Skip to main content

Microrobotics for Molecular Biology: Manipulating Deformable Objects at the Microscale

  • Conference paper

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 15))

Abstract

Recent advances in molecular biology such as cloning demonstrate that increasingly complex micromanipulation strategies for manipulating individual biological cells are required. From a robotics standpoint, the manipulation of biological cells, sometimes referred to as biomanipulation, presents several interesting research issues that extend well beyond cell manipulation. Biological cells are highly deformable objects, and the material properties of these objects are not well quantified, so developing strategies for manipulating deformable objects must be addressed. Most biological cells are between 1μm and 100μm in diameter, depending on the cell type, so micromanipulation issues must be explored, including the appropriate use of high resolution, low depth-of-field vision feedback and very low magnitude multi-axis force feedback. By pursuing robotic manipulation of biological cells, many interesting robotics research avenues in micromanipulation, deformable object handling, multi-sensor integration, and force and vision feedback assimilation must be explored. This paper explores the visual tracking of biological cells using physics-based models and the measurement of applied force fields using a new cell deformation model with visual feedback. A multi-axis MEMS-based force sensor is used to determine applied forces and develop models of cell deformation. Robust tracking of cell deformation is shown and real-time determination of applied force fields is demonstrated. In addition, the system developed has been used to quantitate for the first time a phenomenon known as “zona hardening” during mouse oocyte fertilization.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nelson, B.J., Sun, Y., Greminger, M.A. (2005). Microrobotics for Molecular Biology: Manipulating Deformable Objects at the Microscale. In: Dario, P., Chatila, R. (eds) Robotics Research. The Eleventh International Symposium. Springer Tracts in Advanced Robotics, vol 15. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11008941_13

Download citation

  • DOI: https://doi.org/10.1007/11008941_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23214-8

  • Online ISBN: 978-3-540-31508-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics