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Abstract. Many instances of the mobile robot guidance mapping problem exhibit a topology
that can be represented as a graph of nodes (observations) connected by edges (poses). We
show that a cycle basis of this pose network can be used to generate the independent constraint
equations in a natural constrained optimization formulation of the mapping problem. Explicit
reasoning about the loop topology of the network can automatically generate such a cycle basis
in linear time. Furthermore, in many practical cases, the pose network has sparse structure
and the associated equations can then be solved time linear in the number of images. This
approach can be used to construct globally consistent maps on very large scales in very
limited computation. While the technique is applicable to mapbuilding in general, and even
optimization in general, it is illustrated here for batch processing of 2D ladarscans into a
mobile robot guidance map.

1 Introduction

Mapbuilding is an important problem in mobile robotics because triangulation from
some form of map is often the only mechanism that enables stable accurate position
estimates over either long time periods or long excursions.Regardless of the sensing
modalities used, the environmental features used as landmarks, or the dead reckoning
systems used to compute position between fixes to the map, theconstruction of a
map which is sufficiently accurate and consistent remains a difficult problem.

This paper addresses the following problem. A sequence of ladar scans has been
captured during a mapping pass through the environment. Theimagery is tagged with
estimated vehicle or sensor positions computed from all available dead reckoning
indications, potentially including ladar scan matching (visual odometry). Based on
these position estimates and an indication of which nonconsecutively captured scans
overlap, a globally consistent map must be constructed.

1.1 Prior Work

This work is an adaptation of our earlier work on navigating from globally consistent
appearance mosaics [1]. Building a map is closely related to the computer vision
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problems of registering range scans to produce a geometric model or to registering
imagery to produce mosaics.

The processing of large amounts of imagery into consistent representations was
a core pursuit of analytic photogrammetry before there was computer vision or even
computers [2]. The formulation of mosaicking (then known as block triangulation)
as that of minimizing the total map residual using the normalequations was a basic
technique. In the contemporary mosaicking literature, [3] is similar to the present
work in its use of topological information to guide the optimization process. In the
range image processing literature, we cite [4] and [5] for pioneering the iterative
closest point algorithm, and [6] for using it to simultaneously minimize the total
residual error of a number of overlapping range scans.

The idea of a network of reference frames connected by uncertain relative poses
goes back in robotics at least to [7]. Many of the core concepts of consistency and
constraint in uncertain geometric networks were introduced to robotics in [8]. These,
in turn, have a partial basis in classical network theory [9].

The fact that tracking covariance leads to quadratic complexity in SLAM has
been known since [10]. The fact that correlations must nonetheless be tracked was
shown in [11]. These results clarify the value of our efforts to diagonalize covariance
here. The fact that relative poses can do this was pointed outin [12].

One of the important aspects of this work is its ability to produce maps on a very
large scale. In part, this is enabled by an inherently efficient formulation. Highly suc-
cessful efforts to do the same for incremental approaches are also ongoing [13] [14].
In contrast to the hierarchical decomposition approach of the latter, our approach
allows every image in the map to move in order to seek the constrained optimum;
but otherwise, the use of paths through the network for formulating constraints on
relative poses makes this work very similar.

Within the area of incremental mapping, global consistencyof range scans was
enforced in [15] by solving an overconstrained system of measurements to compute
the required least-squares perturbation to absolute scan poses. This approach is
extended in [16] to perform online mapping in cyclic environments. In contrast to
these highly relevant works, our approach avoids the complexity of inverting large
populated matrices in order to produce a method which is practical on a very large
scale.

This document is organized as follows. Section2 describes the constrained
optimization framework underlying our proposed approach.Section3describes how
an independent basis of constraint equations can be extracted automatically for a
given map by using a graph representation. Results in large scale cyclic environments
using this approach are presented in Sec.4, followed by conclusions in Sec.5.

2 Constrained Optimization

2.1 Constrained Optimization in a Relative Map

Consider a representation of the mapping problem in terms ofrelative poses. Our
choice of relative poses for encoding spatial relationships assures that errors in
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estimates of relative motion are decoupled. In the description that follows, the term
imagerefers to the laser scan acquired at a given time instant, butmay be used in a
broader context to refer to any sensory observation of the world made relative to the
observers viewpoint.

We denote the relative pose of imagei with respect to imagej by ρ
j
i where

ρ
j
i ∈ SE(2) in our application. As an example, an initial estimate for the relative

poseρ̂ i
i+1 between temporally adjacent images numberedi andi+1 may be supplied

by an odometer, but may also be independently supplied by (say) matching images
acquired at those locations. In principle, if there aren images, up ton2 relative poses
can be defined. In practice, only those relative poses for which an important overlap
exists need to be considered.

We also denote the homogenous transform relating the coordinate frame asso-
ciated with imagej with respect to that at imagei by T i

j . Note that this transform
is purly a function of the associated relative pose. We denote the uncertainty of an
estimate ofρ j

i by Pij . The overcomplete vector of initial estimates of relative poses
thus has a diagonal initial state covariance matrix, which is denoted asP0.

A change in the topology of the map occurs when the path of a robot closes
on itself, or the when robot records an obervation at a location previously encoun-
tered along its trajectory. Such an event introduces constraints in an overcomplete
representation of the map as the true values of relative poses describing motion
between those locations are now constrained to be consistent. In this formulation,
internal consistency is enforced by hard constraints on therelative poses, termed
loop equations, which take the form:

T i
i+1 T i+1

i+2
. . . T

i+j−1

i+j T
i+j
i = I (1)

Such equations require the total transform around a closed loop to be the identity.
Likewise, consistency with external reference points may be imposed withpath
equationsof the form:

T i
i+1 T i+1

i+2
. . . T

j−2

j−1
T

j
j−1

= T i
j |external (2)

A loop is simply a closed path in these expressions and the path is therefore the
more general notion.

Let the state vectorx denote the vector of all relative poses for which an important
overlap exists. The square total of the residualz(x) of matching points or features in
all image pairs serves as a useful measure of performance foroptimization purposes.
Note that the residual between observations of a feature position made in imagesi
andj is only a function of the relative poseρ j

i and the relative coordinates of the
feature observed in each image.

We may then specify the problem as:

Minimize: f(x) = 1

2
z(x)Tz(x) + µ

2
(x − x̂)

T
P−1

0 (x − x̂)

subject to constraints: c(x) = b
(3)

The second term in the objective function penalizes the Mahanolobis distance
between the true value of relative pose and its initial estimate, and hence implicitly
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[

HT H + µP−1
0 CT

C 0

]

=

Fig. 1. Closing a Single Loop
With Nonlinear Programming.
Shaded cells denote non-zero el-
ements. The diagonal part of the
matrix is all that needs to be
inverted.

assumes a Gaussian generative model for relative pose errors. It is well known
that over the course of robot motion, the uncertainty in poseestimates using only
odometry deviates significantly from a Gaussian distribution. However, over the
very small distance traversed between two successively acquired images, a Gaussian
remains a valid approximation of odometry error. A similairargument can be applied
for the error in a relative pose estimate after a scan matching operation. Hence we
claim that the error metric is defensible under this problemformulation. The free
scalarµ simply influences the relative weighting between the two quantities in the
objective function.

Such problems are, of course, solved using Lagrange multipliers. We adjoin the
constraints to the obective function to form the Lagrangian:

l(x,λ) = f(x) + λT [ c(x) − b ] (4)

and require of a constrained minimum that:

∂l

∂x
=

∂f

∂x
+ λT ∂c

∂x
= 0

∂l

∂λ
= c(x) − b = 0

(5)

To generate the constrained Newton’s method, we linearize these equations about
the current estimatêx where they are not satisfied, transpose where convenient, and
require satisfaction upon perturbation. The ultimate result of this manipulation is:

[

HT H + µP−1
0 CT

C 0

] [

∆x

λ

]

= −

[

HTz

c(x̂) − b

]

(6)

where the JacobiansH andC are evaluated at the current estimate as:

H =
∂z

∂x
|x=x̂ C =

∂c

∂x
|x=x̂

These equations can be iterated until convergence from a initial estimate in order
to produce the constrained local minimum. Note that this system of equations is
similair to the basic form of the Variable State Dimension Filter (VSDF) [17]. The
matrix HTH + P−1

0 is block diagonal as shown in Fig.1, and the solution to the
system can be obtained directly by first solving forλ in:

C
(

H
T
H + µP

−1

0

)

−1

C
T
λ = [c(x̂) − b] − C

(

H
T
H + µP

−1

0

)

−1

H
T
z(x̂) (7)

and substituting back to solve for∆x in:
(

HTH + µP−1
0

)

∆x = −
(

HTz(x̂) + CTλ
)

(8)
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Fig. 2.Network Cycle Basis: There are 4 nodes in this graph and 6 edges. Noticethat there is
no node at the center of the figure so the edge intersection there is of no consequence. There
are five distinct loops but only three of them are independent.

2.2 Complexity of the Optimized Relative Map Formulation

The first equation is solved for the Lagrange multipliers andthe second is then
solved for the state perturbation. As illustrated in Fig.1, the matrix to be inverted in
this case is block diagonal. Letn be the number of relative poses,l be the number
of independent constraints andm be the total number of features considered in all
image pairs. With careful implementation, the complexity of these computations is
O(m + nl2 + l3) for the first equation and O(m + nl) for the second. Note that the
highest power ofn that appears is unity.

It is the decision to use a representation of potentially inconsistent relative poses
which leads to a nearly diagonal system of equations. The alternative of using a
minimal independent set of poses to represent the map would require, essentially,
that the constraints be substituted into the objective. Doing so leads to a fully
populated coefficient matrix. When the constraints on the poses are represented in
a second set of equations as hard constraints, the resultingstructure can be solved
much more efficiently. The next section describes the process of generating this set
of constraint equations that are required to enforce consistency in the map.

3 Pose Network Analysis

In the general case, the generation of independent loop equations is itself a diffi-
cult problem. The main concern is that the loop equations must be independent to
preserve the rank of the coefficient matrixCCT. For extracting this set of equations
automatically, we use a graphical representation of the mapas described below.

We define the pose network as a graph withG = (V, E). Each nodeϑ ∈ V
corresponds to a time instant when an image was observed. Forevery directed edge
ε from nodei to j, ε ∈ E only if an independent relative pose estimate exists between
images ati andj. This may occur in one of two ways:

a) if i andj are adjacent in time, and an estimate of relative motion is available as
ρ

j
i through (say) odometry, or
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b) if the images corresponding to nodesi andj contain common features that make
direct estimation ofρ j

i possible.

An independent cycle basis of this graph then corresponds toa set of independent
constraint equations, with each cycle in the basis corresponding to a loop equation
in the set.

Figure2 ilustrates an example where there are 4 nodes (shown with their asso-
ciated reference frames) and 6 edges. Although there are nine distinct loops, four
of them can be eliminated because there is no node in the center of the figure. The
remaining five loops include those formed by each set of threenodes, and the one
loop composed of four nodes. Of these five loops, only three are independent.

Generating the loop equations requires an algorithm for computing the cycle
basis of the network. While the literature on this aspect of network theory devotes
significant effort to finding the best basis for a given purpose [18], our results do not
depend on the exact basis chosen.

3.1 Extracting a Cycle Basis

In general, the problem of finding a cycle basis is related to the problem of finding
a spanning tree of the network. Each different possible spanning tree corresponds to
a different cycle basis. In a spanning tree, each node (except an arbitrarily chosen
root node) is assigned one and only one parent. Once the tree is constructed, two
important statements become true:

• There is now a unique acyclic path between any two nodes in thetree.
• Any edge in the network, but not in the tree, closes an independent loop which

is a member of the cycle basis encoded by the tree.

Figure3 illustrates this on a simple tree. The choice of root node andthe order of
traversal determines the form of the tree. Notice that if there areN nodes, then the
spanning tree containsN − 1 edges. If there areE edges in the original network,
then there must be:

L = E − (N − 1) = E − N + 1 (9)

independent loops. In many practical scenarios, the numberof imagesN À L.
The spanning tree can be generated by a breadth first traversal of the pose

network. For this purpose, edges are considered bidirectional. Starting from the root,
each node and edge is marked as it is traversed. When any node isencountered for
the second time:

• The edge traversed is marked as a loop closing edge and not included in the
spanning tree.

• The node is not elaborated into its children.

When there are no nodes left in the traversal queue, the tree iscomplete. This
algorithm is clearly of complexityE because each edge is visited only once.
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Fig. 3. Spanning Tree and Cycle Basis: The network of 7 nodes has two independent loops.
The spanning tree generated when node 0 is chosen as the root is illustrated. The edges
between nodes (5,6) and (2,3) are the identified loop closing edges.

The generation of loop constraint equations requires the generation of an explicit
sequence of edges which comprise each loop in the cycle basis. A sequence of loop
edges is comprised of the path in the spanning tree and the edge outside the tree
which closes the loop. It is important to track whether the edges in the loop are
traversed in the same sense or the opposite sense of the relative pose to which they
correspond.

The shortest path in the spanning tree between the nodes associated with a loop-
closing edge is easy to find, and is implicitly coded in the parent links of the spanning
tree. In total, this step of finding all loop equations from their corresponding edge-
sequences has a complexity bounded from above by the length of the largest loop
times the number of loops. Therefore, in no case can it exceedLE operations.

4 Results

The constrained optimization mapping system has been recently implemented and
is undergoing field trials. Presently, images are captured roughly ten times a second.
With reasonable odometry, there is little difference in thequality of maps produced
using the full constrained optimization approach versus simply enforcing the con-
straints without optimization. The latter amounts to a right pseudoinverse applied to
all loops simultaneously. Consecutive scans are registered using the iterative closest
point (ICP) algorithm before the mapping process commences. Computing times
required to register consecutive scans in this manner are not included in the times
provided because these calculations can be performed on-line while the images are
being captured. The processor used is a 1.5 GHz Pentium with 1GB of RAM. The
two example trials provided below have been chosen to exemplify how very large
maps can be rendered globally consistent in comparatively little computation.

4.1 Large Cyclic Facility

One trial involved mapping several floors of Pittsburgh’s ice hockey stadium. A map
of one floor is presented below both before and after rendering it consistent.
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Fig. 4.Ladar Map of Pittsburgh’s Mellon Arena. 3875 ladar scans have been rendered globally
consistent in 0.14 seconds of computation. Left: original odometry-based map. Right: final
map

Clearly, a slight curvature error to the right seems evidentin the odometry. In
this case, four iterations were required to reduce the original 65 meter error at loop
closure to under 1 cm. Overall runtime was 0.14 seconds to just enforce constraints
and 0.65 seconds to also compute the optimum map.

4.2 Large Multi-Cyclic Facility

The odometry was very well calibrated in this second test. Here, the environment is a
typical grocery store. Such environments are ideal for demonstrating the benefits of
our approach. There are a large but finite number of loops and the number of images
required to map the facility is enough to overwhelm many alternative approaches.
The vehicle trajectory was a left to right scan of the facility where each set of shelves
was encircled once.

The left figure testifies to the excellent odometry calibration in effect for this test.
After 11 complete turns and roughly 700 meters of travel, theheading error remains
under 20◦. This error does, however, account for the gradual skew in the aisles as
the vehicle moved from left to right in the figure. Misregistration at the ends of the
aisles is evident when they are seen a second time after looping around each set of
shelves. Various fuzzy clouds of points in the aisles are either displays or occasional
moving people.

The quality of the odometry led to an average misregistration on the order of
3 meters at the point of closure of each of the 23 loops used. Four iterations were
required to enforce all constraints to under a cm in 12.22 seconds of computation.
For problems on this scale, the extra effort to compute an optimal map is insignificant
because the constraint equations require most of the processing.
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Fig. 5. Ladar Map of 12 Aisles of a Grocery Store. 10,380 ladar scans have been rendered
globally consistent in 12.22 seconds of computation. Left: original odometry-based map.
Right: final map

5 Conclusions

This paper has shown the promise of explicit topological reasoning to solve the
problem of globally consistent mapping on the large scale. When the pose network
describing observations is sparse, as it often is, and the problem size is large, the
computational advantages in terms of both memory and processing can be both
substantial and enabling with respect to comparable batch-processing techniques.

The technique is applied here to ladar scans and in our earlier work to image
mosaicking [1], but it applies in principle to any form of imagery that can be
registered whether it is 2D or 3D. Indeed, the fundamental result applies to all
constrained optimization problems, and it is likely to havebeen exploited in other
fields for some time.

At an abstract level, sparse cyclic systems are systems which are only slightly
overconstrained. For such systems, the process of extracting an explicit expression of
the hard constraints encoding consistency seems to have great practical value. Sparse
optimization problems then become reducible to computationally easy problems in
graph theory followed by easy ones in optimization.

While we have demonstrated the use of the technique in a batch processing mode,
it is amenable to incremental map building. Indeed, its linear complexity implies
that optimal consistent maps of large scale facilities could be constructed on the fly
as long as the cycle basis can be maintained and a robust automatic mechanism for
detecting loop closure can be developed. The latter has beenshown by several other
researchers (e.g. [19]), and the former can be accomplished by simply re-running
the present algorithm as new loops in the pose network are closed.

To the degree that limited sensor range and environmental occlusion makes all
problems sparse on the large scale, we have begun to support the case that globally
consistent mapping can be accomplished in a fully automaticfashion on very large
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scales without requiring any additional assumptions in order to reduce computational
complexity.
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