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Abstract. Binomial trees have been used extensively for broadcasting in
clusters of workstations. In the case of heterogeneous nondedicated clusters and
grid environments, the broadcasting occurs over a heterogeneous network, and
the performance obtained by the broadcast algorithm will depend on the
organization of the nodes onto the binomial tree. The organization of the nodes
should take into account the network topology, i.e., the communication cost
between each pair of nodes. Since the network traffic, and consequently the
latency and bandwidth available between each pair of nodes, is constantly
changing, it is important to update the binomial tree so that it always reflects the
most current network traffic condition. This paper presents and compares
strategies to dynamically adapt a binomial tree used for broadcasting to the ever-
changing traffic condition of the network, including accommodating nodes
joining the network at any time and nodes suddenly leaving.

1 Introduction

Broadcasting is an important communication strategy that is used in a variety of paral-
lel and distributed linear algebra algorithms [7]. In fact, algorithms for broadcasting in
different kinds of environments have been discussed extensively in the literature [1, 2,
3, 5, 6, 8, 9, 10, 11]. Different structures, such as binomial trees, hypercubes, and rings
are used for broadcasting. Binomial trees are particularly useful for broadcasting in
clusters [12] and grid environments, in which they are used in each local group of
machines [8, 9]. When used in heterogeneous networks, the binomial tree needs to
reflect the network topology by taking into account the communication cost between
each pair of nodes [4]. It also needs to evolve according to the dynamic changes in the
network traffic conditions. In particular, the binomial tree needs to dynamically adapt
to changes in latency and bandwidth, to nodes going down, and to nodes wishing to
join the tree. Dynamically adapting the binomial tree is particularly important for
applications that execute for a long time, facing many changes in the traffic condition
of the network.

In this paper, we propose strategies that can be used to update a topology-based
binomial tree as communication costs increase between nodes. We also propose strate-
gies to deal with nodes joining the network at any time and nodes suddenly leaving the
system. While rebuilding the tree from scratch would provide the best organization of
nodes on the tree, allowing the broadcast operation to be completed in the smallest
amount of time, the overhead associated with it is significant. Dynamically adapting
the tree consistently by changing the placement of nodes on the tree according to the
changes in the network condition is far less expensive and still helps decrease the cost
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of broadcasting.
The strategies presented have not been implemented in connection with any spe-

cific application. They are general strategies to enable binomial trees to adapt to
changes in the topology of the underlying network and can be implemented as part of
any message passing library, such as MPICH or PVM. 

This paper is organized as follows. Section 2 explain how to build a topology-
based binomial tree. Section 3 presents strategies to update topology-based binomial
trees dynamically according to changes in the communication costs. Section 4 deals
with nodes entering and leaving the binomial tree. Section 5 presents a representative
set of experiments. Section 6 summarizes the results obtained.

2 Topology-Based Binomial Trees

In [4], the author presents the Balanced-Path algorithm to provide a performance-effi-
cient binomial tree. This algorithm traverses the tree, choosing children for the nodes
and serving the nodes with the highest number of undefined children first. When
choosing a child, the algorithm picks the node, from those that are left, that is closest to
the parent. This strategy balances the paths from the root to the leaves by giving prior-
ity to the parents that have the largest number of children, since parents with more chil-
dren lie along longer paths. In a tie, the algorithm gives priority to the longer path. At
the end, the total distance in the paths is balanced, and the communication costs will be
distributed roughly evenly. For N nodes, the Balanced-Path algorithm takes O(N2)
steps to generate an improved binomial tree.

Fig. 1. Left: Balanced-Path tree formed according to the distances in Table 1.
Right: Paths affected if nodes 5 and 6 are swapped.

In Figure 1, the tree on the left was obtained using the Balanced-Path algorithm.
The number on each edge represents the distance between the two nodes, or machines,
connected via the edge. The distances were obtained from Table 1. Distances are spec-
ified in number of hops, and a distance of zero between two nodes means that the two

Table 1: Distances between the nodes

0 1 2 3 4 5 6 7
0 0 2 2 0 3 3 0 0
1 2 0 0 2 5 5 2 2
2 2 0 0 2 5 5 2 2
3 0 2 2 0 3 3 0 0
4 3 5 5 3 0 0 3 3
5 3 5 5 3 0 0 3 3
6 0 2 2 0 3 3 0 0
7 0 2 2 0 3 3 0 0
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nodes are directly connected.

3 Dynamically Adapting the Binomial Tree

After building the tree, it is necessary to evolve the tree according to the changes in the
network conditions. The strategies used to evolve the tree need to be cost effective,
otherwise it would be more efficient to rebuild the tree instead of simply updating it.
Four strategies were developed to update the tree as the network conditions change.
The cost of the tree is used as a measure to compare the different strategies. The cost is
defined as the cost of the path with the highest cost, and the cost of each path is calcu-
lated as the sum of all the edges (i.e. distances) from the root to the respective leaf.
This measure assumes that all paths are covered roughly in parallel, and it uses the
costliest path for comparison, since this is the path that determines the time to execute
a broadcast operation.

When the tree is first built, the cost of all the paths from each leaf to the root needs
to be computed in order to determine the path with the highest cost. The cost obtained
for each path in the tree shown in Figure 1 (left) is listed in Table 2. Since the highest
cost is 3, the cost of the tree is 3. 

The network conditions may cause the communication cost of a link in the tree to
increase and the four strategies described below may be used to swap nodes in the tree
in order to obtain a configuration that uses communication links that are of lower
costs. When we swap two nodes in the tree, the cost of the tree needs to be recomputed
in order to determine if the swap reduces the cost of the tree. Rather than compute the
cost of all the paths in the tree to determine the cost of the tree as we have to do ini-
tially, we only compute the cost of those paths affected by the swap. This is more effi-
cient since previously computed values for many paths in the tree are still valid. For
example, if we swap node 5 and node 6 in Figure 1 (left), then node 6 is now a leaf and
the paths from the root to node 6 and from the root to node 1 have been affected by the
swap. Figure 1 (right) shows the tree after the swap. It is evident that the paths leading
to leaves 4 and 2 have not been impacted by the swap, and the costs for these two paths
do not need to be re-computed. The cost of the affected paths to nodes 6 and 1 are re-
computed as shown in Table 3, and we are able to determine that the new cost of the
tree is 8. 

The cost or number of steps taken to re-compute the cost of the tree is O(N) when
the binomial tree has N nodes. The actual number of leaves whose cost needs to be
recomputed depends on how high a node is located in the tree. The higher the node is
in the tree, the greater the number of leaves affected by a swap with that node. On
average, however, when nodes are swapped, many of the nodes affected will be
located lower in the tree thus reducing the number of leaves whose cost needs to be re-
computed.

Network conditions may change causing the link cost between two neighboring

Table 2: Cost of each path for the tree in Figure 1 (left).

Leaf 5 4 2 1
Cost 3 3 2 2

Table 3: Cost of each path for the tree in Figure 1 (right).

Leaf 6 4 2 1
Cost 0 3 2 8
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nodes in the tree to go down. Although at this point we do not take any action to mod-
ify the tree when link costs decrease, the cost of the binomial tree needs to be re-com-
puted to reflect the change. Since a tree with N nodes will have N/2 leaves, the
maximum number of leaves whose paths will have to be traversed to calculate their
cost is N/2. The cost associated with updating the cost data structure for the tree there-
fore has an upper bound of O(N). In many cases, the cost for fewer than N/2 leaves will
have to be recalculated.

The main goal of the proposed swapping strategies is to provide a tree with a cost
that is at least as low as the cost of the original tree before the link cost between two
nodes in the tree increased. Suppose that the cost (i.e., latency and/or bandwidth)
between two nodes that are neighbors in the binomial tree increases, then each of the
strategies will try to exchange one of these nodes with some other node in the tree in
order to keep the cost of the tree at least as low as it was before the change in the net-
work condition. As it tries each swap, the algorithms remember the lowest cost of the
tree obtained so far, as well as the nodes whose swap produced that cost. This informa-
tion is needed in case the algorithm cannot reduce the cost to what it was before the
link cost increased. When the cost cannot be reduced to its original value, then the
algorithms will perform the swap that leads to the lowest possible cost. On the other
hand, if the algorithms are able to find a swap that results in a tree cost that is at least as
low as what it was before the link cost increased, then the algorithms stop searching.

3.1  Family_Swapping Algorithm

This approach involves swapping one of the nodes connected by the link whose cost
increased with another node in the family. If the link with an increased cost is the link
that connects nodes a and b, where b is the child, node b will be the one to be swapped.
In this case, the algorithm searches for a better position for node b by trying to swap it
with its children, its parent (node a), and with its siblings, i.e., the other children of
node a. Note that the algorithm does not swap node zero, which acts as the root of the
tree. The upper bound for the number of steps in this algorithm is O(logN), where N is
the number of nodes in the tree.

Figure 2 (left) illustrates the algorithm’s behavior. The number on the left side of
each node represents the order in which that node is checked to see if it can be
swapped with the node of the affected link. Suppose the cost of the link between nodes
8 and 12 has been increased. Node 8 is the parent, and node 12 is the child. The
Family_Swapping algorithm will try to first exchange node 12 with its children, nodes
13 and 14. Then it will try to exchange node 12 with node 8, its parent, and then it will
try to exchange node 12 with its siblings, which are nodes 9 and 10.

Fig. 2. Left: Using the Family_Swapping strategy.
Right: Using the Path_Swapping strategy.
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In the example above, if swapping node 12 with its children does not reduce the
cost of the tree, then the algorithm tries to swap node 12 (the child) with node 8 (the
parent). Note that the link with the increased cost is still retained but now node 12
becomes the parent of node 8 and the child of node 0, and node 8 becomes the parent
of nodes 13 and 14. This swap can lead to a lower tree cost if the communicating cost
between node 12 and node 0 is less than that between nodes 8 and 0, or if the cost of
communication between node 8 and its new children, nodes 13 and 14 are lower than
that between node 12 and nodes 13 and 14. 

The algorithm may not be able to lower the cost of the tree to a value at least as
low as the cost before the link cost increased. In this case, the algorithm will swap
node 12 with the child, parent, or sibling that results in the lowest possible cost. Each
time the algorithm performs a swap, it has to re-compute the cost of the tree by exam-
ining the cost of each path to the leaves affected by the swap. The cost to perform each
swap has O(N), where N is the number of nodes in the tree since the number of leaves
present in the tree is N/2. The swap between nodes closer to the root node will have
more paths leading to leaves than the swap between nodes closer to the edge of the
tree. In the tree shown in Figure 2 (left), if nodes 8 and 12 are swapped, then the cost to
the leaves 9, 11, 13 and 15 need to be computed. However, had the link cost increased
between nodes 12 and 14 and had the two nodes been swapped, then the leaves
affected are only 13 and 15. Since the link cost randomly increases between nodes in
different locations in the tree, in the average case fewer than N/2 leaves will be
affected by a swap. Also, when a parent and a child node are swapped, the cost to com-
pute the new cost of the binomial tree is less because all the leaves with paths leading
to the child are also connected by a path to the parent. After swapping the parent and
the child, the child will be in the parent’s position and the parent will be in the child’s
position. The cost of only those leaves with paths to the child node need to be calcu-
lated because the leaves impacted by the parent node are a subset of the leaves
impacted by the child node. However, when a node is swapped with its sibling there is
no overlap in the leaves affected by the swap, so the cost of the leaves impacted by the
new position of the node and its sibling has to be calculated independently, which is
costlier.

3.2  Path_Swapping Algorithm

This approach involves swapping one of the two nodes connected by the link with an
increased cost with another node in the same path. If the link with an increased cost is
the link between nodes a and b, where a is the parent and b is the child, the algorithm
alternates between trying to find a better position for node a by following its path to the
root and trying to find a better position for node b by following its longest path down
to a leaf. Note that the algorithm does not try to swap with the root. The upper bound
for the number of steps in this algorithm is O(logN), where N is the number of nodes in
the tree.

Figure 2 (right) illustrates the algorithm’s behavior. The number on the left side of
each node represents the order in which that node will be checked. Suppose the cost of
the link between nodes 12 and 14 has been increased. Node 12 is the parent, and node
14 is the child. The Path_Swapping algorithm will try to exchange node 12 with node
8, then it will try to exchange node 14 with node 15. Since the algorithm does not swap
with node 0, it would stop trying to swap node 12 with any other node. Since node 14
does not have any children, other than 15, with which it can be swapped, the algorithm
stops. If additional nodes were still available for swapping along the longest path from
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node 14 down to a leaf, then the algorithm would continue in that direction. Similarly,
if additional nodes were available along the path up the tree leading to the root, the
algorithm would continue trying to swap the parent node with one of those nodes. The
algorithm stops as soon as a swap results in a tree whose cost is at least as low as the
cost of the tree before the link cost increased. If the algorithm cannot reduce the cost to
what it was before the change in the network condition, it performs a swap that leads to
a tree with the lowest possible cost. 

Since the Path_Swapping algorithm swaps nodes along the same path in the tree,
it takes the least amount of steps to compute the cost of the tree on average compared
to the other algorithms. Each time the algorithm performs a swap between two nodes,
one of the nodes will be higher in the tree or closer to the root, and the other node will
be located lower in the tree or closer to a leaf.   The leaves affected by the new position
of the node lower in the tree will be a subset of the leaves affected by the new position
of the node higher in the tree. Hence, when the cost of the tree is re-computed, only
calculating the cost of the paths to the leaves forming the larger set is sufficient. So,
although the cost associated with re-computing the cost of the tree after a swap is still
O(N), where N is the number of nodes, the cost for only one set of leaves needs to be
recalculated, even though two nodes have changed positions.

3.3  Leaf_Swapping Algorithm

This approach involves swapping one of the nodes connected by the link with an
increased cost with one of the leaves in the tree. If the link with an increased cost is the
link between nodes a and b, where a is the parent and b is the child, the algorithm alter-
nates between looking for a better position for node a and looking for a better position
for node b by trying to replace each of them by a leaf in the tree. The upper bound for
the number of steps in this algorithm is O(N), where N is the number of nodes in the
tree.

Figure 3 (left) illustrates how the algorithm works. The number on the left hand
side of each node represents the order in which that node will be checked. Suppose the
cost of the link between nodes 8 and 12 increases. Node 8 is the parent of node 12. The
Leaf_Swapping algorithm will try to exchange nodes 8 and 12 with node 1, the first
leaf. Then, it will try to exchange nodes 8 and 12 with node 3, the second leaf. The
algorithm will follow the leaves as shown in Figure 3 (left), trying to exchange each of
them with nodes 8 and 12. The algorithm will stop when it finds a swap that leads to a
tree with a cost at least as low as the cost of the tree before the link cost increased. If
the cost cannot be reduced to what it was before the change in the network condition,
then it will swap node 8 or 12 with a leaf that leads to the smallest cost possible.

Fig. 3. Left: Using the Leaf_Swapping strategy.
Right: Using the Position_Swapping strategy.
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The advantage of exchanging a node with a leaf node is that fewer links are
affected by the exchange since the leaves are at the edge of the tree and do not have
any children. However, since nodes closer to the root have paths leading to more
leaves, swapping one of these nodes with a leaf takes O(N) steps to recalculate the cost
of the tree. In the worst case scenario, we have to re-compute the cost for N/4 leaves
when we swap a child of the root node with a leaf. However, since most of the time we
will be swapping nodes from different positions in the tree, the number of leaves
affected by a swap will be on average less than N/4.

3.4  Position_Swapping Algorithm

This approach involves trying to swap one of the nodes connected by the link with an
increased cost with a nearby node. If the link with an increased latency is the link
between nodes a and b, where a is the parent and b is the child, node a will be the one
to be swapped. In this case, the algorithm searches for a better position for node a by
trying to swap it with nodes in nearby positions first. This is accomplished by choosing
the nodes with increasing and decreasing positions in the tree. For example, if the node
to be swapped is in position x, then the nodes will be checked according to their posi-
tion in the following order: node in position x+1, x-1, x+2, x-2, and so on. Note that
the algorithm does not swap the root node. The upper bound for the number of steps in
this algorithm is O(N), where N is the number of nodes in the tree.

Figure 3 (right) illustrates the algorithm’s behavior. The number on the left side of
each node represents the order in which that node will be checked. Suppose that the
link between nodes 6 and 7 has been increased. Node 6 is the parent, and node 7 is the
child. The Position_Swapping algorithm will try to exchange node 6 with nodes 7 and
5 (distance 1 from position 6). Then it will try to exchange node 6 with nodes 8 and 4
(distance 2 from 6). Then it will continue increasing the distance and checking the
nodes as shown in Figure 3 (right). Note that the node in each position x may or may
not be node x, since the nodes were rearranged to reflect the network topology. In this
example, there are fewer nodes available for swapping whose position is less than that
of position 6. When the algorithm exhausts the nodes available for swapping on one
side of the tree, it will continue trying to swap with nodes on the other side of the tree,
in this case, with nodes whose positions are greater than that of node 6.

The algorithm will try to swap until it finds a swap that results in a tree whose cost
is at least as low as the cost of the tree before the latency was increased or until it runs
out of nodes with which it can swap the parent. If the algorithm runs out of nodes with-
out finding a swap that reduces the cost of the tree to at least what it was before the net-
work change, then it will swap with the node that leads to the tree with the smallest
possible cost. The Position_Swapping algorithm may run for a longer time than the
Family_Swapping, Leaf_Swapping, or Path_Swapping algorithm, because it can
potentially attempt a swap with all the nodes in the tree until it realizes that the cost of
the tree cannot be reduced to its original value. However, because it has a greater num-
ber of potential candidates for a swap it is more successful in reducing the cost of the
tree than the other three algorithms.

The number of steps taken to compute the cost of the tree after each swap has an
upper bound of O(N), where N is the number of nodes in the tree and the maximum
number of leaves in the tree is N/2. This algorithm is the most comprehensive, and it
generally does more work to compute the cost of the tree because the nodes used to
swap could come from any position in the tree and may not lie in the same path.
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4 Nodes Entering and Leaving the Binomial Tree

4.1  Nodes Entering the Tree

When a new node needs to be added, we need to add a new position to the binomial
tree. This new position will be the next position in the binomial order. For example, in
Figure 4 (left) we have an 8-node binomial tree composed of nodes 0 through 7. We
add node 8 to the tree by creating position 8, which is a new sub-tree, with just one
node, under node 0. The sub-tree rooted at node 8 is incomplete and can accommodate
7 more nodes. 

Fig. 4. Left: Adding a ninth node to a complete 8-node tree.
Right: Result of running Position_Swapping algorithm on the tree.

Once a new node is added to the tree, the cost of the tree may be affected if the
communication cost between the newly added node and its parent is expensive. In fact,
even if adding the new node did not impact the tree’s cost, swapping this node with
another node in the tree may help reduce the communication cost of the tree. In order
to determine if there is a better position for the new node, we first re-compute the cost
of the tree. Using the example in Figure 4 (left), since we added a new branch to the
tree and since node 8 is a leaf, we update our cost data structure by adding the cost of
the path from the root node to the leaf node 8 as shown in Table 4. We compute the
cost by obtaining the latency from the latency matrix shown in Table 5, which reflects
the distance in number of hops between node 8 and the other nodes. The latency matrix
is updated with values each time a new node needs to be inserted into the tree.

Table 4: Updated costs using the latencies from Table 5.

Leaf 5 4 2 1 8
Cost 3 3 2 2 4

Table 5: Distance between the nodes (in number of hops) after adding node 8.

0 1 2 3 4 5 6 7 8
0 0 2 2 0 3 3 0 0 4
1 2 0 0 2 5 5 2 2 2
2 2 0 0 2 5 5 2 2 5
3 0 2 2 0 3 3 0 0 0
4 3 5 5 3 0 0 3 3 0
5 3 5 5 3 0 0 3 3 4
6 0 2 2 0 3 3 0 0 4
7 0 2 2 0 3 3 0 0 3
8 4 2 5 0 0 4 4 3 0
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After computing the cost of the tree, we then try to find a better position for node
8. A better position for node 8 would be one that reduces the cost of the binomial by
making it equal or less than the cost of the tree before the new node was added. We do
so by using the Position_Swapping algorithm, that will swap node 8 with nodes in dif-
ferent positions located around position 8. If we cannot reduce the cost of the tree to
what it was before the node was added to the tree, the algorithm swaps node 8 with a
node that produces the minimal cost possible. 

In the example presented in Figure 4 (left), the cost of the tree before adding node
8 was 3. After adding node 8, the cost of the tree increases to 4 since the communica-
tion cost between node 0 and node 8 is 4, the highest cost path in the tree. The
Position_Swapping algorithm tries to improve the cost of the tree by swapping node 8
with node 1. The algorithm works by taking the position of node 8, which is 8 and each
time it determines which node to swap with by subtracting one and adding one to the
position of node 8. Since there are no nodes in positions greater than 8, the algorithm
can only look at positions whose values are less than 8. A swap with the node in posi-
tion 7, node 1 is first attempted. If the swap does not decrease the cost of the tree, the
algorithm subtracts 2 from 8 to get position 6 and attempts a swap with the node in
position 6 and so on. Given the latency table in Table 5, we can reduce the cost of the
tree from 4 to 3 by swapping node 8 with node 6 in position 6. The new tree formed is
shown in Figure 4 (right). The algorithm stops at this point since it has performed a
swap that reduced the cost of the tree to what it was before node 8 was added.

After running the Position_Swapping algorithm on the tree, the cost data structure
is updated to reflect the cost of the path from node 0 to node 6, which is now a leaf
node and the cost of the path from node 0 to node 1. The cost of the paths unaffected
by the swap is not re-computed. Table 6 shows the cost of all the paths in the tree after
the swap.

4.2  Nodes Leaving the Tree

Machines attached to a network sometimes go down, and machines that are part of a
binomial tree structure are no exception. If a machine that is a node in the tree is no
longer running, all of its children and their children in turn are disconnected from the
tree. Even if the node that goes down does not have any children, the tree is still
impacted. In order to keep the structure of the tree consistent with that of a binomial
tree and in order to keep all nodes connected to the tree, we replace a node that fails
with one that is functioning. The replacement node is always the one at the last posi-
tion in the tree. In the special case when the last node in the tree goes down, there is no
need to find another node to replace it.

To illustrate, suppose node 7, a child of node 0, goes down as shown in the tree in
Figure 5 (left). As a result of node 7 going down, node 4 is now no longer connected to
the tree. Any information broadcast by node 0 will not reach node 4. We fill in the
empty position, caused by node 7’s failing, with node 1, the node in the last position in
the tree. We pick the last node in the tree, because by doing so we avoid creating addi-
tional holes in the tree and we preserve the binomial tree structure in all the paths
except for the last one. After replacing node 7 with node 1, the binomial tree will now

Table 6: Updated costs after running Position_Swapping algorithm.

Leaf 5 4 2 1 6
Cost 3 3 2 2 0
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have the structure shown in Figure 5 (right).   It is clear that node 6 loses its child, and
the tree is no longer complete. However, by replacing node 7, the tree remains con-
nected and any broadcast operation will reach all the functional nodes.

Fig. 5. Left: Binomial tree after node 7 goes down.
Right: Binomial tree after node 7 is replaced by node 1.

Since the position of two nodes in the tree was altered, the cost of some paths in
the tree and, consequently, the cost of the tree need to be updated. In this example,
replacing node 7 with node 1, increases the cost of the tree from 3 to 7, since node 1 is
not close to either node 0 or node 4. The cost data structure is updated to reflect the
new costs for all the paths in the tree as shown in Table 7. Since node 6 lost its child,
the cost of the path from node 0 to node 6 is now 0.

After updating the cost, we try to reduce the cost of the tree by using the
Path_Swapping algorithm or the Position_Swapping algorithm. If the Path_Swapping
algorithm is used in this example, we are unable to improve the cost of the tree by
swapping node 1 with a node along its path. We do not swap node 1 with node 0, since
node 0 is the root of the tree and the only other available option is performing a swap
with node 4 as illustrated in Figure 6 (left). The expensive link between nodes 1 and 4
is still in the tree and the communication cost between node 0 and 4 is 3 hops, increas-
ing the cost of the tree even further to 8 hops. In this scenario, the Path_Swapping
algorithm was unable to reduce the cost of the tree.

Fig. 6. Left: Binomial tree after swapping nodes 1 and 4 using Path_Swapping algorithm.
Right: Binomial tree after swapping nodes 1 and 5 using Position_Swapping algorithm.

The Position_Swapping algorithm can swap with a greater number of nodes since
it is more flexible than the Path_Swapping algorithm. Hence, it has a better chance of
improving the cost of the tree after a node that goes down is replaced with the last node
in the tree. In the example above, the Position_Swapping algorithm determines that

Table 7: Updated costs after replacing node 7 with node 1.

Leaf 5 4 2 6
Cost 3 7 2 0
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node 1 needs to be swapped with another node in the tree in order to have a tree with a
reduced cost. Node 1 is at position 2 in the tree and the algorithm tries to swap node 1
with the nodes that are one position away from it. The algorithm swaps node 1 with
node 4, which is at position 3. As demonstrated above, swapping nodes 1 and 4 does
not reduce the tree’s cost. So the Position_Swapping algorithm tries swapping node 1
with node 5, which is at position 1. This swap does succeed in reducing the cost of the
tree down to 3, its cost before node 7 was replaced by node 1. Figure 6 (right) shows
the tree after swapping nodes 1 and 5. 

The improved cost of the tree is reflected in the cost data structure that maintains
the cost of the paths from the root to each leaf. Since a node went down and was
replaced with a node from the edge of the tree, there is one less node in the tree and the
last leaf of the tree has also changed as Table 8 shows.

5 Experiments

5.1   Comparison of Swapping Algorithms

We compare the efficiency of the four strategies proposed to adapt the binomial tree by
simulating them on randomly generated networks. We have executed experiments on
networks with different number of nodes, and we show below a representative subset
of these experiments. In each set of experiments, we vary the cost factor, which is the
amount by which a link cost is increased. For each cost factor, we report the average
gain, the average number of steps to achieve the gain, and the average benefit obtained
for 1000 different randomly-generated topologies, determined by the distance between
each pair of nodes. For each topology, a randomly chosen link is increased by the cost
factor specified.

Note that each algorithm stops when it finds a swap leading to a tree with a cost
that is less than or equal to the cost of the original tree. Therefore, the average number
of steps reported indicates how long it takes the respective algorithm to reach that level
of optimization. The average gain reported is calculated as (|increased_cost –
new_cost| / increased_cost), where increased_cost is the cost of the tree after the link
had its cost increased, and new_cost is the cost of the tree updated by the respective
algorithm. The average benefit is given by the ratio (average_gain / average_steps),
which will help determine which approach is more cost-effective.

It is important to note that the gain may be as low as zero, if no swapping leads to
an improved tree, i.e., a tree with a cost that is equal to or lower than the cost of the
original tree. In this case, the number of steps will be the maximum allowed by the
algorithm, and the gain will be the lowest one obtained during the search.

Figures 7 and 8 show the results obtained for 1024 nodes, which are apart by at
most 10 hops. This is a large network, in which the nodes are close together. The
graphs show that the Family_Swapping algorithm provides the smallest gain, but the
Leaf_Swapping and Position_Swapping algorithms take more steps. The success of
the four algorithms depends on the ratio of benefit to the cost, and the Path_Swapping
algorithm has the best results when the gain and steps are examined together.

Table 8: Updated costs after running Position_Swapping algorithm

Leaf 1 4 2 6
Cost 2 3 2 0
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Fig. 7. Sets of 1024 nodes, maximum distance 10 hops.

Fig. 8. Sets of 1024 nodes, maximum distance 10 hops.

These results lead to the conclusion that the Path_Swapping algorithm is the best
approach. Even though the gain obtained by this approach may not be the largest, the
number of steps is always low and the benefit to cost ratio obtained is always the larg-
est. In addition, the cost associated with computing the new cost of the tree after per-
forming a swap with the Path_Swapping algorithm is the lowest since the leaves
affected by the swapped node located lower in the tree is a subset of the leaves affected
by the swapped node higher in the tree or closer to the root. Therefore, when two nodes
are swapped with the Path_Swapping algorithm, the cost of the tree can be computed
by calculating the cost of the leaves linked by a path to the swapped node located
closer to the root. It is important to note that the gain grows proportionately to the cost
factor, and can be as high as 80% when the cost factor is 40. This shows the impor-
tance of keeping the binomial tree updated, especially because the overhead for the
update with the Path_Swapping algorithm is quite low.

5.2  Analysis of Nodes Entering and Leaving Tree

A set of experiments were conducted to explore the effects of dynamically adding and
removing nodes from a binomial tree in order to simulate nodes entering the cluster
and nodes going down. The experiment presented was conducted on 100 trees, starting
with 1024 nodes. The initial maximum distance for each set of 100 trees was set to 10,
30 and 50 hops. 1000 nodes were then randomly added to the tree or removed from the
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tree. We first obtain the average cost of the 100 trees after adding and removing the
nodes without using any algorithm to improve the tree’s cost after each addition or
deletion operation. Then we perform the experiment of adding and removing nodes but
we use the Position_Swapping algorithm to improve the tree’s cost after a node is
added and use the Path_Swapping algorithm to improve the tree when a node is
deleted. The same experiment is run a third time for each set of trees but this time the
Position_Swapping algorithm is used to improve the tree after adding a node and the
Position_Swapping algorithm is again used to reduce the tree’s cost after removing a
node.

Figure 9 illustrates the outcome of adding and deleting 1000 nodes randomly from
a tree with 1024 nodes. The Position/Path combination and the Position/Position com-
bination of algorithms are both able to cut the cost of the tree to nearly half of what it is
when no algorithms are used. Further more, the Position/Position combination is able
to reduce the cost of the tree even more than the Position/Path combination. This is
because the Position_Swapping algorithm is able to attempt a swap with each node in
the tree and is not restricted to nodes along the same path as the Path_Swapping algo-
rithm is. As a result, it is able to improve the cost of the tree in more cases than the
Path_Swapping algorithm.

The results of these sets of experiments indicate that, when nodes are entering and
leaving the tree, it is most beneficial to use the Position_Swapping algorithm to reduce
the cost of the tree, if it is not important to perform the addition and deletion of nodes
in the minimal number of steps. However, if our goal is to perform the operations as
quickly as possible, then the Position_Swapping algorithm can be used when a node is
added and the Path_Swapping algorithm can be used to improve the tree when a node
is deleted since together the two algorithms take fewer steps and still provide perfor-
mance-efficient trees. 

Fig. 9. 1024 nodes, 100 trees, 1000 nodes added or deleted

6 Conclusion

The four strategies, Path_Swapping, Position_Swapping, Family_Swapping and
Leaf_Swapping, described above provide ways to update the binomial tree in response
to the changing conditions of the network. Both the gains obtained and the number of
steps used to reach an improved tree have been compared in order to determine the
best approach. The efficiency of the strategies proposed is evaluated by comparing the
benefit, i.e., the ratio of gain to steps, achieved by each approach. The experiments
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performed indicate that it is worthwhile to update the tree since the overhead involved
in the operation is outweighed by the gain obtained. The experiments have also shown
that the Path_Swapping algorithm achieves the best results by providing improved
trees in a short number of steps. 

Experiments were also conducted to show how the tree can be dynamically modi-
fied to handle new nodes wishing to join the tree or nodes suddenly leaving. Rather
than rebuilding the tree from scratch to handle the entry or exit of nodes, we have
implemented algorithms to allow nodes to enter or to be removed from the tree at any
time. Running the Position_Swapping algorithm when a node is added to the tree, and
the Path_Swapping or Position_Swapping algorithm when a node is removed from the
tree, leads to a tree with a cost that is much lower compared to the cost of one in which
there is no attempt to reduce costs.

In summary, the strategies presented enable the dynamic nature of the network to
be accommodated in a structure that promotes performance-efficient communication.

References
1. M. Banikazemi, V. Moorthy, and D. K. Panda, “Efficient Collective Communication on

Heterogeneous Networks of Workstations,” in Proceedings of the International Conference
on Parallel Processing, August 1998.

2. M. Banikazemi, et al., “Communication Modeling of Heterogeneous Networks of
Workstations for Performance Characterization of Collective Operations,” in Proceedings of
the Heterogeneous Computing Workshop, April 1999.

3. M. Bernaschi and G. Iannello, “Collective Communication Operations: Experimental Results
vs. Theory,” Concurrency: Practice and Experience, vol. 10, no. 5, pp. 359-386, 1998.

4. S. M. Figueira, “Improving Binomial Trees for Broadcasting in Local Networks of
Workstations,” VECPAR’02, Porto, Portugal, June 2002.

5. I. Foster, et al., “Wide-Area Implementation of the Message Passing Interface,” Parallel
Computing, vol. 24, no. 12, pp. 1735-1749, 1998.

6. I. Foster and N. Karonis, “A Grid-Enabled MPI: Message Passing in Heterogeneous
Distributed Computing Systems,” in Electronic Proceedings of the IEEE/ACM
Supercomputing Conference, November 1998.

7. D. Gannon and J. Van Rosendale, “On the Impact of Communication Complexity in the
Design of Parallel Numerical Algorithms,” IEEE Transactions on Computers, vol. C-33, pp.
1180-1194, December 1984.

8. N. Karonis, et al., “Exploiting Hierarchy in Parallel Computer Networks to Optimize
Collective Operation Performance,” proceedings of the 14th International Parallel Distributed
Processing Symposium (IPDPS’00), pp. 377-384, May 2000.

9. T. Kielmann, H. E. Bal, and S. Gorlatch, “Bandwidth-Efficient Collective Communication
for Clustered Wide Area Systems,” in Proceedings of the International Parallel and
Distributed Processing Symposium, May 2000.

10. T. Kielmann, R. F. H. Hofman, H. E. Bal, A. Plaat, and R. A. F. Bhoedjang, “MagPIe: MPI’s
Collective Communication Operations for Clustered Wide Area Systems,” in Proceedings of
the Symposium on Principles and Practice of Parallel Programming, May 1999.

11. B. B. Lowekamp and A. Beguelin, “ECO: Efficient Collective Operations for
Communication on Heterogeneous Networks,” in Proceedings of the 10th International
Parallel Processing Symposium, April 1996.

12. C. Martin and O. Richard, “Parallel Launcher for Cluster of PC,” in ParCo 2001.


