
VL (0.8, 0.7, 0.8)

M (0.3, 0.4, 0.2)
L (0.7, 0.6, 0.6)
VL (0.0, 0.0, 0.2)

S (0.3, 0.4, 0.1)
M (0.7, 0.6, 0.7)
L (0.0, 0.0, 0.2)

Slip

L
VL (0.1, 0.3, 0.0)
VVL (0.9, 0.7, 1.0)

L (0.1, 0.2, 0.2)
VL (0.9, 0.8, 0.8)

L (0.8, 0.7, 0.6)
VL (0.2, 0.3, 0.4)

S (0.0, 0.1, 0.0)
M (0.9, 0.8, 0.85)
L (0.1, 0.1, 0.15)

Table 5.1 Typical rule-base and rule confidences obtained after training. Rule confidences are shown in brackets in the following
order: (i) weights after off-line supervised training; (ii) weights found from on-line reinforcement learning while interacting with the
environment; and (iii) weights found from hybrid of supervised and reinforcement learning.

To answer the question of which system is the best, the three learning
methods were tested under two conditions: normal (i.e., same conditions as
they were trained for) and environmental change (i.e., simulated sensor
failure). The first condition evaluates the systems’ learning speed while the
second one tests their robustness to unanticipated operating conditions.
Performances were investigated by manually introducing several distur-
bances of various intensities acting on the object to induce slip. For all the
tests, the experimenter must attempt to reproduce the same pattern of man-
ual disturbance inducing slip at different times so that different conditions
can be compared. This is clearly not possible to do precisely. (It was aided
by using an audible beep from the computer to prompt the investigator and
to act as a timing reference.) To allow easy comparison of these slightly
different experimental conditions, we have aligned plots on the major in-
duced disturbance, somewhat arbitrarily fixed at 3 s.

The solid line of Figure 5.10 shows typical performance of the super-
vised learning system under normal conditions; the dashed line shows op-
eration when a sensor failure is introduced at about 5.5 s. The system
learned how to perform under normal conditions but when there is a
change in the environment, it is unable to adapt to this change unless re-
trained with new data which include the change.

Figure 5.11 shows the performance of the system trained with rein-
forcement learning during the first interaction (solid) and fifth interaction
(dashed) after the simulated sensor failure. To simulate continuous on-line
learning but in a way which allows comparison of results as training pro-
ceeds, we broke each complete RL trial into a series of ‘interactions’. After
each such interaction, lasting approximately 6 s, the rule base and rule con-
fidence vector obtained were then used as the start point for reinforcement
learning for the next interaction. (Note that the first interaction after a sen-
sor failure is actually the second interaction in real terms.) Simulated sen-
sor failure were introduced at approximately 5.5 s during the (absolute)
first interaction. As can be seen, during the first interaction following a
failure, the object dropped just before 6 s. There is a rapid fall off of resul-
tant force (Figure 5.11(b)) while the control action (end effector motor
voltage) saturates (Figure 5.11(c)). The control action is ineffective be-
cause the object is no longer present, having been dropped. By the fifth in-
teraction after a failure, however, an appropriate control strategy has been
learned. Effective force is applied to the object using a moderate motor
voltage. The controller learns that it is not applying as much force as it
‘thinks’. This result demonstrates the effectiveness of on-line reinforce-
ment learning, as the system is able to perform a successful grip in re-
sponse to an environmental change and manually-induced slip.

5 Intelligent Neurofuzzy Control of a Robotic Gripper 177

0 1 2 3 4 5 6
0

2

4

6

8

10

Time (s)

S
lip

 r
at

e
(m

m
/s

)

(a) Object slip

0 1 2 3 4 5 6

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

Time (s)

A
pp

lie
d

m
ot

or
 v

ol
ta

ge
 (

V
)

(b) Motor terminal voltage

0 1 2 3 4 5 6
0

500

1000

1500

2000

2500

Time (s)

A
pp

lie
d

fo
rc

e
(m

N
)

(c) Resulting force

Figure 5.10 Typical performance with supervised learning under normal condi-
tions (solid line) and with sensor failure at about 5.5s. (a) slip initially induced by
manual displacement of the object; (b) control action (applied motor voltage); (c)
resulting force applied to the object. Note that the manually induced slip is not
precisely the same in the two cases because it was not possible for the experi-
menter to reproduce this exactly.

178 J. A. Domínguez-López, R.I. Damper, R.M. Crowder and C.J. Harris

0 1 2 3 4 5 6
0

1

2

3

4

5

6

7

8

Time (s)

S
lip

 r
at

e
(m

m
/s

)

(a) Object slip

0 1 2 3 4 5 6

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

Time (s)

A
pp

lie
d

m
ot

or
 v

ol
ta

ge
 (

V
)

(b) Motor terminal voltage

0 1 2 3 4 5 6
0

500

1000

1500

2000

2500

Time (s)

A
pp

lie
d

fo
rc

e
(m

N
)

(c) Resulting force

Figure 5.11. Typical performance with reinforcement learning during the first in-
teraction (solid line) and the fifth interaction (dashed line) after sensor failure: (a)
slip initially induced by manual displacement of the object; (b) control action (ap-
plied motor voltage); (c) resulting force applied to the object.

5 Intelligent Neurofuzzy Control of a Robotic Gripper 179

0 1 2 3 4 5 6 7 8
0

2

4

6

8

10

Time (s)

S
lip

 r
at

e
(m

m
/s

)

(a) Object slip

0 1 2 3 4 5 6 7 8

0

1

2

3

4

Time (s)

A
pp

lie
d

m
ot

or
 v

ol
ta

ge
 (

V
)

(b) Motor terminal voltage

0 1 2 3 4 5 6 7 8
0

500

1000

1500

2000

Time (s)

A
pp

lie
d

fo
rc

e
(m

N
)

(c) Applied force

Figure 5.12 Comparison of typical results of hybrid learning (solid line) and su-
pervised learning (dashed line) during the first interaction after a sensor failure: (a)
slip initially induced by manual displacement of the object; (b) control action (ap-
plied motor voltage); (c) resulting force applied to the object.

180 J. A. Domínguez-López, R.I. Damper, R.M. Crowder and C.J. Harris

Figure 5.12 shows the performance of the hybrid trained system during
the first interaction after a failure (solid line) and compares it with the per-
formance of the system trained with supervised learning (dashed line).
Note that the latter result is identical to that shown by the full line in Fig-
ure 5.10. It is clear that the hybrid trained system is able to adapt itself to
this disturbance where the supervised trained system is unable to adapt and
fails, dropping the object.

The important conclusions drawn from this work on the real gripper are
as follows. For the system to have on-line adaptation to unanticipated con-
ditions, its training has to be unsupervised. (For our purposes, we count
reinforcement learning as unsupervised.) The use of a priori knowledge
to seed the initial rules helps to achieve quicker neurofuzzy learning. The
use of knowledge about good control actions, gained during system
operation, can also improve on-line learning. For all these reasons, a
hybrid of unsupervised and reinforcement learning should be superior to
the other methods. This superiority is obvious when the hybrid is
compared against off-line supervised learning.

5.6 Simulation of Gripper and Six Degree of Freedom
Robot

Thus far, the gripper studied has been very simple, with a two-input, one-
output control action and a single degree of freedom. We wished to con-
sider more complex and practical setups, such as when the gripper is
mounted on a full six degree of freedom robot and has more sensor capa-
bilities (e.g., accelerometer). A particular reason for this is that neurofuzzy
systems are known to be subject to the well-known curse of dimensionality
[32, 33] whereby required system resources grow exponentially with prob-
lem size (e.g., the number of sensor inputs). To avoid the considerable cost
of studying these issues with a real robot, this part of the work was done
by software simulation.

A simulation of a 6 DOF robot was developed to have the effects of the
robot movements and orientation on the gripping process of the end effec-
tor and to avoid the considerable cost of building the full manipulator. The
experiments reported here were undertaken under two conditions: external
forces acting on the object (with the end effector stationary), and vertical
end effector acceleration.

Four approaches are evaluated for the gripper controller with the pres-
ence of end effector acceleration:

5 Intelligent Neurofuzzy Control of a Robotic Gripper 181

i. traditional approach without accelerometer;
ii. traditional approach with accelerometer;

iii. approach with accelerometer and hierarchical modelling;
iv. hierarchical approach with acceleration control.

These are described in the following sections. As the situation studied is
virtual, we do not have any labelled data suitable for supervised training.
Hence, the four approaches are trained using reinforcement learning. The
Markov decision process is the only component which remains identical
for all the approaches. The action selection network and the action evalua-
tion network are modified to reflect the new input.

5.6.1 Approach without acceleration feedback

Figure 5.13 shows the high-level structure of the neurofuzzy controller
used in the previous section (Figure 5.9). This controller is the simplest of
all the approaches discussed here: It has only information of the object slip
rate and the force applied to the object, so it ‘sees’ the end effector accel-
eration as any other external disturbance.

Inference
machine

Applied
force

Slip
rate

Motor
voltage

Figure 5.13 High-level structure of the neurofuzzy controller used in conjunction
with the real (two-input) gripper.

We now wish to add a new input: the end effector vertical acceleration
(i.e., in the z-direction). This has the memberships Negative Large (NL),
Negative Small (NS), Z, S and L. The density of this fuzzy set is medium
[8, p108] so it should be possible to avoid having an excessively complex
rule base. For the current conditions, the total number of combinations in
the antecedent part is 100 and the possible number of rules is P = 700, ac-
cording to ∏= =

3
1i iNP (see caption of Figure 5.3). Because of the addi-

tion of the extra input, a different Action Evaluation Network is required,
as shown in Figure 5.14. Again, the input state vector is normalised so the
inputs lie in the range [0,1].

182 J. A. Domínguez-López, R.I. Damper, R.M. Crowder and C.J. Harris

The rule base and confidences obtained after training the neurofuzzy
controller without accelerometer for 20 minutes, after which time learning
had stabilised, are shown in Table 5.2. The dashed line of shows a typical
performance of this neurofuzzy controller. While the end effector was sta-
tionary, an external force of 10N was applied to the object at 3 seconds
with an other external force of -10N being applied to the object as 5 sec-
onds as described in Section 5.2.2. Both external forces induce slip of
about the same intensity but with opposite directions. The system is able to
grasp the object properly despite the induced disturbances. After 6 sec-
onds, the end effector was subjected to a particular pattern of vertical ac-
celerations as shown in Figure 15(d). The disturbances are standard for
testing all four controllers. As the system does not have acceleration feed-
back, it sees acceleration as any other external disturbance, like a force on
the object. Although, the system manages to keep the object grasped, the
continual presence of acceleration had made the object slip considerably.

v(t)
x2

Acceleration

Force

Voltage

x3

x4

x1

Slip

1y

2y

3y

4
y

5
y

6y

7y

a12

a11

a47

c1

c2

c3

c4

c
6

c5

c7

b2

b1

b3

b4
Figure 5.14 Action evaluation network for the three-input neurofuzzy controller.

5 Intelligent Neurofuzzy Control of a Robotic Gripper 183

Fingertip force Voltage

Z S M L

Z VL(0.4)
VVL(0.6)

M (0.4)
L (0.6)

NVS (0.4)
Z (0.6)

NVS (0.8)
Z (0.2)

AN
L (0.2)
VL (0.8)

S (0.25)
M (0.5)
L (0.25)

Z (0.3)
VS (0.6)
S (0.1)

Z (0.8)
VS (0.2)

S
M (0.2)
L (0.6)
VL (0.2)

M (0.3)
 L (0.7)

S (0.4)
M (0.6)

VS (0.5)
S (0.5)

M
L (0.1)
VL (0.8)
VVL(0.1)

L (0.3)
VL (0.7)

M (0.3)
L (0.6)
VL (0.1)

S (0.4)
M (0.6)

Slip

L VL (0.2)
VVL(0.8)

L (0.1)
VL (0.9)

L (0.7)
VL (0.3)

M (0.8)
L (0.2)

Table 5.2 Rule-base and rule confidences (in brackets) found after reinforcement
learning for the controller without acceleration feedback

5.6.2 Approach with accelerometer

The controller described in Section 5.6.1 cannot distinguish the end effec-
tor vertical acceleration from any external disturbance acting on the object.
If the controller had knowledge of the acceleration such as would provided
by an accelerometer, it might be able to react in advance to that distur-
bance. Accordingly, in this section, a controller which uses acceleration in-
formation is developed. The proposed controller is shown in Figure 5.15.
This is the traditional approach: It integrates all the inputs into one single
fuzzy machine.

For neurofuzzy controllers with more than two inputs, to express the ob-
tained rule base in tabular form, the rule base has to be separated into sev-
eral tables. The minimum number of tables required is equal to the number
of memberships of the smallest fuzzy set. The smallest fuzzy set is the one
which has the least number of memberships. Another option (for the three-
input case) is to put the rule base into a single table with several rule con-
fidences, each one corresponding to a fuzzy set of the third fuzzy variable.
A problem with this approach is that there may be many rules with zero
confidence. Table 5.3 shows the obtained rule base after training for 38
minutes, after which time learning had stabilised. Each rule has four confi-

184 J. A. Domínguez-López, R.I. Damper, R.M. Crowder and C.J. Harris

dences corresponding to (i) applied force is Zero; (ii) applied force is
Small; (iii) applied force is Medium; and (iv) applied force is Large.

Inference
machine

Applied
force

Slip
rate

Motor
voltage

End effector
acceleration
Figure 5.15. Traditional approach for a neurofuzzy controller with three inputs.

The solid lines of Figure 5.16 show typical performance of the system
without acceleration feedback, whereas the dashed lines depict the situa-
tion with such feedback. Again, the standard pattern of disturbances is ap-
plied: an external force of approximately 10 While the end effector was
stationary, an external force of 10N was applied to the object at 3 seconds
with an other external force of -10N being applied to the object as 5 sec-
onds with the end effector stationary. These external forces induce slip of
about the same intensity but with opposite directions. The system is able to
grasp the object properly despite the induced disturbances. After 6 sec-
onds, the end effector was subjected to a particular pattern of vertical ac-
celerations as shown in Figure 5.16(d). The neurofuzzy controller with ac-
celeration feedback increase the motor terminal voltage and so the applied
force when the end effector starts accelerating, and does so earlier than the
system without such feedback (Figures 5.16(b) and 5.16(c)). This reduces
the extent of the slippage, as shown in the latter part of Figure 5.16(a). The
system prevents almost perfectly the object slippage due to negative
acceleration: Only the positive acceleration is able to induce significant
slip.

5 Intelligent Neurofuzzy Control of a Robotic Gripper 185

0 1 2 3 4 5 6 7 8 9 10
−8

−6

−4

−2

0

2

4

6

8

Time (s)

S
lip

 r
at

e
(c

m
/s

)

(a) Object slip

0 1 2 3 4 5 6 7 8 9 10
−2

−1

0

1

2

3

4

Time (s)

A
pp

lie
d

m
ot

or
 v

ol
ta

ge
 (

V
)

(b) End effector motor terminal voltage

0 1 2 3 4 5 6 7 8 9 10
0

500

1000

1500

2000

2500

3000

3500

Time (s)

A
pp

lie
d

fo
rc

e
(m

N
)

(c) Applied force

0 1 2 3 4 5 6 7 8 9 10
−30

−20

−10

0

10

20

Time (s)

E
nd

 e
ffe

ct
or

 v
er

tic
al

 a
cc

el
er

at
io

n
(m

/s
2)

(d) Vertical acceleration]

Figure 5.16 Simulated results for the system without information of the end effec-
tor vertical acceleration (solid) and the system with (dashed): (a) object slip
behaviour; (b) control action (applied motor voltage); (c) resulting force applied to
the object; (d) end effector vertical acceleration.

Applied force Voltage
Z S M L

Z
VL (0.3, 0.4, 0.4, 0.3, 0.25)
VVL (0.7, 0.6, 0.6, 0.7, 0.75)

M (0.1, 0.3, 0.4, 0.3, 0.3)
L (0.9, 0.7, 0.6, 0.7, 0.5)
VL (0.0, 0.0, 0.0, 0.0, 0.2)

NVS (0.3, 0.4, 0.4, 0.3, 0.1)
Z (0.7, 0.6, 0.6, 0.7, 0.9)

NVS (0.7, 0.8, 0.8, 0.7, 0.5)
Z (0.3, 0.2, 0.2, 0.3, 0.5)

AN
L (0.1, 0.2, 0.2, 0.15, 0.1)
VL (0.9, 0.8, 0.8, 0.85, 0.9)

S (0.1, 0.2, 0.25, 0.1, 0.0)
M (0.4, 0.4, 0.5, 0.5, 0.4)
L (0.5, 0.4, 0.25, 0.4, 0.6)

Z (0.1, 0.2, 0.3, 0.2, 0.1)
VS (0.8, 0.7, 0.6, 0.7, 0.7)
S (0.1, 0.1, 0.1, 0.1, 0.2)

Z (0.6, 0.8, 0.8, 0.6, 0.5)
VS (0.3, 0.1, 0.2, 0.4, 0.4)
S (0.1, 0.1, 0.0, 0.0, 0.1)

S
M (0.1, 0.1, 0.2, 0.1, 0.0)
L (0.6, 0.7, 0.6, 0.7, 0.7)
VL (0.3, 0.2, 0.2, 0.2, 0.3)

M (0.1, 0.2, 0.3, 0.3, 0.1)
L (0.8, 0.7, 0.7, 0.6, 0.7)
VL (0.1, 0.0, 0.0, 0.1, 0.2)

S (0.2, 0.3, 0.4, 0.2, 0.1)
M (0.8, 0.7, 0.6, 0.8, 0.7)
L (0.0, 0.0, 0.0, 0.0, 0.2)

VS (0.3, 0.4, 0.5, 0.4, 0.2)
S (0.6, 0.6, 0.5, 0.5, 0.7)
M (0.1, 0.0, 0.0, 0.1, 0.1)

M
L (0.0, 0.1, 0.1, 0.0, 0.0)
VL (0.8, 0.75, 0.8, 0.9, 0.7)
VVL (0.2, 0.15, 0.1, 0.1, 0.3)

L (0.1, 0.2, 0.3, 0.1, 0.0)
VL (0.9, 0.8, 0.7, 0.9, 0.9)
VVL (0.0, 0.0, 0.0, 0.0, 0.1)

M (0.1, 0.2, 0.3, 0.2, 0.1)
L (0.8, 0.7, 0.6, 0.7, 0.7)
VL (0.1, 0.1, 0.1, 0.1, 0.2)

S (0.3, 0.3, 0.4, 0.3, 0.1)
M (0.6, 0.7, 0.6, 0.6, 0.7)
L (0.1, 0.0, 0.0, 0.1, 0.2)

Slip

L
VL (0.15, 0.2, 0.2, 0.2, 0.1)
VVL (0.85, 0.8, 0.8, 0.8, 0.9)

L (0.0, 0.0, 0.1, 0.0, 0.0)
VL (0.8, 0.9, 0.9, 0.8, 0.6)
VVL (0.2, 0.1, 0.0, 0.2, 0.4)

M (0.0, 0.0, 0.0, 0.0, 0.2)
L (0.9, 0.8, 0.7, 0.9, 0.8)
VL (0.1, 0.2, 0.3, 0.1, 0.0)

M (0.3, 0.5, 0.8, 0.4, 0.2)
L (0.7, 0.5, 0.2, 0.6, 0.8)

Table 5.3 Typical rule-base and rule confidences obtained after training. Rule confidences are shown in brackets in the following
order: end effector vertical acceleration is (i) NL (Negative Large), (ii) NS (Negative Small), (iii) Z (Zero), (iv) S (Small), (v) L
(Large).

Comparing the performances of the system with and without acceleration
feedback, we conclude the following. When there is no end effector accel-
eration, both systems perform similarly. In the presence of end effector ac-
celeration, the system with acceleration feedback is able to eliminate or re-
duce the slippage. However, this improvement has come at the price of
having now 700 possible rules whereas before there were only 140 possi-
ble rules. So, there is a trade-off between simplicity of the system and a
better performance. Nevertheless, this application involving three inputs is
still considered a low-dimensional problem [8, p108]; the 700 possible
rules demand modest memory and processing time. Accordingly, the me-
chanical response is not affected by undue processing delay.

5.6.3 Approach with accelerometer and hierarchical modelling

Hierarchical control divides a problem into several simpler subproblems:
High dimensional complex systems are divided into several low dimen-
sional subsystems. Hence, this is an attractive technique to identify parsi-
monious neurofuzzy models [34-37].

Inference
machine

Applied
force

Slip
rate

Motor
voltage

End effector
acceleration

Inference
machine

Inference
machine

Subnetwork X

Subnetwork Y

Subnetwork Z

Figure 5.17 Traditional hierarchical model for the neurofuzzy controller with
three inputs.

Inference
machine

Applied
force

Slip
rate

Motor
voltage

End effector
acceleration

Inference
machine

+

Motor
voltage

% increase

Subnetwork B

Subnetwork A

Figure 5.18 Proposed hierarchical model for the three-input neurofuzzy control-
ler.

188 J. A. Domínguez-López, R.I. Damper, R.M. Crowder and C.J. Harris

In the previous section, we saw how the addition of one input to the
neurofuzzy controller results in a bigger and more complex rule base. Fig-
ure 5.17 shows a neurofuzzy hierarchical structure commonly used to
overcome the curse of dimensionality, adapted for the control of our grip-
per with acceleration feedback. The outputs of the subnetworks X and Y
form the inputs of the subnetwork Z. With this approach, the addition of an
input variable increases linearly the number of rules. However, the overall
network training is difficult as the outputs are complex nonlinear functions
of the weights [37, 38]. Consequently, the idea of multiplying the outputs
of the subnetworks to generate the overall network output is used here, see
Figure 5.18. This design is based on previous results, which have shown
that the gripper controller has to increase the motor voltage when the ac-
celeration increases.
In a neurofuzzy hierarchical structure, the rule base increases linearly, so
the density of the end effector acceleration fuzzy set can be finer. Conse-
quently, this fuzzy set has now seven memberships: NL, Negative Medium
(NM), NS, Z, S, M and L, and the (new) subnetwork B output set (i.e., per-
centage increase in motor voltage) has the memberships Z, S, M and L.
The total possible number of rules of the entire network is equal to 188.
Accordingly, there has been a considerable reduction of the rule base in
comparison with the approach of Section 5.6.2.

v(t)

x1

Acceleration

% increase

x2

1y

2y

3y

4
y

5
y

c1

c2

c3

c4

c5

b1

b2

a12

a11

a25

Figure 5.19 Action Evaluation Network for the neurofuzzy subnetwork B.

5 Intelligent Neurofuzzy Control of a Robotic Gripper 189

Fingertip force Voltage
Z S M L

Z VL(0.4)
VVL(0.6)

M (0.5)
L (0.5)

NVS (0.4)
Z (0.6)

NVS (0.75)
Z (0.25)

AN
L (0.2)
VL (0.8)

S (0.3)
M (0.6)
L (0.1)

Z (0.4)
VS (0.6)

NVS (0.1)
Z (0.8)
VS (0.1)

S
M (0.1)
L (0.6)
VL (0.3)

M (0.3)
L (0.6)
VL (0.1)

S (0.5)
M (0.5)

VS (0.5)
S (0.5)

M
L (0.1)
VL (0.8)
VVL(0.1)

L (0.3)
VL (0.7)

M (0.4)
L (0.6)

S (0.3)
M (0.6)
L (0.1)

Slip

L
VL (0.1)
VVL(0.9)

L (0.1)
VL (0.9)

L (0.6)
VL (0.4)

S (0.1)
M (0.8)
L (0.1)

Table 5.4 Rule-base and rule confidences (in brackets) found after reinforcement
learning for the neurofuzzy subnetwork A.

 End effector vertical acceleration
 NL NM NS Z S M L

Z 0.0 0.05 0.2 0.95 0.1 0.0 0.0
S 0.0 0.25 0.7 0.05 0.8 0.25 0.0
M 0.2 0.6 0.1 0.0 0.1 0.6 0.1

%
increase

L 0.8 0.1 0.0 0.0 0.0 0.15 0.9

Table 5.5 Rule-base and rule confidences (in brackets) found after reinforcement
learning for the neurofuzzy subnetwork B.

The training of subnetworks A and B is identical to the training of the
previous neurofuzzy systems, but subnetwork B has a different Action
Evaluation Network, as shown in Figure 5.19. In the neurofuzzy hierarchi-
cal controller, each subnetwork has an independent rule base. Tables 5.4
and 5.5 show the rule bases obtained after 30 minutes of training, for the
subnetworks A and B, respectively. The two subnetworks were trained
simultaneously.

In, Figure 5.20 the dashed line shows typical performance of the neuro-
fuzzy hierarchical controller compared with that of the controller described
in Section 5.6.2. Again, with the end effector stationary, two external

190 J. A. Domínguez-López, R.I. Damper, R.M. Crowder and C.J. Harris

0 1 2 3 4 5 6 7 8 9 10
−8

−6

−4

−2

0

2

4

6

8

Time (s)

S
lip

 r
at

e
(c

m
/s

)

(a) Object slip

0 1 2 3 4 5 6 7 8 9 10
−2

−1

0

1

2

3

4

Time (s)

A
pp

lie
d

m
ot

or
 v

ol
ta

ge
 (

V
)

(b) End effector motor terminal voltage

0 1 2 3 4 5 6 7 8 9 10
0

500

1000

1500

2000

2500

3000

3500

Time (s)

A
pp

lie
d

fo
rc

e
(m

N
)

(c) Applied force

0 1 2 3 4 5 6 7 8 9 10
−30

−20

−10

0

10

20

Time (s)

E
nd

 e
ffe

ct
or

 v
er

tic
al

 a
cc

el
er

at
io

n
(m

/s
2)

(d) Vertical acceleration

Figure 5.20 Simulated results for the system with information about the end effec-
tor vertical acceleration (solid) and the neurofuzzy hierarchical controller with end
effector acceleration feedback (dashed): (a) object slip behaviour; (b) control ac-
tion (applied motor voltage); (c) resulting force applied to the object; (d) end ef-
fector vertical acceleration.

forces are applied to the object to induce slip: 10 N at 3 seconds and -10 at
5 seconds. The system is capable of performing a stable grip despite these
disturbances, After 6 seconds, the end effector is subjected to the same pat-

5 Intelligent Neurofuzzy Control of a Robotic Gripper 191

tern of acceleration as before. Again, this controller is able to mange excel-
lently the negative acceleration, and reduce slippage for the positive accel-
eration. The neurofuzzy hierarchical system was not only able to reduce
the number of rules but also give a slight improvement in the system per-
formance.

Neurofuzzy
controller

(2)

Neurofuzzy
controller

(1)
Applied force

Slip rate

Acceleration
Applied motor

voltage (gripper)

Suggested
end effector
acceleration

Limiter

Desired
end effector
acceleration

maximum
acceleration| |

Figure 5.21 Hierarchical framework to improve the performance of the end effec-
tor, controlling its maximum acceleration.

5.6.4. Hierarchical approach with acceleration control

As end effector acceleration can induce slippage, it is worth considering
controlling the end effector acceleration. Object slippage can be reduced if
more force is applied to the object. However, there is a limit to the force
that the gripper can apply because:

• the object can be crushed if large force is applied;
• the object can slip if the gripper cannot apply more force because

of mechanical limits.
As result, there is also a limit in the end effector acceleration to ensure a

stable gripping. Accordingly, a hierarchical framework to limit the maxi-
mum end effector acceleration is proposed, as shown in Figure 5.21. This
design features two neurofuzzy controllers. Neurofuzzy controller (1) is
the neurofuzzy hierarchical controller described in Section 5.6.3. Neuro-
fuzzy controller (2) is responsible for calculating the maximum end effec-
tor acceleration that the gripper can exert yet still guarantee stable grip-
ping.

The output set of Neurofuzzy controller (2) is the maximum absolute
acceleration ()maxa . The absolute value of the maximum acceleration is

192 J. A. Domínguez-López, R.I. Damper, R.M. Crowder and C.J. Harris

used to have a more transparent network. It has four memberships: Z, S, M
and L. The output of the limiter, i.e., the suggested end effector accelera-
tion, sa as, is given by:

)asgn()a,amin(a ddmax=
where da is the desired end effector vertical acceleration. This value
comes from another level of the robot controller, for instance, path or task
planning. Figure 5.22 shows the AEN of Neurofuzzy controller (2).

v(t)

1

x1

Suggested
acceleration

Force

Voltage

x2

x3

y

2y

3y

4
y

5
y

c1

c2

c3

c4

c5

a12

a11

a35

b1

b2

b3
Figure 5.22. Action evaluation network for Neurofuzzy controller (2) shown in
Figure 5.21.

Applied motor voltage max-min

NVS Z VS S M L VL VVL

Z Z (1.0) Z (0.9)
S (0.1)

Z (0.85)
S (0.15)

Z (0.8)
S (0.2

Z (0.7)
S (0.3)

Z (0.6)
S (0.4)

Z (0.6)
S (0.4)

Z (0.7)
S (0.3)

S L (0.9)
M (0.1)

L (0.9)
M (0.1)

L (0.85)
M (0.15)

L (0.8)
M (0.2)

L (0.8)
M (0.2)

L (0.7)
M (0.3)

L (0.5)
M (0.5)

L (0.4)
M (0.6)

M
L (0.6)
M (0.4)

L (0.5)
M (0.5)

L (0.4)
M (0.5)
S (0.1)

L (0.2)
M (0.6)
 S (0.2)

L (0.1)
M (0.6)
S (0.3)

M (0.5)
S (0.5)

M (0.1)
S (0.8)
Z (0.1)

S (0.6)
Z (0.4)

Fingertip
force

L Z (0.2)
S (0.8)

Z (0.4)
S (0.6)

Z (0.6)
S (0.4)

Z (0.7)
S (0.3)

Z (0.8)
S (0.2)

Z (0.8)
S (0.2)

Z (0.95)
S (0.05)

Z (1.0)

Table 5.6 Rule-base and rule confidences (in brackets) found after reinforcement learning for the Neurofuzzy controller(2) in Figure
5.21.

0 1 2 3 4 5 6 7 8 9 10
−8

−6

−4

−2

0

2

4

6

8

Time (s)

S
lip

 r
at

e
(c

m
/s

)

(a) Object slip

0 1 2 3 4 5 6 7 8 9 10
−2

−1

0

1

2

3

4

Time (s)

A
pp

lie
d

m
ot

or
 v

ol
ta

ge
 (

V
)

(b) End effector motor terminal voltage

0 1 2 3 4 5 6 7 8 9 10
0

500

1000

1500

2000

2500

3000

3500

Time (s)

A
pp

lie
d

fo
rc

e
(m

N
)

(c) Applied force

0 1 2 3 4 5 6 7 8 9 10
−30

−20

−10

0

10

20

Time (s)

E
nd

 e
ffe

ct
or

 v
er

tic
al

 a
cc

el
er

at
io

n
(m

/s
2)

(d) Vertical acceleration: desired (dashed), suggested (solid)

Figure 5.23 Simulated results for the hierarchical controller with (solid) and with-
out (dashed) end effector acceleration limitation: (a) object slip behaviour; (b)
control action (applied motor voltage); (c) resulting force applied to the object; (d)
end effector vertical acceleration.

196 J. A. Domínguez-López, R.I. Damper, R.M. Crowder and C.J. Harris

Both neurofuzzy controllers share the same Markov decision process.

Neurofuzzy controller (1) is trained first; once its training has been com-
pleted, Neurofuzzy controller (2) is trained. If the two neurofuzzy control-
lers were trained simultaneously, it would be impossible to determine
which controller was responsible for either failure or success. Table 5.6
shows the Neurofuzzy controller (2) rule base and rule confidences found
after 45 minutes of reinforcement learning. The rule base of Neurofuzzy
controller (1) corresponds to that of the neurofuzzy hierarchical controller
(Tables 5.4 and 5.5). Figure 5.23 shows typical performance with and
without acceleration limitation, subjected to the the standard pattern of dis-
turbances. As illustrated by the dashed line in Figure 5.23(a), the hierar-
chical end effector controller was able to eliminate the object slippage due
to end effector vertical acceleration.

5.7 Conclusions

Robotic grippers are commonly used to restrain and manipulate a variety
of objects under a wide range of conditions. Accordingly, robotic end ef-
fectors are required to be capable of considerable gripping dexterity within
an unstructured environment. The variety of objects and working condi-
tions that might be met in practice make it impossible to foresee all the
situations the system might encounter. Therefore, robotic systems need to
be capable of dynamic adaptation to external disturbances, changing cir-
cumstances and unforeseen situations. Ideally, the system should learn its
adaptive behaviour on-line, through interaction with its environment,
without the supervision of a ‘teacher’. This becomes vital when labelled
training data are not available. However, when such training data are
available, they can profitably be used to provide seed weights for on-line
learning. Reinforcement learning is an effective way to train the neuro-
fuzzy system on-line, facilitating adaptation to unexpected conditions. Its
use led to successful control in situations where the supervised learning
system failed.

Looking to have a faster adaptation to environmental changes, we have
implemented a hybrid learning approach which uses both supervised and
reinforcement learning. The combination of these two training algorithms
allows the system to make good use of effective control actions discovered
during operation. These can be considered as ‘labelled’ data since a record
of inputs and outputs is continually kept over a preceding (three-second)
period. The supervised learning scheme ran ‘in the background’ and was

5 Intelligent Neurofuzzy Control of a Robotic Gripper 197

only allowed to overwrite the results of reinforcement learning if the corre-
sponding neurofuzzy network weights were not too dissimilar. In this way,
the hybrid system can ‘ignore’ inconsistent (labelled) data. In addition,
stability can be maintained (although not guaranteed) in the absence of a
precise mathematical model of the system. The performance of the hybrid
system was surprisingly good, recovering from simulated sensor failure
much faster than the ‘pure’ reinforcement learning system.

In practice, all robot applications require end effector movement, so
there will be end effector acceleration, which can induce slippage. Conse-
quently, it is vital to validate the gripper controller under that condition. A
controller without any information of the end effector acceleration treats
this disturbance as any other (i.e., external force acting on the object). Al-
though this controller is able to respond adequately over short time peri-
ods, the continuous presence of acceleration could lead to the object slip-
ping from the gripper. We therefore developed an approach using end
effector acceleration feedback, integrating this extra input in the same
fuzzy machine. This controller is indeed able to discover that in the exis-
tence of acceleration, it has to apply more force. Thus, slippage is reduced.
However, this improvement is at the cost of increasing the rule base, so re-
ducing network transparency. At this point, the dilemma between model
simplicity and model accuracy is evident. Hence, a parsimonious neuro-
fuzzy hierarchical controller was proposed. With this approach, the num-
ber of rules was smaller than required by the traditional neurofuzzy con-
troller with acceleration feedback. The parsimonious controller had an
excellent performance, allowing only slight slippage.

As with any large external force acting on the object, high accelerations
of the effector will lead to slippage of the grasped object. The control
technique proposed to solve this problem is again hierarchical. The addi-
tion of a controller in charge of limiting the end effector acceleration im-
proved noticeably the overall performance. However, such limitation
strategies may have other unintended effects on the general performance of
the robot. For instance, if the robot is path following, imposing a limit on
acceleration places restrictions on the robot capabilities.

In conclusion, it is apparent that when the system has knowledge of a
disturbance (i.e., acceleration), it is able to take a better action than when it
is ignorant of such a disturbance. In the same way, when the system is able
to modify the disturbance, it can help the controller to perform properly.
Finally, the curse of dimensionality affects not only the system transpar-
ency but also its learning speed and effectiveness. If the number of inputs
increases, the system complexity increases too. A more complex system
means that there are more possible neurons, weights and rules. Conse-

198 J. A. Domínguez-López, R.I. Damper, R.M. Crowder and C.J. Harris

quently, the learning problem is made harder. These drawbacks can be re-
duced using parsimonious adaptive/product models.

References

1. Bicchi, A., V. Kumar, and IEEE, Robotic Grasping and Contact: A Review, in
International Conference on Robotics & Automation. 2000: San Fransico. p.
348-53.

2. Dubey, V.N., Sensing and Control Within a Robotic End Effector, in Depart-
ment of Electrical Engineering. 1997, University of Southampton: Southamp-
ton, UK.

3. Chappell, P.H., M.M. Fateh, and R.M. Crowder, Kinematic Control of a
Three-Fingered and Fully Adaptive End-Effector Using a Jacobian Matrix.
Mechatronics, 2001. 11(3): p. 355-368.

4. Dollar, A. and R. Howe, Towards Grasping in Unstructured environments:
Optimization of Frasper Compliance and Configuration, in IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems. 2003: Las Vegas,
Navada. p. 3410-6.

5. Nefti, S., et al., Intelligent Adaptive Mobile Robot Navigation. Journal of In-
telligent and Robotic Systems, 2001. 30(4): p. 311-329.

6. Brown, M. and C.J. Harris, Neurofuzzy Adaptive Modelling and Control.
1994, Hemel Hempstead, UK: Prentice Hall.

7. Kecman, V., Learning and Soft Computing. 2001, Cambridge, MA: MIT
Press/Bradford Books.

8. Harris, C.J., X. Hong, and Q. Gan, Adaptive Modelling, Estimation and Fu-
sion from Data: A Neurofuzzy Approach. 2002, Berlin and Heidelberg, Ger-
many: Springer-Verlag.

9. Crowder, R.M., Sensors: Touch, Force, and Torque, in Handbook of Industrial
Automation, R.L. Shell and E.L. Hall, Editors. 2000, Marcel Dekker: New
York, NY. p. 377-392.

10. Domínguez-López, J.A., Intelligent Neurofuzzy Control in Robotic Manipula-
tors, PhD in School of Electronics and Computer Science. May 2004, Univer-
sity of Southampton: Southampton.

11. Brown, M. and C. Harris, Neurofuzzy Adaptive Modelling and Control. 1994,
Hertfordshire, UK: Prentice Hall International.

12. Kecman, V., Learning and Soft Computing: Support Vector Machines, Neural
Networks, and Fuzzy Logic Models. 2001, Boston, MA: MIT Press.

13. Jantzen, J., Neurofuzzy Modelling. 1998, Department of Automation, Techni-
cal University of Denmark,: Lyngby, Denmark.

14. Driankov, D., H. Hellendoorn, and M. Reinfrank, An Introduction to Fuzzy
Control. 1993, London, UK: Springer-Verlag.

15. Haykin, S., Neural Networks A Comprehensive Foundation. 1999, Upper
Saddle River, NJ: Prentice-Hall.

5 Intelligent Neurofuzzy Control of a Robotic Gripper 199

16. Domínguez-López, J.A., et al. Hybrid neurofuzzy online learning for optimal
grasping. in Proceedings of IEEE International Conference on Machine
Learning and Cybernetics. 2003. Xi'an, China.

17. Kasabov, N., Evolving Fuzzy Neural Networks for Supervised/Unsupervised
Online Knowledge-Based Learning. IEEE Transactions on Systems, Man, and
Cybernetics, 2001. 31(6): p. 902-918.

18. Hertz, J., A. Krogh, and R.G. Palmer, Introduction to the Theory of Neural
Computation. 1991, Reading, MA: Addison-Wesley.

19. Rumelhart, D.E., G.E. Hinton, and R.J. Williams, Learning representations by
back-propagating errors. Nature, 1986. 323(9): p. 533-536.

20. Chen, O.T.-C. and B.J. Sheu, Optimization Schemes for Neural Network
Training, in IEEE International Conference on Neural Networks. 1994: Or-
lando, FL. p. 817-822.

21. Sutton, R.S. and A.G. Barto, Reinforcement Learning: An Introduction. 2000,
Cambridge, MA: MIT Press.

22. Sutton, R.S., Reinforcement learning architectures for animats, in From Ani-
mals to Animats: Proceedings of the 1st International Conference on Simula-
tion of Adaptive Behavior. 1991, Bradford Books/MIT Press: Cambridge,
MA. p. 288-296.

23. Kaelbling, L.P., Foundations of learning in autonomous systems. Robotics
and Autonomous Systems, 1991. 8: p. 131-144.

24. Watkins, C.J.C.H. and P. Dayan, Q-learning. Machine Learning, 1992. 8: p.
279-292.

25. Singh, S., P. Norving, and D. Cohn, A Tutorial Survey of Reinforcement
Learning. Sadhana, 1994. 19(6): p. 851-889.

26. Watkins, C.J.C.H., Automatic Learning of Efficient Behaviour, in Proceed-
ings of First IEE International Conference on Artificial Neural Networks.
1989: London, UK. p. 395-398.

27. Sutton, R., S., A.G. Barto, and R.J. Williams, Reinforcement Learning is Di-
rect Adaptive Optimal Control. IEEE Control Systems Magazine, 1992.
12(2): p. 19-22.

28. Kaelbling, L.P., M.L. Littman, and A.W. Moore, Reinforcement Learning: A
Survey. Journal of Artificial Intelligence Research, 1996. 4: p. 237-285.

29. Sutton, R.S., Learning to predict by the methods of temporal differences. Ma-
chine Learning, 1988. 3(1): p. 9-44.

30. Berenji, H. and P. Khedkar, Learning and Tuning Fuzzy Logic Controllers
Through Reinforcements. IEEE Transactions on Neural Networks, 1992.
3(5): p. 724-740.

31. Kolan, J. and J.B. Pollack, Back propergation is sensitive to initial conditions.
Complex Systems, 1990. 4(3): p. 269-280.

32. Bellman, R., Adaptive Control Processes: A Guided Tour. 1961, Princeton,
NJ: Princeton University Press.

33. Bishop, C.M., Neural Networks for Pattern Recognition. 1995, Oxford, UK:
Oxford University Press.

200 J. A. Domínguez-López, R.I. Damper, R.M. Crowder and C.J. Harris

34. Bhanu, B., N. Thune, and M. Thune, CAOS: A Hierarchical Robot Control
System, in Proceedings of the IEEE International Conference on Robotics and
Automation. 1987: Raleigh, NC. p. 1603-1608.

35. Raju, G.V.S. and J. Zhou;, Adaptive Hierarchical Fuzzy Controller. IEEE
Transactions on Systems, Man and Cybernetics, 1993. 23(4): p. 973-980.

36. Mills, D.J., C.J. Harris, University of Southampton Technical Report, Neuro-
fuzzy modelling and control of a six degree of freedom AUV. 1995.

37. Bossley, K.M., Neurofuzzy modelling approaches in system identification.
1997.

38. Brown, M. and C.J. Harris, A Perspective and Critique of Adaptive Neuro-
fuzzy Systems used in Modelling and Control Applications. International
Journal of Neural Systems, 1995. 6(2): p. 197-220.

