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Abstract. Many instances of the mobile robot guidance mapping problem exhibitéogp
that can be represented as a graph of nodes (observations) mzhbgedges (poses). We
show that a cycle basis of this pose network can be used to generatedpendént constraint
equations in a natural constrained optimization formulation of the mappotdgm. Explicit
reasoning about the loop topology of the network can automatically gersereh a cycle basis
in linear time. Furthermore, in many practical cases, the pose netwsrkgaase structure
and the associated equations can then be solved time linear in the numbexgesinThis
approach can be used to construct globally consistent maps on vgeydeales in very
limited computation. While the technique is applicable to mapbuilding in genermlewn
optimization in general, it is illustrated here for batch processing of 2D ladans into a
mobile robot guidance map.

1 Introduction

Mapbuilding is an important problem in mobile robotics besmatriangulation from
some form of map is often the only mechanism that enabletesti@burate position
estimates over either long time periods or long excursiBegardless of the sensing
modalities used, the environmental features used as latkdnwe the dead reckoning
systems used to compute position between fixes to the magptitsruction of a
map which is sufficiently accurate and consistent remairiffiaudt problem.

This paper addresses the following problem. A sequencealaf kcans has been
captured during a mapping pass through the environmeninidmgery is tagged with
estimated vehicle or sensor positions computed from ailahla dead reckoning
indications, potentially including ladar scan matchingspal odometry). Based on
these position estimates and an indication of which noremrts/ely captured scans
overlap, a globally consistent map must be constructed.

1.1 Prior Work

This work is an adaptation of our earlier work on navigatiranf globally consistent
appearance mosaic$]] Building a map is closely related to the computer vision
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problems of registering range scans to produce a geometidiehor to registering
imagery to produce mosaics.

The processing of large amounts of imagery into consisegresentations was
a core pursuit of analytic photogrammetry before there waspiter vision or even
computers?]. The formulation of mosaicking (then known as block triatagion)
as that of minimizing the total map residual using the noregalations was a basic
technique. In the contemporary mosaicking literatugg g similar to the present
work in its use of topological information to guide the opiziation process. In the
range image processing literature, we cdgdnd [5] for pioneering the iterative
closest point algorithm, and] for using it to simultaneously minimize the total
residual error of a number of overlapping range scans.

The idea of a network of reference frames connected by winedlative poses
goes back in robotics at least t¢][ Many of the core concepts of consistency and
constraint in uncertain geometric networks were introduogobotics in 8]. These,
in turn, have a partial basis in classical network the8ty [

The fact that tracking covariance leads to quadratic coxitglén SLAM has
been known sincelf)]. The fact that correlations must nonetheless be tracked wa
shown in [L1]. These results clarify the value of our efforts to diagimeatovariance
here. The fact that relative poses can do this was pointeith ).

One of the important aspects of this work is its ability togaroe maps on a very
large scale. In part, this is enabled by an inherently efiidigrmulation. Highly suc-
cessful efforts to do the same for incremental approacteeslso ongoing13] [14].

In contrast to the hierarchical decomposition approactheflatter, our approach
allows every image in the map to move in order to seek the cained optimum;

but otherwise, the use of paths through the network for féating constraints on
relative poses makes this work very similar.

Within the area of incremental mapping, global consistesfagnge scans was
enforced in 5] by solving an overconstrained system of measurementstpute
the required least-squares perturbation to absolute sesesp This approach is
extended in 16] to perform online mapping in cyclic environments. In castrto
these highly relevant works, our approach avoids the coxiplef inverting large
populated matrices in order to produce a method which istiped®n a very large
scale.

This document is organized as follows. Secti®mescribes the constrained
optimization framework underlying our proposed appro&gttion3 describes how
an independent basis of constraint equations can be edracitomatically for a
given map by using a graph representation. Results in laaje syclic environments
using this approach are presented in Seéollowed by conclusions in Seé.

2 Constrained Optimization

2.1 Constrained Optimization in a Relative Map

Consider a representation of the mapping problem in termelafive poses. Our
choice of relative poses for encoding spatial relationsl@psures that errors in
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estimates of relative motion are decoupled. In the desarighat follows, the term
imagerefers to the laser scan acquired at a given time instantnbytbe used in a
broader context to refer to any sensory observation of tirécvmoade relative to the
observers viewpoint. ‘

We denote the relative pose of imagevith respect to image by p? where
p{ € SE(2) in our application. As an example, an initial estimate far thlative
posep ¢, ; between temporally adjacentimages numbegetii+1 may be supplied
by an odometer, but may also be independently supplied lyy fsatching images
acquired at those locations. In principle, if theremimages, up ta? relative poses
can be defined. In practice, only those relative poses fochvéun important overlap
exists need to be considered.

We also denote the homogenous transform relating the cwiedirame asso-
ciated with image with respect to that at imageby T]? . Note that this transform
is purly a function of the associated relative pose. We detiw uncertainty of an
estimate ofp by P;;. The overcomplete vector of initial estimates of relatioses
thus has a diagonal initial state covariance matrix, wtsatkeinoted a$.

A change in the topology of the map occurs when the path of atroloses
on itself, or the when robot records an obervation at a longtreviously encoun-
tered along its trajectory. Such an event introduces caingérin an overcomplete
representation of the map as the true values of relativespdsscribing motion
between those locations are now constrained to be consittethis formulation,
internal consistency is enforced by hard constraints orrelaive poses, termed
loop equationswhich take the form:

Tii+1 Tvlrzl . ~Tiiirjjil TZH =1 1)

Such equations require the total transform around a clasgrtb be the identity.
Likewise, consistency with external reference points mayirbposed withpath
equationsof the form:

. i1 o .
Til-i-l Tili_z ce rfj?fl qu,1 = T;‘exteTnal (2)

A loop is simply a closed path in these expressions and theip#herefore the
more general notion.

Letthe state vectae denote the vector of all relative poses for which animpdrtan
overlap exists. The square total of the residi(at) of matching points or features in
all image pairs serves as a useful measure of performanoefianization purposes.
Note that the residual between observations of a featuriégrosnade in images
andj is only a function of the relative poge] and the relative coordinates of the
feature observed in each image.

We may then specify the problem as:

Minimize: f(z) = iz(z) z(z) + 4(z — 2) Py ' (xz — &)
subject to constraints: ¢(x) = b

3)

The second term in the objective function penalizes the Malubis distance
between the true value of relative pose and its initial estgmand hence implicitly
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Fig. 1. Closing a Single Loop
— With Nonlinear Programming.
oTg + upofl cT Shaded cells denote non-zero el-

C 0ol ements. The diagonal part of the
matrix is all that needs to be
inverted.

assumes a Gaussian generative model for relative poses.etras well known
that over the course of robot motion, the uncertainty in pestanates using only
odometry deviates significantly from a Gaussian distrdoutiHowever, over the
very small distance traversed between two successivelyireechimages, a Gaussian
remains a valid approximation of odometry error. A simikigument can be applied
for the error in a relative pose estimate after a scan magahjreration. Hence we
claim that the error metric is defensible under this probfermulation. The free
scalaru simply influences the relative weighting between the twongjtias in the
objective function.

Such problems are, of course, solved using Lagrange mialgpMe adjoin the
constraints to the obective function to form the Lagrangian

Wz, A) = f(z) + AT [c(z) - b] (4)
and require of a constrained minimum that:
ol of L 0c

a—m:a—m+)\a—m20 (5)
LI
aA—C:B =

To generate the constrained Newton’s method, we linedregetequations about
the current estimat2 where they are not satisfied, transpose where conveniaht, an
require satisfaction upon perturbation. The ultimate ltesfithis manipulation is:

HTH +puPyt CT] [Az] _ [ H'z
C 0JlA] " [e@-b

where the Jacobiand andC are evaluated at the current estimate as:

(6)

H = C =

ox la=s ox =2

These equations can be iterated until convergence frontial iestimate in order
to produce the constrained local minimum. Note that thisesgsof equations is
similair to the basic form of the Variable State Dimensiohefi(VSDF) [17]. The
matrix H"H + PO_1 is block diagonal as shown in Fig, and the solution to the
system can be obtained directly by first solving fon:

O (B H +uPit) " O"A= le(®) ~b] ~ C (HH + uPy ) T HT2@) ()
and substituting back to solve fatx in:
(H'H + pPy") Az = — (H" z(&) + CTA) (8)
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Fig. 2. Network Cycle Basis: There are 4 nodes in this graph and 6 edges. Naiidéere is
no node at the center of the figure so the edge intersection there is ohseqence. There
are five distinct loops but only three of them are independent.

2.2 Complexity of the Optimized Relative Map Formulation

The first equation is solved for the Lagrange multipliers #mel second is then
solved for the state perturbation. As illustrated in Higthe matrix to be inverted in
this case is block diagonal. Letbe the number of relative posédye the number
of independent constraints and be the total number of features considered in all
image pairs. With careful implementation, the complexityt®se computations is
O(m + nl? + 13) for the first equation and @( + nl) for the second. Note that the
highest power of, that appears is unity.

It is the decision to use a representation of potentiallpirsistent relative poses
which leads to a nearly diagonal system of equations. Tlegrative of using a
minimal independent set of poses to represent the map weqgldre, essentially,
that the constraints be substituted into the objectivenBao leads to a fully
populated coefficient matrix. When the constraints on thepase represented in
a second set of equations as hard constraints, the resstitingfure can be solved
much more efficiently. The next section describes the psookgenerating this set
of constraint equations that are required to enforce ctargig in the map.

3 Pose Network Analysis

In the general case, the generation of independent looptiegaas itself a diffi-
cult problem. The main concern is that the loop equationst tnei$ndependent to
preserve the rank of the coefficient matéiC". For extracting this set of equations
automatically, we use a graphical representation of the asagescribed below.

We define the pose network as a graph with= (V,£). Each node} € V
corresponds to a time instant when an image was observedvenr directed edge
efromnodeito j, e € £ only if an independent relative pose estimate exists betwee
images at and;j. This may occur in one of two ways:

a) if< andj are adjacent in time, and an estimate of relative motionadaive as
p? through (say) odometry, or
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b) if the images corresponding to nodemd; contain common features that make
direct estimation op possible.

An independent cycle basis of this graph then correspondsstt of independent
constraint equations, with each cycle in the basis corredipg to a loop equation
in the set.

Figure?2 ilustrates an example where there are 4 nodes (shown withatben-
ciated reference frames) and 6 edges. Although there aeedistinct loops, four
of them can be eliminated because there is no node in theragritee figure. The
remaining five loops include those formed by each set of thoekes, and the one
loop composed of four nodes. Of these five loops, only threémalependent.

Generating the loop equations requires an algorithm forpeding the cycle
basis of the network. While the literature on this aspect dfvoek theory devotes
significant effort to finding the best basis for a given pugfds], our results do not
depend on the exact basis chosen.

3.1 Extracting a Cycle Basis

In general, the problem of finding a cycle basis is relatedhéoproblem of finding

a spanning tree of the network. Each different possiblersipgriree corresponds to
a different cycle basis. In a spanning tree, each node (&xceprbitrarily chosen

root node) is assigned one and only one parent. Once thestemstructed, two
important statements become true:

e There is now a unique acyclic path between any two nodes itvéle
e Any edge in the network, but not in the tree, closes an inddgetioop which
is a member of the cycle basis encoded by the tree.

Figure 3 illustrates this on a simple tree. The choice of root nodetandrder of
traversal determines the form of the tree. Notice that ifd¢tere N nodes, then the
spanning tree contain¥ — 1 edges. If there ar& edges in the original network,
then there must be:

L=E-(N-1)=E-N+1 9)

independent loops. In many practical scenarios, the nuofieragesy > L.

The spanning tree can be generated by a breadth first tradrtiae pose
network. For this purpose, edges are considered bidiredtiStarting from the root,
each node and edge is marked as it is traversed. When any nedeoisntered for
the second time:

e The edge traversed is marked as a loop closing edge and radéacin the
spanning tree.
e The node is not elaborated into its children.

When there are no nodes left in the traversal queue, the ti@riplete. This
algorithm is clearly of complexitys because each edge is visited only once.
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Loop1:[2104 3]
Loop2:[621045]

Fig. 3. Spanning Tree and Cycle Basis: The network of 7 nodes has two indepEioops.
The spanning tree generated when node 0 is chosen as the root is iltlsTraéeedges
between nodes (5,6) and (2,3) are the identified loop closing edges.

The generation of loop constraint equations requires therggion of an explicit
sequence of edges which comprise each loop in the cycle Basexjuence of loop
edges is comprised of the path in the spanning tree and the @dgide the tree
which closes the loop. It is important to track whether thge=din the loop are
traversed in the same sense or the opposite sense of theer@lase to which they
correspond.

The shortest path in the spanning tree between the nodesatssiowith a loop-
closing edge is easy to find, and is implicitly coded in thespalinks of the spanning
tree. In total, this step of finding all loop equations fromittcorresponding edge-
sequences has a complexity bounded from above by the lefftle targest loop
times the number of loops. Therefore, in no case can it extéedperations.

4 Results

The constrained optimization mapping system has been tigéemplemented and
is undergoing field trials. Presently, images are capturadhly ten times a second.
With reasonable odometry, there is little difference indlality of maps produced
using the full constrained optimization approach versogp$i enforcing the con-
straints without optimization. The latter amounts to a rigdeudoinverse applied to
all loops simultaneously. Consecutive scans are registesiag the iterative closest
point (ICP) algorithm before the mapping process commenCemputing times
required to register consecutive scans in this manner drmcladed in the times
provided because these calculations can be performedenvhile the images are
being captured. The processor used is a 1.5 GHz Pentium v@ &f RAM. The
two example trials provided below have been chosen to exnigw very large
maps can be rendered globally consistent in comparatiitde/¢domputation.

4.1 Large Cyclic Facility

One trial involved mapping several floors of Pittsburghéshockey stadium. A map
of one floor is presented below both before and after rengérconsistent.
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115m

Fig. 4.Ladar Map of Pittsburgh’s Mellon Arena. 3875 ladar scans have legetered globally
consistent in 0.14 seconds of computation. Left: original odometsgdanap. Right: final
map

Clearly, a slight curvature error to the right seems eviderthe odometry. In
this case, four iterations were required to reduce theraldd5 meter error at loop
closure to under 1 cm. Overall runtime was 0.14 seconds t@juerce constraints
and 0.65 seconds to also compute the optimum map.

4.2 Large Multi-Cyclic Facility

The odometry was very well calibrated in this second testeHbe environment is a

typical grocery store. Such environments are ideal for destrating the benefits of

our approach. There are a large but finite number of loopshedumber of images

required to map the facility is enough to overwhelm manyrative approaches.

The vehicle trajectory was a left to right scan of the fagilithere each set of shelves
was encircled once.

The left figure testifies to the excellent odometry calilanain effect for this test.
After 11 complete turns and roughly 700 meters of travel hieding error remains
under 20. This error does, however, account for the gradual skewaratbles as
the vehicle moved from left to right in the figure. Misregaton at the ends of the
aisles is evident when they are seen a second time aftemigapound each set of
shelves. Various fuzzy clouds of points in the aisles areeitisplays or occasional
moving people.

The quality of the odometry led to an average misregistnatio the order of
3 meters at the point of closure of each of the 23 loops usadt. ierations were
required to enforce all constraints to under a cm in 12.22rs#€ of computation.
For problems on this scale, the extra effort to compute amapmap is insignificant
because the constraint equations require most of the mioges
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Fig. 5. Ladar Map of 12 Aisles of a Grocery Store. 10,380 ladar scans heee kendered
globally consistent in 12.22 seconds of computation. Left: original atrybased map.
Right: final map

5 Conclusions

This paper has shown the promise of explicit topologicaboeing to solve the
problem of globally consistent mapping on the large scaleefithe pose network
describing observations is sparse, as it often is, and thiglem size is large, the
computational advantages in terms of both memory and psoagsan be both
substantial and enabling with respect to comparable batobtessing techniques.

The technique is applied here to ladar scans and in our eartigk to image
mosaicking [], but it applies in principle to any form of imagery that cam b
registered whether it is 2D or 3D. Indeed, the fundamentslilteapplies to all
constrained optimization problems, and it is likely to héeen exploited in other
fields for some time.

At an abstract level, sparse cyclic systems are systemshvelné only slightly
overconstrained. For such systems, the process of extgatiexplicit expression of
the hard constraints encoding consistency seems to haatggaetical value. Sparse
optimization problems then become reducible to computatip easy problems in
graph theory followed by easy ones in optimization.

While we have demonstrated the use of the technique in a baichgsing mode,
it is amenable to incremental map building. Indeed, itsdineomplexity implies
that optimal consistent maps of large scale facilities ddod constructed on the fly
as long as the cycle basis can be maintained and a robustatitenechanism for
detecting loop closure can be developed. The latter hasdiemwn by several other
researchers (e.gl9]), and the former can be accomplished by simply re-running
the present algorithm as new loops in the pose network asedlo

To the degree that limited sensor range and environmentidsion makes all
problems sparse on the large scale, we have begun to suppaade that globally
consistent mapping can be accomplished in a fully autonfasigion on very large
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scales without requiring any additional assumptions ieota reduce computational
complexity.
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