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5.1 Introduction 

One of the major challenges of robotics is the grasping and manipulating 
of objects in an unstructured environment, in particular where the physical 
properties of the object are not known a priori. The resultant uncertainty 
makes it difficult to control contact forces, and the relative position be-
tween the object and the gripper’s point of contact. As part of the grasping 
process, force control is required. This will avoid the risk of the object 
slipping out of the end effector as well as any possible damage to the ob-
ject. The means of defining the required grasp force is crucial and can be 
posed as an optimisation problem, [1]. 

Various techniques have been applied to solve this problem [2-4] Some 
approaches are analytic and cannot be easily implemented in real-time ap-
plications, when dynamic adaptation to external disturbances is an impor-
tant requirement. Also, the analytic approach cannot be used if variables 
such as the object’s weight and end effector acceleration are unknown. To 
overcome this situation, other approaches using fuzzy controllers have 
been developed using a number of different sensors to measure the physi-
cal variables which provide feedback to the system. Fuzzy systems have a 
number of advantages over traditional techniques that make them an 
attractive approach to solve this type of problem. Some of these general 
advantages are their ability to model complex and/or non-linear problems, 
to mimic human decisions handling vague concepts, rapid computation 
due to intrinsic parallel processing, capacity to deal with imprecise 
information, improved knowledge representation and better uncertain 
reasoning than traditional techniques. However, fuzzy systems have also 
several disadvantages including mathematical opaqueness, they are highly 
abstract and heuristic, and they need an expert (or operator) for rule 
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and heuristic, and they need an expert (or operator) for rule discovery. 
They are unable to adapt by themselves in response to changes in process 
parameters because in a purely fuzzy system the parameters do not appear 
in an analytical form so they cannot be easily modified for learning and 
tuning the fuzzy rules, [5]. Nevertheless, fuzzy control can be used in con-
junction with powerful automatic learning methods (i.e., neural networks) 
as a neurofuzzy system [6-8]. 

In this chapter, we explore these issues using a very simple two-fingered 
gripper as an experimental system. Work is conducted both using a real 
gripper and, because of the high degree of flexibility it affords, in software 
simulation. The structure of the chapter is as follows. In Section 5.2, we 
describe these two experimental systems. Section 5.3 then outlines aspects 
of neurofuzzy systems as they impact on this study. Since machine learn-
ing methods to allow such systems to adapt to their environment are a ma-
jor concern, these are discussed in some detail in Section 5.4. Results of 
applying our methods to the design of an adaptive neurofuzzy controller 
for the real gripper are described in Section 5.5. We then turn to the simu-
lation of the gripper mounted on a six degree of freedom robot in Section 
5.6, before concluding in Section 5.7.  

5.2 Experimental Systems 

The work reported in this chapter has used two different experimental sys-
tems: a simple, low-cost two-fingered gripper and a simulation system 
written by the first author. Ideally, we would have liked to do all our work 
with real robotic systems but this is inflexible and expensive in terms of 
hardware. Hence, the simple system was used to prove our ideas which 
were then further explored in simulation.  

5.2.1 Two fingered gripper 

The simple, low-cost, two-finger gripper is shown in Figure 5.1; which has 
one degree of freedom: the fingers can either open or close. It is fitted with 
a slip sensor [9] and force sensors. The slip sensor is located on one finger 
and is based on a rolling contact principle. Slip induces rotation of a 
stainless steel roller on a spring mounting, which is sensed by an optical 
shaft encoder. The slip sensor has an operational range of 0 to 80 mm s-1 
and sensitivity of 0.5 mm s-1. The applied force is measured using a strain 
gauge bridge on the other finger. The force sensors have a range of 0 to 
2500 mN with a resolution of 2 mN. Control of the end effector was 
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achieved using a personal computer (Pentium 75 MHz, 64 MB RAM) fit-
ted with a high-speed analogue input/output card (Eagle Technologies 
PC30GAS4). Control software ran under the MS-DOS operating system,. 
The sampling period for the system was set conservatively to 17 ms to al-
low adequate time for all processing to be complete between consecutive 
samples. 
 

 
Figure 5.1 The experimental, two-fingered gripper. The slip sensor appears on the 
left of the picture, attached to one of the fingers. The force sensors (strain gauges) 
are attached approximately midway along the finger shown on the right of the pic-
ture. 

 
Figure 5.2 A metal can being gripped by the experimental system. 
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Figure 5.2 shows metal can being gripped by the experimental system. 
The roller of the slip sensor is clearly visible, together with its spring 
mounting which prevents the sensor from seizing during gripping. This 
metal can was found to be an effective vehicle for our experiments, as the 
total weight of the gripped object could be conveniently manipulated by 
placing various weights in it (see Section 5.5).  

5.2.2 Simulation 

In this part of the work, a simulated gripper was subjected to a range of 
identical load disturbances. The gripper was the simple two-fingered, sin-
gle degree of freedom system with slip and force sensors, as described 
above. Full details of the simulation’s kinematics equations can be found 
in Appendix A of [10]. The simulation was validated against results of the 
real gripper handling a range of weights.  

The gripper was simulated holding a 0.1kg object. An external transient 
force of 10 N was applied to the load 3 seconds into the simulation, and a 
second force of -10 N was applied at 5 seconds. Between 6 and 10 sec-
onds, the gripper was moved, thereby applying acceleration forces along 
its z-axis. 

5.3 Neurofuzzy Systems 

Neurofuzzy systems combine the advantages of fuzzy systems, such as 
transparent representation of knowledge, and those of neural networks, 
which deal with implicit knowledge that can be acquired by means of 
learning [8, 11, 12]. They mimic human decision processes, in that they 
manage imprecise, partial, vague or imperfect information. Also, they are 
able to resolve conflicts by collaboration and aggregation. Moreover, they 
have self-learning, self-organising and self-tuning capabilities, with no re-
quirement for prior knowledge of relationships of data although they can 
use this if it is available. They have fast computation using fuzzy number 
operations. As do fuzzy systems, neurofuzzy systems embody rules (de-
fined in a linguistic way) so that system operation can be interpreted in a 
transparent fashion.  
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Figure 5.3 Architecture of a typical neurofuzzy system. The number of rules is 
given by ii NP ∏=  where i is the number of inputs and Ni is the number of an-
tecedent fuzzy sets for input i while M is the number of consequent fuzzy sets. In 
addition, ∑= i iNQ and ∑= −

=
1i
0k kNR  

Figure 5.3 shows the implementation of a neurofuzzy system as a feed 
forward network with three layers, namely: the fuzzification layer, the 
fuzzy rule layer and defuzzification layer. The mapping between the first 
two layers is nonlinear and linear between the last two layers [13]. The 
fuzzification layer consists of two components: the measurements ix , 
which are the input signals from the system under control and the envi-
ronment, and the computation of the antecedent membership function 
value, )x( iAij

µ  termed the grade of membership. The fuzzy rule layer 

then calculates the rule firing strength, which indicates how well the condi-
tions in the antecedent are satisfied. An input x  fires a rule to a degree, 

]1,0[w∈ . The calculation of the rule firing strength is performed using 
the membership function values for fuzzy sets used in the rule antecedent. 
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It is dependent on how the antecedents are combined (i.e., using AND, 
OR). The product combiner is the fuzzy implication method, used because 
it preserves the original shape of the fuzzy set and it is differentiable. Fi-
nally, the defuzzification layer converts the values delivered by the fired 
rules at the previous layer into analogue output values. Centre of sums 
(CoS) and centre of gravity (CoG) are the most often used defuzzification 
techniques. The CoS approach has some advantages over CoG; in particu-
lar, CoS is faster because it is simpler to program [14]. The resulting de-
fuzzified values are combined by some averaging method (denoted OR in 
Figure 5.3).  

The antecedent and consequent weights ( kia and mnb  respectively), 
and the rule confidences )w( ij can be updated. In fact, there are two main 
possibilities for learning: adjust these weights, or adjust the shape of the 
membership functions. The latter can be achieved only if the membership 
functions are parametric. In this work, we fix all antecedent and conse-
quent values, and membership functions; only rule confidences are 
learned.  

5.4 Training Methods 

A neurofuzzy controller is able to learn about its environment through a 
process of adjusting its weights and bias levels. The learning paradigms 
used to tune the network weights are commonly divided into three main 
classes: supervised, unsupervised and reinforcement [15]. These learning 
algorithms can be used individually or in conjunction[16, 17]. In super-
vised learning, a teacher gives the system a representative collection of in-
put-output examples constituting knowledge of the problem environment. 
For unsupervised learning, no such specification is made of which output 
should be associated with particular inputs. Rather, the system bases its 
free-parameter updating on some quality measure of the representation of 
the learning goal. Reinforcement learning (RL) is a broad class of machine 
learning techniques in which the ‘teacher’ is replaced by an evaluative sig-
nal (or signals) derived from the environment. Hence, it is eminently suit-
able for on-line robot learning applications in which continuous interaction 
with the environment is all-important. Furthermore, RL is fully automatic, 
doing away with the need for intervention of an expert (the ‘teacher’) to 
provide a suitable training dataset. The evaluative (or reinforcement) sig-
nals do not specify what the correct answer should be, since this is un-
known. Rather, they specify whether the system output is right or wrong, 
as well as (possibly) providing a scalar indication of the degree of correct-
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ness. This evaluative signal is often couched in terms of a reward or a pun-
ishment, for being right or wrong respectively. Because there is no explicit 
provision of a correct answer by a ‘teacher’, we take RL to be distinct from 
supervised learning—although some researchers do treat it as supervised 
“because the network does, after all, get some feedback from the environ-
ment” [18, p188].  

In our work, we have used both supervised and reinforcement learning 
to produce neurofuzzy controllers for the gripper. We have also used a hy-
brid of the two. Hence, we have a total of three learning systems: off-line 
supervised learning, reinforcement on-line learning and a hybrid of super-
vised and reinforcement on-line learning.  

5.4.1 Supervised learning 

In supervised learning, knowledge of the problem environment is repre-
sented by a set of input-output examples—the training dataset. The task of 
the learning algorithm is to adjust the system parameters in response to the 
given inputs so as to reproduce the desired output [15, p63]. To achieve 
high system performance, the training data must be consistent and com-
plete. This is an obvious shortcoming of the supervised learning approach 
for our problem. In the real environment, we will not be able to anticipate 
all conditions which will be met, so it is not possible to guarantee com-
pleteness.  

To collect the training data, a simple C program was written to control 
the gripper manually using several keys of the PC keyboard. Six keys were 
used for a fixed applied motor voltage (i.e., -5, 0, 1.5, 2.7, 3.9, 5V) and 
four to increase/decrease the applied voltage by 0.1V or 0.25V. The opera-
tor (the first author), using personnel judgment and the current object 
status (e.g., gripper or not, crushed, etc.), manually increased/decreased the 
applied voltage so the gripper could grasp the object properly (i.e. fast, 
stable, with minimum finger force and without allowing the object to fall). 
An extra (stop) key was included to allow the operator to pause and rethink 
the action to be taken to be taken as well as to check the object status. The 
data collected during the stopped time was not used for training because 
they are not actually part of the control action. 

Several trials were carried out to obtain several collections of training 
data. Every trial started with the gripper fingers completely opened. The 
object used was an empty can with uneven surface and variable weight. 
The weight was varied using cans with different mass (i.e., 50, 125 and 
210 grams). During the manual control, several disturbances of different 
magnitude were applied on the object to induce slip. Each experiment was 



162      J. A. Domínguez-López, R.I. Damper, R.M. Crowder and C.J. Harris 

finished once the gripper was gripping the object properly. In total, 15 col-
lections were selected to be used as training data because very good man-
ual control was achieved. Some other collections were eliminated because 
the operator failed to control the gripper properly (i.e., the object fell or 
was crushed).  

The parameters of the network are updated under the combined influ-
ence of the available training examples, and the error signal, )n(ey  

which is defined as the difference between the desired response, )n(ŷ  
and the actual response, y(n) at iteration n,   

)n(y)n(ŷ)n(e jjj −=  

This error signal, )n(e j  is used to apply a sequence of corrective ad-
justments to the weights. This sequence is carried out until a stopping cri-
terion is met. The commonest and best-understood approach for off-line 
supervised learning is the gradient descent method: back-propagation [19]. 
Also, its computational cost is lower than the other methods (i.e., Newton, 
conjugate gradient) which leads to a faster convergence[20]. The weight 
correction, )n(w ji∆  applied to the weights connecting neuron i to neuron 
j is defined by the delta rule:  

)1n(wm)n(x)n(j)n(w jijji −+= ∆ηδ∆  

where η is the learning-rate parameter, )n(jδ  is the local gradient, m is 
the momentum constant, and )n(x j the input signal of neuron j in the 
defuzzification layer. In this work, η and m  are both set to 0.5. Network 
training is considered converged when the average squared error (between 
desired and actual output voltages) is less than or equal to 0.2V2.  

5.4.2 Reinforcement learning 

Reinforcement learning (RL) is the natural framework for the solution of 
the on-line learning problem [21]. It encompasses a broad range of tech-
niques with the common feature that a goal-oriented system adapts its on-
line behaviour in such a way as to maximise some ‘reward’ signal derived 
from its environment. Because the reward reflects the system’s interaction 
with its environment, learning can be unsupervised, without manual inter-
vention to indicate correct versus erroneous behaviour. Negative rewards, 
i.e., ‘punishments’, can also be conveniently incorporated into the para-
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digm. In view of its generality and on-line nature, RL has found wide ap-
plication in robotics and autonomous system studies (e.g., [22-24]).  

In many formulations of RL, the system is supposed to decide the best 
action to select based on its current state. When this step is repeated, the 
problem is known as a Markov decision process [25]. A finite Markov de-
cision process (MDP) is defined by the state and action sets, and by the 
one-step dynamics of the environment. The components of an MDP are:  

 
• a set of states S;  
• a set of actions A;  
• a reinforcement function ℜ→× AS:R ; and  
• a state transition function ∏→× )S(AS:T  where ∏ )S( is a prob-

ability distribution over the set S.  
 

At each decision point, the controller has to select an action based on the 
environmental information (i.e., state). After performing the action ia  the 
system receives an immediate reinforcement, ir . The action taken affects 
the subsequent state, 1is + . The probability distribution of the reinforce-
ment tr and the subsequent state 1is + .depends only on the starting state 

1is +  and the taken action ia . The objective of the system is to maximise 
the sum of discounted rewards [26, 27]. The reinforcement at time t is 
given by:  

∑=
∞

=
+

0i
1i

i
i rr γ   

where 10 ≤≤ γ is a discount factor that determines the relative contribu-
tions of delayed rewards. If 0=γ only the immediate reward is consid-
ered. Long-running systems that learn from delayed rewards generally 
achieve the best state-action [28].  
The dynamics of a finite MDP can be summarised in a high-level form, 
namely an MDP transition graph, which has to be designed ‘by hand’ to 
suit the system’s intended purposes. Figure 5.4 illustrates the transition 
graph for the gripper system. For our problem, the state set is defined as:  



164      J. A. Domínguez-López, R.I. Damper, R.M. Crowder and C.J. Harris 

S2
crushing

S0
not_touching

S1
slipping

S3
OK

grip

grip

grip

grip

release

release

release
( )crushingt12, +−β

( )crushingt110,1 +−

161 −β+α− ),(

)t1(10, crushing+α

)t1(2),(1 slip+−β+α−

( )slipt15, +−β

( )OKt12,1 +−α−

GRIPR,α RELEASER,α

161 −β+α− ),(

1,α

0,1 α−

161 −β− ,

( )slipt110, +−β

( )OKt15, +−β

)t1(10, slip+α

 
Figure 5.4 Transition graph specifying the dynamics of the finite MDP. The large 
open circles denote state nodes and the small filled circles denote action nodes. 
Arcs are labelled with an ordered pair consisting of a transition probability and a 
reward. Punishments are implemented as negative rewards. In this work, we sim-
plify the MDP by making all transition probabilities functions of just two parame-
ters, α  and β . 

S = {S0, S1, S2, S3}  

= {not_touching, slipping, crushing, OK} 

and the system decisions (actions) are given by the action set:   

A = {grip, release} 

There is a state node (a large open circle labelled by the name of the 
state) for each possible state, and an action node (a small solid circle la-
belled by the action name) for each action associated with those states. 
Each arc is labelled with an ordered pair consisting of the transition prob-
ability of moving from state S  to state S ′  with associated action A , 
and the expected reward for that transition, SSR ′  . 

Two transition-probability parameters, α  and β , are used. Note that 
at least 2 parameters are required because the maximum outdegree of an 
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action node is 3, and 1 degree of freedom is fixed since the transition prob-
abilities must sum to 1. Accordingly, α  is set relatively high, as it de-
notes a transition probability into a desired state (i.e., OK), while β  is set 
relatively low. In many cases, but not all, β indicates a transition prob-
ability into a undesirable state (i.e., slipping or crushing). In some 
cases, the transition probability into these states will be )(1 βα +− , so a 
further requirement is that 1<+ βα to ensure that these transition prob-
abilities do not vanish. In this work, α and β have been set by trial and 
error to 0.85 and 0.12, respectively.  

Rewards and punishments are either fixed, or made to depend upon the 
time spent in the originating state for that transition. This is to increase the 
rewards and punishments if the system keeps in a good or bad state-action, 
respectively. Rewards are attached to transitions into the OK state. Punish-
ments are attached to transitions into the undesirable (slipping, 
crushing and not_touching) states. Time-dependent rewards have 
the effect of increasing the reward for moving to the OK state according to 
the length of time spent in an undesirable state, and conversely for pun-
ishments. Both time-dependent and fixed rewards/punishments have been 
set empirically. Transitions with a -16  punishment are included in the 
MDP specification for completeness; it is envisaged that they would never 
occur in the trained network. When the object is being satisfactorily 
gripped, i.e., the system remains in the state OK for t

OK
, the rewards for the 

two associated actions grip and release are:  

)t1(
2500

F2500cRR OK
RELEASE

SS
GRIP

SS 3333
+

−
==  

where t
OK

 is the time without both slipping and crushing, F is the applied 
force and c is a constant empirically set equal to 20 in this work. With this 
scheme, the rate of increase of the reward decreases as the applied force 
approaches its upper limit of 2500, corresponding physically to 2500 mN. 

There are three fundamental classes of methods that tackle the rein-
forcement learning problem: dynamic programming (DP), Monte Carlo 
methods and temporal difference (TD) learning. TD methods are based on 
learning the difference(s) between temporally-successive predictions. As 
TD learning combines characteristics of dynamic programming (i.e., pol-
icy evaluation, value iteration) and Monte Carlo methods, it can approxi-
mate the value function using update estimates from other learned esti-
mates, like those found from dynamic programming. Also, like Monte 
Carlo methods, TD methods can learn from experience following a policy 
without the dynamics of the environment. Accordingly, TD has some ad-
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vantages over the other methods [21]. The most important ones are: TD 
methods do not require a model of the environment, rewards and next-state 
probability distribution while DP methods do; TD methods can be imple-
mented in an on-line fashion while Monte Carlo methods can not.  

Policy

Value
Function

Environment

ActionState
Critic

Actor

TD
Error

Reward

 
Figure 5.5 Block diagram of the actor-critic reinforcement learning system. 

In this work, we have used an actor-critic framework. Actor-critic 
methods are temporal difference learning methods [29]. To solve the pre-
diction problem, TD methods compute the state-value function using the 
experience of following a policy (i.e., the mapping between states and ac-
tions). At the next time step, based on the obtained reward or punishment, 
the estimated value function for a given policy is updated. Actor-critic 
methods have two separate memories in order to represent the policy inde-
pendently of the value function. This leads to the following most important 
advantages of actor-critic methods over other TD techniques: minimal 
computation required to select actions and its ability to learn an explicitly 
stochastic policy, allowing the optimal probability of selecting appropriate 
actions to be learned [21, p153]. Figure 5.5 shows the architecture of the 
actor-critic method. The policy structure is the actor and the estimated 
value function is the critic. The former selects actions and the latter criti-
cises those actions. This criticism has the form of an ‘internal’ (TD-error) 
signal to drive the learning process.  
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Figure 5.6 Block diagram of GARIC architecture which combines actor-critic and 
neurofuzzy methods 

The GARIC (Generalised Approximate Reasoning-based Intelligent 
Control) architecture of [30] is used here as the basis for the developed 
controller. Figure 5.6 shows the block diagram of this architecture which 
has been widely used in intelligent control because of the facility it gives 
to implement a neurofuzzy controller in an actor-critic framework. GARIC 
consists of a fuzzy controller, the Action Selection Network (ASN), which 
operates as the actor, and a neural network, the Action Evaluation Network 
(AEN), which criticises the actions made by the ASN. Outputs of these 
two networks feed into the Stochastic Action Modifier (SAM) which 
solves stochastically the exploration-exploitation dilemma: Neither explo-
ration nor exploitation can be pursued exclusively. Exploiting experience, 
a reward can be obtained but perhaps missing a possibly larger reward. 
Exploring the space of actions, a better action may be found but with the 
risk of failing and, consequently, getting a punishment.  
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Action Selection Network 

The Action Selection Network is the fuzzy controller that performs all the 
control operations. The fuzzy controller is expanded into a neurofuzzy 
controller so its parameters can be updated according to the signal received 
from the Action Evaluation Network. The employment of a (neuro)fuzzy 
network as critic gives transparency to the system. That is, the behaviour 
of the physical system is described by a set of easily-interpreted linguistic 
rules. These can then be used to understand and validate the process under 
control, or to modify it.  

The ASN output is )t(f , which determines the ‘provisional’ voltage to 
be applied to the gripper motor. By ‘provisional’, we mean that this value 
is subject to random modification by the Stochastic Action Module as de-
scribed immediately below. The updating of the ASN modifiable parame-
ters (i.e., the rule confidence vector of connection weights between rule 
and defuzzification layers) is in the direction which increases the future 
reward )t(v , predicted by the AEN. Hence, to effect gradient descent op-

timisation, the weight update should be proportional to
)t(w

)t(v

ij∂
∂ , giving:  

∑
∂
∂

=
=

−n

0k ij

kn
ij )n(w

)k(v)k(s)k(r̂m)n(w η∆  
(1) 

where k is an index that runs from the initial time 0 up to the current time 
n , [15], )t(r̂  is the ‘internal’ reinforcement signal, )t(s is an output of 
the SAM, and η and m  are the learning and momentum constants which 
were empirically set to 0.75. Equation (1) is similar to equation (29) of 
[30], except that they modify the antecedent and consequent membership 
functions whereas here we are updating the rule confidence vector. 

Action Evaluation Network 

The Action Evaluation Network (AEN), or critic, is a neural predictor. Its 
structure is shown in detail in Figure 5.7. The AEN indicates the current 
state ‘goodness’, mapping the input state vector to the reward signal from 
the environment, )t(r . This mapping produces a scalar score, which is a 
prediction of future reinforcements, )t(v . This is combined with )t(r to 
generate an ‘internal’ reinforcement signal, )t(r̂ :  



5 Intelligent Neurofuzzy Control of a Robotic Gripper      169 









−−+−
−−−=

otherwise)1t(v)t(v)t(r
statefailure)1t(v)t(r

statestart0
)t(r̂

γ
 

(2) 

where γ , set here to 0.47, is a discount rate used to control the balance 
between long-term and short term consequences of the system’s action [15, 
p606]. Here, ‘start’ sate means the sate encountered on power-up, and 
‘failure’ state indicates that the system has to restarted, i.e. the gripper has 
to grip the object anew because it is either crushing it or dropped it. The 
system detects that is has dropped the object when the force signal changes 
from a positive value to zero. Unfortunately, however, crushing is not so 
easy to detect automatically. We hope to develop methods for this in the 
future. In the meantime, to allow progress to be made, we simplify the 
problem for the failure situation of crushing: The operator indicates to the 
system that it has crushed the object. 

This network fine-tunes the rule confidence vector. Its input variables 
are the normalised measurements of the slip rate, the applied force to the 
object and the applied motor voltage. The hidden layer activation function 
is sigmoidal. Using a gradient descent algorithm, the formulae for updating 
the AEN weights are:  
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β
β
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where 1β  and 2β  were set empirically to 0.68 and 0.45 respectively. 
The signum function, sgn(), takes the value 1 when its argument is positive 
and 0 otherwise. 
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Figure 5.7. The Action Evaluation Network consists of a neural network predict-
ing future reward, )t(v , which is combined with the reward signal, )t(r , from 
the environment to produce an ‘internal’ reward signal, )t(r̂ , as described by 
equation (2). 

Stochastic Action Modifier 

The Stochastic Action Modifier gives a stochastic deviation to the output 
of the ASN, so the system can have a better exploration of the state space 
and a better generalisation ability [16]. The numerical amount of deviation, 
which is used as a learning factor for ASN, is given by, 

)1t(r̂

**'

e
)t(y)t(y)t(s

−−
−

=  

where instead of using  )t(y* as output, the control action applied to the 

system is )t(y*'  a Gaussian random variable with mean )t(y* and stan-

dard deviation )1t(r̂e −−  This leads to the action having a large deviation 
when the last taken action was bad, and conversely when the action was 
good.  
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Figure 5.8 Block diagram of the hybrid supervised/reinforcement system in which 
a Supervised Learning Network (SLN), trained on pre-labelled data, is added to 
the basic GARIC architecture 

5.4.3 Hybrid learning 

Looking to have a faster adaptation to environmental changes, we have 
implemented a hybrid learning approach which uses both supervised and 
reinforcement learning. The combination of these two training algorithms 
allows the system to have a faster adaptation [16]. The hybrid approach 
has not only the characteristic of self-adaptation but the ability to make 
best use of knowledge (i.e., pre-labelled training data) should they exist. 
The proposed hybrid algorithm is also based on the GARIC architecture. 
An extra neurofuzzy block, the supervised learning network (SLN), is 
added to the original structure (Figure 5.8). The SLN is a neurofuzzy con-
troller which is trained in non-real time with (supervised) back-
propagation. When new training data are available, the SLN is retrained 
without stopping the system execution; then it sends a parameter updating 
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signal to the action selection network. The ASN parameters can now be 
updated if appropriate. 

As new training data become available during system operation (see be-
low), the SLN loads the rule-weight vector from the ASN and starts its 
(re)training, which continues until the stop criterion is reached (average er-
ror less than or equal to 0.2V2, see Section 5.4.1). The information loaded 
(i.e, rule confidence vector) from the ASN is utilised as a priori knowl-
edge by the SLN. Once the SLN training has finished, the new rule weight 
vector is sent back to the ASN. Elements of the confidence vector (i.e., 
weights) are transferred from the SLN to the ASN only if the difference 
between them is lower than or equal to 5%:  

 

i
SLN
i

ASN
i

SLN
i

ASN
i

SLN
i

ASN
i

w95.0wthen

)w05.1w()w95.0w(if

∀←

<∧>
 

(3) 

where i counts over all corresponding ASN and SLN weights.  
Neurofuzzy techniques do not require a mathematical model of the sys-

tem under control. The major disadvantage of the lack of this model is the 
impossibility to derive a stability criterion. Consequently, the use of a 5% 
threshold as in equation (3) was proposed as an attempt to minimise the 
risk of system instability. This allows the hybrid system to ‘ignore’ pre-
labelled data if they were inconsistent with current-encountered conditions 
(given by the AEN). The value of 5% was set empirically, although the 
system was not especially sensitive to this value. For instance, during a se-
ries of tests with the value set to 10%, the system still maintained correct 
operation.  

5.5 Results with Real Gripper 

To validate the performance of the various learning systems, various ex-
periments have been undertaken to compare the resulting controllers used 
in conjunction with the simple, low-cost, two-finger end effector (Section 
5.2.1). The information provided by the force and slip sensors forms the 
inputs to the neurofuzzy controller, and the output is the applied motor 
voltage. Inputs are normalised to the range [0, 1]. 

Experiments were carried out with a range of weights placed in one of 
the metal cans (Figure 5.2). Hence, the weight of the object was different 
from that utilised in collecting the labelled training data (when the cans 
were empty). This is intended to test the ability of neurofuzzy control to 
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maintain correct operation robustly in the face of conditions not previously 
encountered. In addition, information concerning the object to be gripped 
and the end effector itself were never given to the control system.  
To recap, three experimental conditions were studied:  

 
i. off-line supervised learning with back-propagation training;  
ii. on-line reinforcement learning;  
iii. hybrid of supervised and reinforcement learning.  

 
In (i), we learn ‘from scratch’ by back-propagation using the neurofuzzy 

network depicted in Figure 5.9. The linguistic variables used for the term 
sets are simply value magnitude components: Zero (Z), Very Small (VS), 
Small (S), Medium (M) and Large (L) for the fuzzy set slip while for the 
applied force they are Z, S, M and L. The output fuzzy set (motor voltage) 
has the set members Negative Very Small (NVS), Z, Very Small (VS), S, 
M, L, Very Large (VL) and Very Very Large (VVL). This set has more 
members so as to have a smoother output. In (ii), reinforcement learning is 
seeded with the rule base obtained in (i), to see if RL can improve back-
propagation. The ASN of the GARIC architecture is a neurofuzzy network 
with structure as in Figure. 5.9. In (iii), RL is again seeded with the rule 
base from (i), and when RL discovers a ‘good’ action, this is added to the 
training set for background supervised learning. Specifically, when t

ok
 

reaches 3 seconds, it is assumed that gripping has been successful; and in-
put-output data recorded over this interval are concatenated onto the la-
belled training set. In this way, we hope to ensure that such good actions 
do not get ‘forgotten’ as on-line learning proceeds. Typical rule-base and 
rule confidences achieved after training are presented in tabular form in 
Table 5.1. In the table, each rule has three confidence values correspond-
ing to conditions (i), (ii) and (iii) above. We choose to show typical results 
because the precise findings depend on things like the initial start points 
for the weights [31], the action of the Stochastic Action Modifier in the re-
inforcement and hybrid learning systems, the precise weights in the metal 
can, and the length of time that the system runs for. Nonetheless, in spite 
of these complications, some useful generalisations can be drawn.  

One of the virtues of neurofuzzy systems is that the learned rules are 
transparent so that it should be fairly obvious to the reader what these 
mean and how they effect control of the object. For example, if the slip is 
large and the fingertip force is small, it means that we are in danger of 
dropping the object and the force must be increased rapidly by making the 
motor voltage very large. As can be seen in the table, this particular rule 
has a high confidence for all three learning strategies (0.9, 0.8 and 0.8 for 
(i), (ii) and (iii) respectively). Network transparency allows the user to ver-
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ify the rule base and it permits us to seed learning with prior knowledge 
about good actions. This seeding accelerates the learning process [16].  
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Figure 5.9 Structure of the neurofuzzy network used to control the gripper. Con-
nections between the fuzzification layer and the rule layer have fixed (unity) 
weight. Connections between the rule layer and the defuzzification layer have 
their weights adjusted during training. 

 



 
Fingertip force Voltage  

Z S M L 

Z 

L (0.0, 0.1, 0.0)  
VL(0.1, 0.6, 0.05) 
VVL (0.9, 0.3, 0.95)  

S (0.05, 0.1, 0.0)  
M (0.1, 0.4, 0.5)  
L (0.8, 0.5, 0.5)  
VL (0.05, 0.0, 0.0) 

NVS (0.2, 0.4, 0.3)  
Z (0.8, 0.6, 0.7)  

NVS (0.9, 0.8, 0.8)  
Z (0.1, 0.2, 0.2)   

VS
L (0.2, 0.2, 0.0)  
VL (0.7, 0.8, 0.6)  
VVL (0.1, 0.0, 0.4)  

S (0.3, 0.2, 0.2)  
M (0.6, 0.6, 0.7)  
L (0.1, 0.2, 0.1) 

Z (0.1, 0.2, 0.0)  
VS (0.9, 0.5, 0.6)  
S (0.0, 0.3, 0.4)  

NVS (0.0, 0.2, 0.3)  
Z (0.75, 0.7, 0.6)   
VS (0.25, 0.1, 0.2)  

S 
M (0.2, 0.1, 0.2) 
L (0.8, 0.6, 0.4) 
VL (0.0, 0.3, 0.4)  

M (0.25, 0.3, 0.2)  
L (0.65, 0.7, 0.7)  
VL (0.1, 0.0, 0.1)  

S (0.4, 0.3, 0.4)  
M (0.6, 0.7, 0.6) 

VS (0.4, 0.5, 0.4)  
S (0.6, 0.5, 0.6)   

M 
L (0.08, 0.1, 0.2)  
VL (0.9, 0.7, 0.4)  
VVL (0.02, 0.2, 0.4) 

L (0.2, 0.3, 0.2)  
VL (0.8, 0.7, 0.8)  

M (0.3, 0.4, 0.2)  
L (0.7, 0.6, 0.6) 
VL (0.0, 0.0, 0.2) 

S (0.3, 0.4, 0.1)   
M (0.7, 0.6, 0.7)  
L (0.0, 0.0, 0.2)   

Slip 

L 
VL (0.1, 0.3, 0.0)  
VVL (0.9, 0.7, 1.0) 

L (0.1, 0.2, 0.2)  
VL (0.9, 0.8, 0.8) 

L (0.8, 0.7, 0.6)  
VL (0.2, 0.3, 0.4) 

S (0.0, 0.1, 0.0)  
M (0.9, 0.8, 0.85)  
L (0.1, 0.1, 0.15) 

 
Table 5.1 Typical rule-base and rule confidences obtained after training. Rule confidences are shown in brackets in the following 
order: (i) weights after off-line supervised training; (ii) weights found from on-line reinforcement learning while interacting with the 
environment; and (iii) weights found from hybrid of supervised and reinforcement learning. 
 
 



To answer the question of which system is the best, the three learning 
methods were tested under two conditions: normal (i.e., same conditions as 
they were trained for) and environmental change (i.e., simulated sensor 
failure). The first condition evaluates the systems’ learning speed while the 
second one tests their robustness to unanticipated operating conditions. 
Performances were investigated by manually introducing several distur-
bances of various intensities acting on the object to induce slip. For all the 
tests, the experimenter must attempt to reproduce the same pattern of man-
ual disturbance inducing slip at different times so that different conditions 
can be compared. This is clearly not possible to do precisely. (It was aided 
by using an audible beep from the computer to prompt the investigator and 
to act as a timing reference.)  To allow easy comparison of these slightly 
different experimental conditions, we have aligned plots on the major in-
duced disturbance, somewhat arbitrarily fixed at 3 s. 

The solid line of Figure 5.10 shows typical performance of the super-
vised learning system under normal conditions; the dashed line shows op-
eration when a sensor failure is introduced at about 5.5 s. The system 
learned how to perform under normal conditions but when there is a 
change in the environment, it is unable to adapt to this change unless re-
trained with new data which include the change. 

Figure 5.11 shows the performance of the system trained with rein-
forcement learning during the first interaction (solid) and fifth interaction 
(dashed) after the simulated sensor failure. To simulate continuous on-line 
learning but in a way which allows comparison of results as training pro-
ceeds, we broke each complete RL trial into a series of ‘interactions’. After 
each such interaction, lasting approximately 6 s, the rule base and rule con-
fidence vector obtained were then used as the start point for reinforcement 
learning for the next interaction. (Note that the first interaction after a sen-
sor failure is actually the second interaction in real terms.) Simulated sen-
sor failure were introduced at approximately 5.5 s during the (absolute) 
first interaction. As can be seen, during the first interaction following a 
failure, the object dropped just before 6 s. There is a rapid fall off of resul-
tant force (Figure 5.11(b)) while the control action (end effector motor 
voltage) saturates (Figure 5.11(c)). The control action is ineffective be-
cause the object is no longer present, having been dropped. By the fifth in-
teraction after a failure, however, an appropriate control strategy has been 
learned. Effective force is applied to the object using a moderate motor 
voltage. The controller learns that it is not applying as much force as it 
‘thinks’. This result demonstrates the effectiveness of on-line reinforce-
ment learning, as the system is able to perform a successful grip in re-
sponse to an environmental change and manually-induced slip.  
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(a) Object slip 
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(b) Motor terminal voltage 
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(c) Resulting force 

Figure 5.10 Typical performance with supervised learning under normal condi-
tions (solid line) and with sensor failure at about 5.5s. (a) slip initially induced by 
manual displacement of the object; (b) control action (applied motor voltage); (c) 
resulting force applied to the object. Note that the manually induced slip is not 
precisely the same in the two cases because it was not possible for the experi-
menter to reproduce this exactly.   
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(a) Object slip 
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(b) Motor terminal voltage 
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(c) Resulting force 

Figure 5.11. Typical performance with reinforcement learning during the first in-
teraction (solid line) and the fifth interaction (dashed line) after sensor failure: (a) 
slip initially induced by manual displacement of the object; (b) control action (ap-
plied motor voltage); (c) resulting force applied to the object. 
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(a) Object slip 
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(b) Motor terminal voltage 

0 1 2 3 4 5 6 7 8
0

500

1000

1500

2000

Time (s)

A
pp

lie
d 

fo
rc

e 
(m

N
)

 
(c) Applied force 

Figure 5.12 Comparison of typical results of hybrid learning (solid line) and su-
pervised learning (dashed line) during the first interaction after a sensor failure: (a) 
slip initially induced by manual displacement of the object; (b) control action (ap-
plied motor voltage); (c) resulting force applied to the object. 
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Figure 5.12 shows the performance of the hybrid trained system during 
the first interaction after a failure (solid line) and compares it with the per-
formance of the system trained with supervised learning (dashed line). 
Note that the latter result is identical to that shown by the full line in Fig-
ure 5.10. It is clear that the hybrid trained system is able to adapt itself to 
this disturbance where the supervised trained system is unable to adapt and 
fails, dropping the object.  

The important conclusions drawn from this work on the real gripper are 
as follows. For the system to have on-line adaptation to unanticipated con-
ditions, its training has to be unsupervised. (For our purposes, we count 
reinforcement learning as unsupervised.)  The use of a priori knowledge 
to seed the initial rules helps to achieve quicker neurofuzzy learning. The 
use of knowledge about good control actions, gained during system 
operation, can also improve on-line learning. For all these reasons, a 
hybrid of unsupervised and reinforcement learning should be superior to 
the other methods. This superiority is obvious when the hybrid is 
compared against off-line supervised learning.  

5.6 Simulation of Gripper and Six Degree of Freedom 
Robot 

Thus far, the gripper studied has been very simple, with a two-input, one-
output control action and a single degree of freedom. We wished to con-
sider more complex and practical setups, such as when the gripper is 
mounted on a full six degree of freedom robot and has more sensor capa-
bilities (e.g., accelerometer). A particular reason for this is that neurofuzzy 
systems are known to be subject to the well-known curse of dimensionality 
[32, 33] whereby required system resources grow exponentially with prob-
lem size (e.g., the number of sensor inputs). To avoid the considerable cost 
of studying these issues with a real robot, this part of the work was done 
by software simulation.  

A simulation of a 6 DOF robot was developed to have the effects of the 
robot movements and orientation on the gripping process of the end effec-
tor and to avoid the considerable cost of building the full manipulator. The 
experiments reported here were undertaken under two conditions: external 
forces acting on the object (with the end effector stationary), and vertical 
end effector acceleration.  

Four approaches are evaluated for the gripper controller with the pres-
ence of end effector acceleration:  
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i. traditional approach without accelerometer;  
ii. traditional approach with accelerometer;  

iii. approach with accelerometer and hierarchical modelling;  
iv. hierarchical approach with acceleration control.  

 
These are described in the following sections. As the situation studied is 
virtual, we do not have any labelled data suitable for supervised training. 
Hence, the four approaches are trained using reinforcement learning. The 
Markov decision process is the only component which remains identical 
for all the approaches. The action selection network and the action evalua-
tion network are modified to reflect the new input.  

5.6.1 Approach without acceleration feedback 

Figure 5.13 shows the high-level structure of the neurofuzzy controller 
used in the previous section (Figure 5.9). This controller is the simplest of 
all the approaches discussed here: It has only information of the object slip 
rate and the force applied to the object, so it ‘sees’ the end effector accel-
eration as any other external disturbance.  

 
 

Inference
machine

Applied
force

Slip
rate

Motor
voltage

 
Figure 5.13 High-level structure of the neurofuzzy controller used in conjunction 
with the real (two-input) gripper. 

We now wish to add a new input: the end effector vertical acceleration 
(i.e., in the z-direction). This has the memberships Negative Large (NL), 
Negative Small (NS), Z, S and L. The density of this fuzzy set is medium 
[8, p108] so it should be possible to avoid having an excessively complex 
rule base. For the current conditions, the total number of combinations in 
the antecedent part is 100 and the possible number of rules is P = 700, ac-
cording to ∏= =

3
1i iNP (see caption of Figure 5.3). Because of the addi-

tion of the extra input, a different Action Evaluation Network is required, 
as shown in Figure 5.14. Again, the input state vector is normalised so the 
inputs lie in the range [0,1]. 
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The rule base and confidences obtained after training the neurofuzzy 
controller without accelerometer for 20 minutes, after which time learning 
had stabilised, are shown in Table 5.2. The dashed line of shows a typical 
performance of this neurofuzzy controller. While the end effector was sta-
tionary, an external force of 10N was applied to the object at 3 seconds 
with an other external force of -10N being applied to the object as 5 sec-
onds as described in Section 5.2.2. Both external forces induce slip of 
about the same intensity but with opposite directions. The system is able to 
grasp the object properly despite the induced disturbances. After 6 sec-
onds, the end effector was subjected to a particular pattern of vertical ac-
celerations as shown in Figure 15(d). The disturbances are standard for 
testing all four controllers. As the system does not have acceleration feed-
back, it sees acceleration as any other external disturbance, like a force on 
the object. Although, the system manages to keep the object grasped, the 
continual presence of acceleration had made the object slip considerably. 
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Figure 5.14 Action evaluation network for the three-input neurofuzzy controller. 
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Fingertip force Voltage 

Z S M L 

Z VL(0.4) 
VVL(0.6) 

M (0.4)  
L (0.6) 

NVS (0.4)
Z (0.6) 

NVS (0.8) 
Z (0.2)   

AN 
L (0.2) 
VL (0.8) 

S (0.25) 
M (0.5)  
L (0.25) 

Z (0.3) 
VS (0.6) 
S (0.1)  

Z (0.8) 
VS (0.2)   

S 
M (0.2)  
L (0.6) 
VL (0.2) 

M (0.3) 
 L (0.7) 

S (0.4) 
M (0.6)  

VS (0.5) 
S (0.5)   

M 
L (0.1) 
VL (0.8) 
VVL(0.1)

L (0.3) 
VL (0.7) 

M (0.3) 
L (0.6) 
VL (0.1) 

S (0.4)  
M (0.6)   

Slip 

L VL (0.2) 
VVL(0.8) 

L (0.1) 
VL (0.9) 

L (0.7) 
VL (0.3) 

M (0.8)  
L (0.2)  

Table 5.2 Rule-base and rule confidences (in brackets) found after reinforcement 
learning for the controller without acceleration feedback 

5.6.2 Approach with accelerometer 

The controller described in Section 5.6.1 cannot distinguish the end effec-
tor vertical acceleration from any external disturbance acting on the object. 
If the controller had knowledge of the acceleration such as would provided 
by an accelerometer, it might be able to react in advance to that distur-
bance. Accordingly, in this section, a controller which uses acceleration in-
formation is developed. The proposed controller is shown in Figure 5.15. 
This is the traditional approach: It integrates all the inputs into one single 
fuzzy machine.  

For neurofuzzy controllers with more than two inputs, to express the ob-
tained rule base in tabular form, the rule base has to be separated into sev-
eral tables. The minimum number of tables required is equal to the number 
of memberships of the smallest fuzzy set. The smallest fuzzy set is the one 
which has the least number of memberships. Another option (for the three-
input case) is to put the rule base into a single table with several rule con-
fidences, each one corresponding to a fuzzy set of the third fuzzy variable. 
A problem with this approach is that there may be many rules with zero 
confidence. Table 5.3 shows the obtained rule base after training for 38 
minutes, after which time learning had stabilised. Each rule has four confi-
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dences corresponding to (i) applied force is Zero; (ii) applied force is 
Small; (iii) applied force is Medium; and (iv) applied force is Large.  

 
 

Inference
machine

Applied
force

Slip
rate

Motor
voltage

End effector
acceleration  
Figure 5.15. Traditional approach for a neurofuzzy controller with three inputs.  

The solid lines of Figure 5.16 show typical performance of the system 
without acceleration feedback, whereas the dashed lines depict the situa-
tion with such feedback. Again, the standard pattern of disturbances is ap-
plied: an external force of approximately 10 While the end effector was 
stationary, an external force of 10N was applied to the object at 3 seconds 
with an other external force of -10N being applied to the object as 5 sec-
onds with the end effector stationary. These external forces induce slip of 
about the same intensity but with opposite directions. The system is able to 
grasp the object properly despite the induced disturbances. After 6 sec-
onds, the end effector was subjected to a particular pattern of vertical ac-
celerations as shown in Figure 5.16(d). The neurofuzzy controller with ac-
celeration feedback increase the motor terminal voltage and so the applied 
force when the end effector starts accelerating, and does so earlier than the 
system without such feedback (Figures 5.16(b) and 5.16(c)). This reduces 
the extent of the slippage, as shown in the latter part of Figure 5.16(a). The 
system prevents almost perfectly the object slippage due to negative 
acceleration: Only the positive acceleration is able to induce significant 
slip. 
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(b) End effector motor terminal voltage 
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(c) Applied force 
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(d) Vertical acceleration] 

Figure 5.16 Simulated results for the system without information of the end effec-
tor vertical acceleration (solid) and the system with (dashed): (a) object slip 
behaviour; (b) control action (applied motor voltage); (c) resulting force applied to 
the object; (d) end effector vertical acceleration. 



Applied force Voltage 
Z S M L 

Z 
VL (0.3, 0.4, 0.4, 0.3, 0.25) 
VVL (0.7, 0.6, 0.6, 0.7, 0.75) 

M (0.1, 0.3, 0.4, 0.3, 0.3) 
L (0.9, 0.7, 0.6, 0.7, 0.5)  
VL (0.0, 0.0, 0.0, 0.0, 0.2) 

NVS (0.3, 0.4, 0.4, 0.3, 0.1) 
Z (0.7, 0.6, 0.6, 0.7, 0.9) 

NVS (0.7, 0.8, 0.8, 0.7, 0.5)  
Z (0.3, 0.2, 0.2, 0.3, 0.5)  

AN 
L (0.1, 0.2, 0.2, 0.15, 0.1)  
VL (0.9, 0.8, 0.8, 0.85, 0.9)  

S (0.1, 0.2, 0.25, 0.1, 0.0)  
M (0.4, 0.4, 0.5, 0.5, 0.4)  
L (0.5, 0.4, 0.25, 0.4, 0.6)  

Z (0.1, 0.2, 0.3, 0.2, 0.1)  
VS (0.8, 0.7, 0.6, 0.7, 0.7)  
S (0.1, 0.1, 0.1, 0.1, 0.2)  

Z (0.6, 0.8, 0.8, 0.6, 0.5)  
VS (0.3, 0.1, 0.2, 0.4, 0.4)  
S (0.1, 0.1, 0.0, 0.0, 0.1)  

S 
M (0.1, 0.1, 0.2, 0.1, 0.0)  
L (0.6, 0.7, 0.6, 0.7, 0.7)  
VL (0.3, 0.2, 0.2, 0.2, 0.3)  

M (0.1, 0.2, 0.3, 0.3, 0.1)  
L (0.8, 0.7, 0.7, 0.6, 0.7)  
VL (0.1, 0.0, 0.0, 0.1, 0.2) 

S (0.2, 0.3, 0.4, 0.2, 0.1) 
M (0.8, 0.7, 0.6, 0.8, 0.7)  
L (0.0, 0.0, 0.0, 0.0, 0.2) 

VS (0.3, 0.4, 0.5, 0.4, 0.2)  
S (0.6, 0.6, 0.5, 0.5, 0.7)  
M (0.1, 0.0, 0.0, 0.1, 0.1)  

M 
L (0.0, 0.1, 0.1, 0.0, 0.0)  
VL (0.8, 0.75, 0.8, 0.9, 0.7)  
VVL (0.2, 0.15, 0.1, 0.1, 0.3)  

L (0.1, 0.2, 0.3, 0.1, 0.0)  
VL (0.9, 0.8, 0.7, 0.9, 0.9) 
VVL (0.0, 0.0, 0.0, 0.0, 0.1)  

M (0.1, 0.2, 0.3, 0.2, 0.1) 
L (0.8, 0.7, 0.6, 0.7, 0.7)  
VL (0.1, 0.1, 0.1, 0.1, 0.2) 

S (0.3, 0.3, 0.4, 0.3, 0.1)  
M (0.6, 0.7, 0.6, 0.6, 0.7)  
L (0.1, 0.0, 0.0, 0.1, 0.2)  

Slip 

L 
VL (0.15, 0.2, 0.2, 0.2, 0.1) 
VVL (0.85, 0.8, 0.8, 0.8, 0.9)  

L (0.0, 0.0, 0.1, 0.0, 0.0)  
VL (0.8, 0.9, 0.9, 0.8, 0.6) 
VVL (0.2, 0.1, 0.0, 0.2, 0.4)

M (0.0, 0.0, 0.0, 0.0, 0.2)  
L (0.9, 0.8, 0.7, 0.9, 0.8) 
VL (0.1, 0.2, 0.3, 0.1, 0.0) 

M (0.3, 0.5, 0.8, 0.4, 0.2)  
L (0.7, 0.5, 0.2, 0.6, 0.8)  

Table 5.3 Typical rule-base and rule confidences obtained after training. Rule confidences are shown in brackets in the following 
order: end effector vertical acceleration is (i) NL (Negative Large), (ii) NS (Negative Small), (iii) Z (Zero), (iv) S (Small), (v) L 
(Large). 



Comparing the performances of the system with and without acceleration 
feedback, we conclude the following. When there is no end effector accel-
eration, both systems perform similarly. In the presence of end effector ac-
celeration, the system with acceleration feedback is able to eliminate or re-
duce the slippage. However, this improvement has come at the price of 
having now 700 possible rules whereas before there were only 140 possi-
ble rules. So, there is a trade-off between simplicity of the system and a 
better performance. Nevertheless, this application involving three inputs is 
still considered a low-dimensional problem [8, p108]; the 700 possible 
rules demand modest memory and processing time. Accordingly, the me-
chanical response is not affected by undue processing delay.  

5.6.3 Approach with accelerometer and hierarchical modelling 

Hierarchical control divides a problem into several simpler subproblems: 
High dimensional complex systems are divided into several low dimen-
sional subsystems. Hence, this is an attractive technique to identify parsi-
monious neurofuzzy models [34-37].  
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End effector
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Subnetwork Y

Subnetwork Z

 
Figure 5.17 Traditional hierarchical model for the neurofuzzy controller with 
three inputs. 
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Figure 5.18 Proposed hierarchical model for the three-input neurofuzzy control-
ler. 
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In the previous section, we saw how the addition of one input to the 
neurofuzzy controller results in a bigger and more complex rule base. Fig-
ure 5.17 shows a neurofuzzy hierarchical structure commonly used to 
overcome the curse of dimensionality, adapted for the control of our grip-
per with acceleration feedback. The outputs of the subnetworks X and Y 
form the inputs of the subnetwork Z. With this approach, the addition of an 
input variable increases linearly the number of rules. However, the overall 
network training is difficult as the outputs are complex nonlinear functions 
of the weights [37, 38]. Consequently, the idea of multiplying the outputs 
of the subnetworks to generate the overall network output is used here, see 
Figure 5.18. This design is based on previous results, which have shown 
that the gripper controller has to increase the motor voltage when the ac-
celeration increases. 
In a neurofuzzy hierarchical structure, the rule base increases linearly, so 
the density of the end effector acceleration fuzzy set can be finer. Conse-
quently, this fuzzy set has now seven memberships: NL, Negative Medium 
(NM), NS, Z, S, M and L, and the (new) subnetwork B output set (i.e., per-
centage increase in motor voltage) has the memberships Z, S, M and L. 
The total possible number of rules of the entire network is equal to 188. 
Accordingly, there has been a considerable reduction of the rule base in 
comparison with the approach of Section 5.6.2. 
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Figure 5.19 Action Evaluation Network for the neurofuzzy subnetwork B. 
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Fingertip force Voltage 
Z S M L 

Z VL(0.4) 
VVL(0.6)

M (0.5)  
L (0.5)  

NVS (0.4)
Z (0.6)  

NVS (0.75) 
Z (0.25)   

AN 
L (0.2) 
VL (0.8) 

S (0.3)  
M (0.6)  
L (0.1)  

Z (0.4) 
VS (0.6) 

NVS (0.1) 
Z (0.8)  
VS (0.1)   

S 
M (0.1) 
L (0.6) 
VL (0.3) 

M (0.3) 
L (0.6)  
VL (0.1) 

S (0.5)  
M (0.5)  

VS (0.5)   
S (0.5)   

M 
L (0.1) 
VL (0.8) 
VVL(0.1) 

L (0.3) 
VL (0.7) 

M (0.4) 
L (0.6)  

S (0.3)   
M (0.6)   
L (0.1)  

Slip 

L 
VL (0.1) 
VVL(0.9)

L (0.1) 
VL (0.9) 

L (0.6) 
VL (0.4) 

S (0.1)  
M (0.8)   
L (0.1)   

Table 5.4 Rule-base and rule confidences (in brackets) found after reinforcement 
learning for the neurofuzzy subnetwork A. 

 
  End effector vertical acceleration 
  NL NM NS Z S M L 

Z 0.0 0.05 0.2 0.95 0.1 0.0 0.0  
S 0.0 0.25 0.7 0.05 0.8 0.25 0.0 
M 0.2 0.6 0.1 0.0 0.1 0.6 0.1 

% 
increase

L 0.8 0.1 0.0 0.0 0.0  0.15 0.9 

Table 5.5 Rule-base and rule confidences (in brackets) found after reinforcement 
learning for the neurofuzzy subnetwork B. 

The training of subnetworks A and B is identical to the training of the 
previous neurofuzzy systems, but subnetwork B has a different Action 
Evaluation Network, as shown in Figure 5.19. In the neurofuzzy hierarchi-
cal controller, each subnetwork has an independent rule base. Tables 5.4 
and 5.5 show the rule bases obtained after 30 minutes of training, for the 
subnetworks A and B, respectively. The two subnetworks were trained 
simultaneously.  

In, Figure 5.20 the dashed line shows typical performance of the neuro-
fuzzy hierarchical controller compared with that of the controller described 
in Section 5.6.2. Again, with the end effector stationary, two external  



190      J. A. Domínguez-López, R.I. Damper, R.M. Crowder and C.J. Harris 

0 1 2 3 4 5 6 7 8 9 10
−8

−6

−4

−2

0

2

4

6

8

Time (s)

S
lip

 r
at

e 
(c

m
/s

)
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(b) End effector motor terminal voltage 
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(c) Applied force 
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(d) Vertical acceleration 

Figure 5.20 Simulated results for the system with information about the end effec-
tor vertical acceleration (solid) and the neurofuzzy hierarchical controller with end 
effector acceleration feedback (dashed): (a) object slip behaviour; (b) control ac-
tion (applied motor voltage); (c) resulting force applied to the object; (d) end ef-
fector vertical acceleration. 

forces are applied to the object to induce slip: 10 N at 3 seconds and -10 at 
5 seconds. The system is capable of performing a stable grip despite these 
disturbances, After 6 seconds, the end effector is subjected to the same pat-
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tern of acceleration as before. Again, this controller is able to mange excel-
lently the negative acceleration, and reduce slippage for the positive accel-
eration. The  neurofuzzy hierarchical system was not only able to reduce 
the number of rules but also give a slight improvement in the system per-
formance.  
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Figure 5.21 Hierarchical framework to improve the performance of the end effec-
tor, controlling its maximum acceleration. 

5.6.4. Hierarchical approach with acceleration control 

As end effector acceleration can induce slippage, it is worth considering 
controlling the end effector acceleration. Object slippage can be reduced if 
more force is applied to the object. However, there is a limit to the force 
that the gripper can apply because:  

 
• the object can be crushed if large force is applied;  
• the object can slip if the gripper cannot apply more force because 

of mechanical limits. 
As result, there is also a limit in the end effector acceleration to ensure a 

stable gripping. Accordingly, a hierarchical framework to limit the maxi-
mum end effector acceleration is proposed, as shown in Figure 5.21. This 
design features two neurofuzzy controllers. Neurofuzzy controller (1) is 
the neurofuzzy hierarchical controller described in Section 5.6.3. Neuro-
fuzzy controller (2) is responsible for calculating the maximum end effec-
tor acceleration that the gripper can exert yet still guarantee stable grip-
ping.  

The output set of Neurofuzzy controller (2) is the maximum absolute 
acceleration ( )maxa . The absolute value of the maximum acceleration is 
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used to have a more transparent network. It has four memberships: Z, S, M 
and L. The output of the limiter, i.e., the suggested end effector accelera-
tion, sa as, is given by:  

)asgn()a,amin(a ddmax=  
where da is the desired end effector vertical acceleration. This value 
comes from another level of the robot controller, for instance, path or task 
planning. Figure 5.22 shows the AEN of Neurofuzzy controller (2).  
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Figure 5.22. Action evaluation network for Neurofuzzy controller (2) shown in 
Figure 5.21. 



 
Applied motor voltage max-min 

NVS  Z  VS  S M L VL VVL 

Z Z (1.0)  Z (0.9) 
S (0.1) 

Z (0.85) 
S (0.15) 

Z (0.8) 
S (0.2 

Z (0.7) 
S (0.3) 

Z (0.6)  
S (0.4)  

Z (0.6)  
S (0.4)  

Z (0.7)  
S (0.3)  

S L (0.9)  
M (0.1)  

L (0.9)  
M (0.1)  

L (0.85) 
M (0.15) 

L (0.8) 
M (0.2)  

L (0.8) 
M (0.2)  

L (0.7) 
M (0.3)  

L (0.5)  
M (0.5)  

L (0.4)  
M (0.6)  

M 
L (0.6)  
M (0.4)  

L (0.5)  
M (0.5) 

L (0.4)  
M (0.5)  
S (0.1) 

L (0.2)  
M (0.6) 
 S (0.2) 

L (0.1)  
M (0.6)  
S (0.3) 

M (0.5) 
S (0.5)  

M (0.1)  
S (0.8) 
Z (0.1)  

S (0.6)  
Z (0.4) 

Fingertip  
force 

L Z (0.2)  
S (0.8)  

Z (0.4)  
S (0.6) 

Z (0.6)  
S (0.4)  

Z (0.7)  
S (0.3)  

Z (0.8)  
S (0.2) 

Z (0.8)  
S (0.2)  

Z (0.95) 
S (0.05) 

Z (1.0)  

Table 5.6 Rule-base and rule confidences (in brackets) found after reinforcement learning for the Neurofuzzy controller(2) in Figure 
5.21. 
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(b) End effector motor terminal voltage 
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(c) Applied force 

0 1 2 3 4 5 6 7 8 9 10
−30

−20

−10

0

10

20

Time (s)

E
nd

 e
ffe

ct
or

 v
er

tic
al

 a
cc

el
er

at
io

n 
(m

/s
2 )

 
(d) Vertical acceleration: desired (dashed), suggested (solid) 

Figure 5.23 Simulated results for the hierarchical controller with (solid) and with-
out (dashed) end effector acceleration limitation: (a) object slip behaviour; (b) 
control action (applied motor voltage); (c) resulting force applied to the object; (d) 
end effector vertical acceleration. 
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Both neurofuzzy controllers share the same Markov decision process. 

Neurofuzzy controller (1) is trained first; once its training has been com-
pleted, Neurofuzzy controller (2) is trained. If the two neurofuzzy control-
lers were trained simultaneously, it would be impossible to determine 
which controller was responsible for either failure or success. Table 5.6 
shows the Neurofuzzy controller (2) rule base and rule confidences found 
after 45 minutes of reinforcement learning. The rule base of Neurofuzzy 
controller (1) corresponds to that of the neurofuzzy hierarchical controller 
(Tables 5.4 and 5.5). Figure 5.23 shows typical performance with and 
without acceleration limitation, subjected to the the standard pattern of dis-
turbances. As illustrated by the dashed line in Figure 5.23(a), the hierar-
chical end effector controller was able to eliminate the object slippage due 
to end effector vertical acceleration.  

5.7 Conclusions 

Robotic grippers are commonly used to restrain and manipulate a variety 
of objects under a wide range of conditions. Accordingly, robotic end ef-
fectors are required to be capable of considerable gripping dexterity within 
an unstructured environment. The variety of objects and working condi-
tions that might be met in practice make it impossible to foresee all the 
situations the system might encounter. Therefore, robotic systems need to 
be capable of dynamic adaptation to external disturbances, changing cir-
cumstances and unforeseen situations. Ideally, the system should learn its 
adaptive behaviour on-line, through interaction with its environment, 
without the supervision of a ‘teacher’. This becomes vital when labelled 
training data are not available. However, when such training data are 
available, they can profitably be used to provide seed weights for on-line 
learning. Reinforcement learning is an effective way to train the neuro-
fuzzy system on-line, facilitating adaptation to unexpected conditions. Its 
use led to successful control in situations where the supervised learning 
system failed.  

Looking to have a faster adaptation to environmental changes, we have 
implemented a hybrid learning approach which uses both supervised and 
reinforcement learning. The combination of these two training algorithms 
allows the system to make good use of effective control actions discovered 
during operation. These can be considered as ‘labelled’ data since a record 
of inputs and outputs is continually kept over a preceding (three-second) 
period. The supervised learning scheme ran ‘in the background’ and was 
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only allowed to overwrite the results of reinforcement learning if the corre-
sponding neurofuzzy network weights were not too dissimilar. In this way, 
the hybrid system can ‘ignore’ inconsistent (labelled) data. In addition, 
stability can be maintained (although not guaranteed) in the absence of a 
precise mathematical model of the system. The performance of the hybrid 
system was surprisingly good, recovering from simulated sensor failure 
much faster than the ‘pure’ reinforcement learning system.  

In practice, all robot applications require end effector movement, so 
there will be end effector acceleration, which can induce slippage. Conse-
quently, it is vital to validate the gripper controller under that condition. A 
controller without any information of the end effector acceleration treats 
this disturbance as any other (i.e., external force acting on the object). Al-
though this controller is able to respond adequately over short time peri-
ods, the continuous presence of acceleration could lead to the object slip-
ping from the gripper. We therefore developed an approach using end 
effector acceleration feedback, integrating this extra input in the same 
fuzzy machine. This controller is indeed able to discover that in the exis-
tence of acceleration, it has to apply more force. Thus, slippage is reduced. 
However, this improvement is at the cost of increasing the rule base, so re-
ducing network transparency. At this point, the dilemma between model 
simplicity and model accuracy is evident. Hence, a parsimonious neuro-
fuzzy hierarchical controller was proposed. With this approach, the num-
ber of rules was smaller than required by the traditional neurofuzzy con-
troller with acceleration feedback. The parsimonious controller had an 
excellent performance, allowing only slight slippage.  

As with any large external force acting on the object, high accelerations 
of the effector will lead to slippage of the grasped object. The control 
technique proposed to solve this problem is again hierarchical. The addi-
tion of a controller in charge of limiting the end effector acceleration im-
proved noticeably the overall performance. However, such limitation 
strategies may have other unintended effects on the general performance of 
the robot. For instance, if the robot is path following, imposing a limit on 
acceleration places restrictions on the robot capabilities.  

In conclusion, it is apparent that when the system has knowledge of a 
disturbance (i.e., acceleration), it is able to take a better action than when it 
is ignorant of such a disturbance. In the same way, when the system is able 
to modify the disturbance, it can help the controller to perform properly. 
Finally, the curse of dimensionality affects not only the system transpar-
ency but also its learning speed and effectiveness. If the number of inputs 
increases, the system complexity increases too. A more complex system 
means that there are more possible neurons, weights and rules. Conse-
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quently, the learning problem is made harder. These drawbacks can be re-
duced using parsimonious adaptive/product models. 
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