Skip to main content

Parallel Generalized Finite Element Method for Magnetic Multiparticle Problems

  • Conference paper
Book cover High Performance Computing for Computational Science - VECPAR 2004 (VECPAR 2004)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3402))

Abstract

A parallel version of the Generalized Finite Element Method is applied to multiparticle problems. The main advantage of the method is that only a regular hexahedral grid is needed; the particles do not have to be meshed and are represented by special basis functions approximating the field behavior near the particles. A general-purpose parallel Schur complement solver with incomplete LU preconditioning (A. Basermann) showed excellent performance for the varying problem size, number of processors and number of particles. In fact, the scaling of the computational time with respect to the number of processors was slightly superlinear due to cache effects. Future research plans include parallel implementation of the new Flexible Local Approximation MEthod (FLAME) that incorporates desirable local approximating functions (e.g. dipole harmonics near particles) into the difference scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Babuška, I., Melenk, J.M.: The partition of unity method. Intl. J. for Numer. Methods in Engineering 40(4), 727–758 (1997)

    Article  MATH  Google Scholar 

  2. Babuška, I., Caloz, G., Osborn, J.E.: Special finite-element methods for a class of 2nd-order elliptic problems with rough coefficients. SIAM Journal on Numerical Analysis 31(4), 945–981 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  3. Basermann, A.: QMR and TFQMR methods for sparse non-symmetric problems on massively parallel systems. In: The Mathematics of Numerical Analysis, series: Lectures in Applied Mathematics, vol. 32, pp. 59–76 (1996)

    Google Scholar 

  4. Basermann, A.: Parallel Block ILUT/ILDLT Preconditioning for Sparse Eigenproblems and Sparse Linear Systems. Num Linear Algebra with Applications 7, 635–648 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  5. Basermann, A., Jaekel, U., Hachiya, K.: Preconditioning parallel sparse iterative solvers for circuit simulation. In: Proceedings of The 8th SIAM Conference on Appl. Lin. Alg., Williamsburg, VA, USA (July 2003) http://www.siam.org/meetings/la03/proceedings/basermaa.pdf

  6. Belytschko, T., et al.: Meshless methods: an overview and recent developments. Computer Methods in Applied Mechanics and Engineering 139(1-4), 3–47 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  7. Duarte, C.A., Babuška, I., Oden, J.T.: Generalized finite element methods for three-dimensional structural mechanics problems. Computers & Structures 77(2), 215–232 (2000)

    Article  MathSciNet  Google Scholar 

  8. Freund, R.W., Nachtigal, N.M.: QMR: A quasi-minimal residual method for non-Hermitian linear systems. Numerische Mathematik 60, 315–339 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  9. Grant, J.A., Pickup, B.T., Nicholls, A.: A smooth permittivity function for Poisson–Boltzmann solvation methods. J. Comp. Chem. 22(6), 608–640 (2001) (and references therein)

    Article  Google Scholar 

  10. Griebel, M., Schweitzer, M.A.: A particle-partition of unity method for the solution of elliptic, parabolic and hyperbolic PDE. SIAM J. Sci. Comp. 22(3), 853–890 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  11. Griebel, M., Schweitzer, M.A.: A particle-partition of unity method-Part II: efficient cover construction and reliable integration. SIAM J. Sci. Comp. 23(5), 1655–1682 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  12. Griebel, M., Schweitzer, M.A.: A particle-partition of unity method-Part III: a multilevel solver. SIAM J. Sci. Comp. 24(2), 377–409 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  13. Greengard, L., Rokhlin, V., Cheng, H.: A fast adaptive multipole algorithm in three dimensions. J. of Comp. Phys. 155(2), 468–498 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  14. Melenk, J.M., Babuška, I.: The partition of unity finite element method: Basic theory and applications. Comput. Methods Appl. Mech. Engrg. 139, 289–314 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  15. Müller, W.: Comparison of different methods of force calculation. IEEE Trans. Magn. 25(2), 1058–1061 (1990)

    Article  Google Scholar 

  16. Plaks, A., Tsukerman, I., Friedman, G., Yellen, B.: Generalized Finite Element Method for magnetized nanoparticles. IEEE Trans. Magn. 39(3), 1436–1439 (2003)

    Article  Google Scholar 

  17. Proekt, L., Tsukerman, I.: Method of overlapping patches for electromagnetic computation. IEEE Trans. Magn. 38(2), 741–744 (2002)

    Article  Google Scholar 

  18. Saad, Y.: Iterative Methods for Sparse Linear Systems, 2nd edn. SIAM, Philadelphia (2003)

    Book  MATH  Google Scholar 

  19. Saad, Y., Sosonkina, M.: Distributed Schur complement techniques for general sparse linear systems. SISC 21, 1337–1356 (1999)

    MathSciNet  Google Scholar 

  20. Strouboulis, T., Babuška, I., Copps, K.L.: The design and analysis of the Generalized Finite Element Method. Comp. Meth. in Appl. Mech. & Engrng. 181(1-3), 43–69 (2000)

    Article  MATH  Google Scholar 

  21. Strouboulis, T., Copps, K., Babuska, I.: The generalized finite element method. Computer Methods in Applied Mech. and Engineering 190(32-33), 4081–4193 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  22. Tsukerman, I., Proekt, L.: Generalized scalar and vector elements for electromagnetic computation. In: XI Intern Symposium on Theoretical Electr. Eng., Linz, Austria (August 2001)

    Google Scholar 

  23. Proekt, L., Yuferev, S., Tsukerman, I., Ida, N.: Method of overlapping patches for electromagnetic computation near imperfectly conducting cusps and edges. IEEE Trans. Magn. 38(2), 649–652 (2002)

    Article  Google Scholar 

  24. Tsukerman, I.A.: Approximation of conservative fields and the element ‘edge shape matrix’. IEEE Trans. Magn. 34, 3248–3251 (1998)

    Article  Google Scholar 

  25. Tsukerman, I.A., Plaks, A.: Comparison of accuracy criteria for approximation of conservative fields on tetrahedra. IEEE Trans. Magn. 34, 3252–3255 (1998)

    Article  Google Scholar 

  26. Tsukerman, I.A.: Accurate computation of ‘ripple solutions’ on moving finite element meshes. IEEE Trans. Magn. 31(3), 1472–1475 (1995)

    Article  Google Scholar 

  27. Tsukerman, I.: Flexible local approximation method for electro- and magnetostatics. IEEE Trans. Magn. 40(2), 941–944 (2004)

    Article  Google Scholar 

  28. Van der Vorst, H.: Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems. SIAM J. Sci. Statist. Comput. 13, 631–644 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  29. Washio, T.: NEC Europe, private communication

    Google Scholar 

  30. Yellen, B.B., Friedman, G.: Programmable assembly of heterogeneous colloidal particles using magnetic micro-well templates. Langmuir 20, 2553–2559 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Basermann, A., Tsukerman, I. (2005). Parallel Generalized Finite Element Method for Magnetic Multiparticle Problems. In: Daydé, M., Dongarra, J., Hernández, V., Palma, J.M.L.M. (eds) High Performance Computing for Computational Science - VECPAR 2004. VECPAR 2004. Lecture Notes in Computer Science, vol 3402. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11403937_26

Download citation

  • DOI: https://doi.org/10.1007/11403937_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25424-9

  • Online ISBN: 978-3-540-31854-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics