Skip to main content

Parallel Simulation of Multicomponent Systems

  • Conference paper
High Performance Computing for Computational Science - VECPAR 2004 (VECPAR 2004)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3402))

  • 566 Accesses

Abstract

Simulation of multicomponent systems poses many critical challenges in science and engineering. We overview some software and algorithmic issues in developing high-performance simulation tools for such systems, based on our experience in developing a large-scale, fully-coupled code for detailed simulation of solid propellant rockets. We briefly sketch some of our solutions to these issues, with focus on parallel and performance aspects. We present some recent progress and results of our coupled simulation code, and outline some remaining roadblocks to advancing the state of the art in high-fidelity, high-performance multicomponent simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, E., et al.: LAPACK Users’ Guide, 2nd edn. SIAM, Philadelphia (1995)

    Google Scholar 

  2. Bhandarkar, M., Kalé, L.V.: A parallel framework for explicit FEM. In: Prasanna, V.K., Vajapeyam, S., Valero, M. (eds.) HiPC 2000. LNCS, vol. 1970, pp. 385–395. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  3. Blazek, J.: Flow simulation in solid rocket motors using advanced CFD. In: 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conf. and Exhibit, Huntsville Alabama (2003); AIAA Paper 2003-5111

    Google Scholar 

  4. Browne, S., Dongarra, J., Garner, N., Ho, G., Mucci, P.: A portable programming interface for performance evaluation on modern processors. Int. J. High Perf. Comput. Appl. 14, 189–204 (2000)

    Article  Google Scholar 

  5. Freitag, L., Leurent, T., Knupp, P., Melander, D.: MESQUITE design: Issues in the development of a mesh quality improvement toolkit. In: 8th Intl. Conf. Numer. Grid Gener. Comput. Field Sim. pp. 159–168 (2002)

    Google Scholar 

  6. Geubelle, P.H., Baylor, J.: Impact-induced delamination of composites: A 2D simulation. Composites B 29B, 589–602 (1998)

    Article  Google Scholar 

  7. Gropp, W., Lusk, E., Skjellum, A.: Using MPI: Portable Parallel Programming with the Message-Passing Interface, 2nd edn. MIT Press, Cambridge (1999)

    Google Scholar 

  8. Haselbacher, A.: A WENO reconstruction method for unstructured grids based on explicit stencil construction. In: 43rd AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV (January 2005); AIAA Paper 2005-0879 (to appear)

    Google Scholar 

  9. Heath, M.T., Dick, W.A.: Virtual prototyping of solid propellant rockets. Computing in Science & Engineering 2, 21–32 (2000)

    Article  Google Scholar 

  10. Huang, C., Lawlor, O.S., Kalé, L.V.: Adaptive MPI. In: Rauchwerger, L. (ed.) LCPC 2003. LNCS, vol. 2958, Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  11. Huggett, C., Bartley, C.E., Mills, M.M.: Solid Propellant Rockets. Princeton University Press, Princeton (1960)

    Google Scholar 

  12. Jiao, X., Campbell, M.T., Heath, M.T.: Roccom: An object-oriented, data-centric software integration framework for multiphysics simulations. In: 17th Ann. ACM Int. Conf. Supercomputing, pp. 358–368 (2003)

    Google Scholar 

  13. Jiao, X., Heath, M.T.: Common-refinement based data transfer between nonmatching meshes in multiphysics simulations. Int. J. Numer. Meth. Engrg. 61, 2401–2427 (2004)

    Article  MathSciNet  Google Scholar 

  14. Jiao, X., Heath, M.T.: Overlaying surface meshes, part I: Algorithms. Int. J. Comput. Geom. Appl. 14, 379–402 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  15. Jiao, X., Heath, M.T., Lawlor, O.S.: Face-offsetting methods for entropy-satisfying Lagrangian surface propagation. In: Preparation (2004)

    Google Scholar 

  16. Lawlor, O.S., Kalé, L.V.: A voxel-based parallel collision detection algorithm. In: Proc. Internat. Conf. Supercomputing, June 2002, pp. 285–293 (2002)

    Google Scholar 

  17. Massa, L., Jackson, T.L., Short, M.: Numerical simulation of three-dimensional heterogeneous propellant. Combustion Theory and Modelling 7, 579–602 (2003)

    Article  Google Scholar 

  18. Najjar, F.M., Haselbacher, A., Ferry, J.P., Wasistho, B., Balachandar, S., Moser, R.D.: Large-scale multiphase large-eddy simulation of flows in solid-rocket motors. In: 16th AIAA Computational Fluid Dynamics Conf., Orlando, FL (June 2003); AIAA Paper 2003-3700

    Google Scholar 

  19. Namazifard, A., Parsons, I.D.: A distributed memory parallel implementation of the multigrid method for solving three-dimensional implicit solid mechanics problems. Int. J. Numer. Meth. Engrg. 61, 1173–1208 (2004)

    Article  MATH  Google Scholar 

  20. Namazifard, A., Parsons, I.D., Acharya, A., Taciroglu, E., Hales, J.: Parallel structural analysis of solid rocket motors. In: AIAA/ASME/SAE/ASEE Joint Propulsion Conf. (2000); AIAA Paper 2000-3457

    Google Scholar 

  21. Osher, S., Fedkiw, R.: Level Set Methods and Dynamic Implicit Surfaces. Springer, Heidelberg (2003)

    MATH  Google Scholar 

  22. Sethian, J.A.: Level Set Methods and Fast Marching Methods. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  23. Sutton, G.P., Biblarz, O.: Rocket Propulsion Elements, 7th edn. John Wiley & Sons, New York (2001)

    Google Scholar 

  24. Tang, K.C., Brewster, M.Q.: Dynamic combustion of AP composite propellants: Ignition pressure spike (2001), AIAA Paper 2001-4502

    Google Scholar 

  25. Tang, K.C., Brewster, M.Q.: Nonlinear dynamic combustion in solid rockets: L*-effects. J. Propulsion and Power 14, 909–918 (2001)

    Article  Google Scholar 

  26. Thomas, P.D., Lombard, C.K.: Geometric conservation law and its application to flow computations on moving grids. AIAA J. 17, 1030–1037 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  27. Thompson, J.F., Soni, B.K., Weatherill, N.P. (eds.): Handbook of Grid Generation. CRC Press, Boca Raton (1999)

    MATH  Google Scholar 

  28. Widener, J.F., Beckstead, M.W.: Aluminum combustion modeling in solid propellant combustion products (1998); AIAA Paper 98-3824

    Google Scholar 

  29. Wilson, W.G., Anderson, J.M., Vander Meyden, M.: Titan IV SRMU PQM-1 overview (1992); AIAA Paper 92-3819

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Heath, M.T., Jiao, X. (2005). Parallel Simulation of Multicomponent Systems. In: Daydé, M., Dongarra, J., Hernández, V., Palma, J.M.L.M. (eds) High Performance Computing for Computational Science - VECPAR 2004. VECPAR 2004. Lecture Notes in Computer Science, vol 3402. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11403937_38

Download citation

  • DOI: https://doi.org/10.1007/11403937_38

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25424-9

  • Online ISBN: 978-3-540-31854-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics