
Paper No: 146

Adaptively Detecting Aggregation Bursts in
Data Streams

Shouke Qin, Weining Qian, Aoying Zhou
Dept. of Computer Science and Engineering

Fudan University
220 Handan RD, Shanghai, 200433, China

Tel: +86-(0)21-6564-3024
Fax: +86-(0)21-6564-3503

email: skqin,wnqian,ayzhou@fudan.edu.cn

Abstract. Finding bursts in data streams is attracting much attention
in research community due to its broad applications. Existing burst de-
tection methods suffer the problems that 1) the parameters of window
size and absolute burst threshold, which are hard to be determined a pri-
ori, should be given in advance. 2) Only one side bursts, i.e. either increas-
ing or decreasing bursts, can be detected. 3) Bumps, which are changes
of aggregation data caused by noises, are often reported as bursts. The
disturbance of bumps causes much effort in subsequent exploration of
mining results. In this paper, a general burst model is introduced for
overcoming above three problems. We develop an efficient algorithm for
detecting adaptive aggregation bursts in a data stream given a burst
ratio. With the help of a novel inverted histogram, the statistical sum-
mary is compressed to be fit in limited main memory, so that bursts on
windows of any length can be detected accurately and efficiently on-line.
Theoretical analysis show the space and time complexity bound of this
method is relatively good, while experimental results depict the applica-
bility and efficiency of our algorithm in different application settings.

– Key Word 1: Data Streams
– Key Word 2: Data Mining and Knowledge Discovery
– Add Keyword: Burst Detection
– Author List: Shouke Qin, Weining Qian and Aoying Zhou

Adaptively Detecting Aggregation Bursts in

Data Streams

Shouke Qin, Weining Qian, Aoying Zhou

Department of Computer Science and Engineering
Fudan University, 220 Handan Rd, Shanghai, China

{skqin,wnqian,ayzhou}@fudan.edu.cn

Abstract. Finding bursts in data streams is attracting much attention
in research community due to its broad applications. Existing burst de-
tection methods suffer the problems that 1) the parameters of window
size and absolute burst threshold, which are hard to be determined a pri-
ori, should be given in advance. 2) Only one side bursts, i.e. either increas-
ing or decreasing bursts, can be detected. 3) Bumps, which are changes
of aggregation data caused by noises, are often reported as bursts. The
disturbance of bumps causes much effort in subsequent exploration of
mining results. In this paper, a general burst model is introduced for
overcoming above three problems. We develop an efficient algorithm for
detecting adaptive aggregation bursts in a data stream given a burst
ratio. With the help of a novel inverted histogram, the statistical sum-
mary is compressed to be fit in limited main memory, so that bursts on
windows of any length can be detected accurately and efficiently on-line.
Theoretical analysis show the space and time complexity bound of this
method is relatively good, while experimental results depict the applica-
bility and efficiency of our algorithm in different application settings.

1 Introduction

Detecting bursts robustly and efficiently poses a challenge in many applications
of online monitoring for data streams, such as telecommunication networks, traf-
fic management, trend-related analysis, web-click streams analysis, intrusion de-
tection, and sensor networks. Many methods have been proposed to detect bursts
or changes in a time period, called a window, in E-mail [10], Gamma ray [13] and
networks traffic [3, 11] data streams. However, these methods are not adaptive
enough for many real-life applications, since they need fixed parameter setting
for window size and absolute threshold of bursting. Furthermore, only one-side
bursts can be detected by these methods.

We argue that ratio threshold for bursting measurement and adaptive window
size is more suitable for data stream analysis applications. In network traffic
monitoring, for example, when attaches occur, the workload of package routing
to an IP address or requests to a server within a certain time period may increase
remarkably compared with last certain time period. An absolute threshold may
cause false report of bursts in a rush time and missing of attacks when the

2

workload is low. Furthermore, the lasting time varies in different kinds of attacks,
which are all interested by monitors. Fig.1 shows the double-side bursts with
various peak height and window size.

Though, a natural solution for adaptively detecting aggregation bursts is
to applying existing algorithms on different window sizes, peak heights, and
both increasing and decreasing side simultaneously, apparently it may consume
much storage and computation resources. Furthermore, as any other data stream
mining tasks, it is required that burst detection algorithm should be accurate,
while use limited storage space and scan a data stream sequentially only once.
We present a novel method for adaptively detecting aggregation bursts in data
streams. It relies on the efficient algorithms for construction and maintenance of
a compact summary data structure, called inverted histogram, or IH. We show
that the problem of burst detection can be transformed to linearly scan of the
histogram. Furthermore, it is proved that the bucket error of the histogram
is bounded, while the space and computation complexity for maintaining the
histogram is low.

Fig. 1. Bursts with various peak height and window size. In the stream, data in window
w0 are not burst, while data in w1 are a small burst, compared with those in w0. Data
in w2 are another burst compared with those in w1. Furthermore, w3 and w4 depict
another two bursts, whose window sizes are larger than bursts w1 and w2.

Bursts found by existing approaches at large time scales are not necessarily
reflected at smaller time scales. That is because those bursts at large time scales
are composed of many consecutive bumps which are those positions where the
values are high but not high enough to be bursts. In this paper, a general burst
model is introduced for overcoming the problem.

1.1 Related Work

Monitoring and mining data stream has attracted considerable attention recently
[10, 13, 3, 11, 2]. An efficient work for statically detecting bursts in data stream
with normal distribution based on sliding window is presented in [13]. Kleinberg
focuses on modelling and extracting structure from text stream in [10]. There
is also work in finding changes on data stream [3, 11, 2]. Although, they have
different objectives and different application backgrounds, the same thing is that

3

they can only monitor one window with a given size. The method in [13] can
monitor multiple windows with different sizes. But, the maximum window size
and window number is limited.

Some of the above approaches detect bursty behaviors of aggregate results
[13, 3, 11]. The amount of streaming data is too large to maintain in main mem-
ory. This prompts a need to maintain a synopsis of the stream to all the methods.
The work in [3, 11] is based on sketch. Haar wavelets can also be used to compute
aggregates [7], and their error are bounded in [5]. The burst detecting method in
[13] is based on wavelets. However, it can only monitor the monotonic aggregates
with respect to the window size, such as sum. The non-monotonic ones, such as
average, cannot be monitored with it.

Histograms have been used widely to capture data distribution, to present
the data by a small number of buckets. They are usually used in selectivity
estimation. An excellent survey of the history of histograms can be found in [9].
V-optimal histograms can be maintained with dynamic programming algorithms
which running in quadratic time and linear space. Over data stream model,
the approximate V-optimal histograms can support the point queries, aggregate
queries and range sum queries [8, 6, 12]. If the stream is ordered, namely the
values of data elements are non-negative, the work of [8] has the cheapest space

O(k2 log nR2

ε
) and time O(nk2 log nR2

ε
). It provides an (1 + ε) approximation for

the V-optimal histogram with k levels, n is the length of stream and R is the
maximum value of data elements.

1.2 Our Contributions

Our contributions can be summarized as follows:

– First, we put forward a novel definition of burst. To the best of our knowl-
edge, this is the first work considering such adaptive burst model on data
stream. This model is more general and fit for the real world applications.

– Second, we design both false positive and false negative algorithms for find-
ing bursts accurately in high speed data streams. They can detect bursts
dynamically with double side alarm domain and avoid being disturbed by
bumps on overall stream.

– Third, we propose a novel histogram—IH, with relative error guaranteed in
each bucket, which can answer burst queries accurately with very cheap cost
of space and time. We note that IH is an interesting data structure in its
own right and might find applications in other domains.

– Fourth, we complement our analytical results with an extensive experimental
study. Our results indicate that the new method can indeed detect the bursts
accurately within an economic space and time cost.

The remainder of this paper is organized as follows. Section 2 presents the
problem and definition of the paper. Section 3 presents our algorithms for de-
tecting bursts. Section 4 presents a novel histogram which is the base of burst
detecting algorithms. Section 5 show the results and analysis of experiments.
Section 6 concludes the paper.

4

2 Problem Statements

In this section, we present the model and definition of the problem for clarifying
the objectives in this paper.

As described in the introduction, bumps can induce bursts at large time
scales. We can show it through a small example. In Fig.2.(a), the current stream
length is 6. x6 is a new comer and its value is 20.5. The relative threshold is
denoted by β, which is a positive ratio. Here, aggregate function F is sum and
β = 1.1. From Fig.2.(a), x4 and x6 are all bumps. They cannot induce burst on
the 1-length window, for x4 = 20.5 < βx3 = 1.1 ∗ 19 = 20.9 and x6 = 20.5 <
βx5 = 1.1 ∗ 19 = 20.9. But they induce bursts on 2-length and 3-length window
respectively, such as Fig.2.(b) and Fig.2.(c), for (x3 + x4) > β(x1 + x2) and
(x4 + x5 + x6) > β(x1 + x2 + x3). In that, if burst does not occur in window

(a) Window Length = 1 (b) Window Length = 2 (c) Window Length = 3

Fig. 2. Bumps Can Induce Bursts at Large Time Scales

L(window length), window L+1 should not be detected. Because remnant bursts,
if had, are all induced by bumps.

A data stream can be considered as a sequence of points x1, ..., xn in increas-
ing order. Each element in stream can be a value in the range [0..R]. To detect
bursts on overall data stream needs only caring about the latest two consec-
utive subsequences with the same length when each new value xi comes. The
formal definition of adaptively detecting bursts on data stream model is shown
as follows.

Definition 1. F is an aggregate function. s′i and si are the latest two con-

secutive subsequences of a stream with the same length of i, 1 ≤ i ≤ n
2 . An

increasing burst occurs on i-length window when xn comes, if ∀j ∈ 1..i, β > 1,
F (sj) ≥ βF (s′j). An decreasing burst occurs on i-length window when xn comes,

if ∀j ∈ 1..i, 0 < β < 1, F (sj) ≤ βF (s′j).

In the example of bumps above, as Definition 1, s′1 = x5, s1 = x6, s′2 = x3, x4,
s2 = x5, x6 and s′3 = x1, x2, x3, s3 = x4, x5, x6.

5

3 Algorithms for Detecting Bursts

We begin to present our algorithms for detecting bursts in this section. These
algorithms can be based on the approximate V-optimal histogram in [8](AVOH in
short) or IH. IH is a novel histogram proposed by us whose details are presented
in section 4. Due to limited space allowed to detect bursts on data stream,
approximate burst detecting can take two possible approaches, namely, false
positive oriented and false negative oriented. The former includes some unreal
bursts in the final result, whereas the latter misses some real bursts. In the real
world, different application requirements need false positive oriented algorithm
and false negative oriented algorithm respectively.

3.1 False Positive Algorithm

The aggregate result wi of the latest i-length window (1 ≤ i ≤ n) can be got from
AVOH or IH. In fact, F (si) = wi = fss(i) and F (s′i) = w2i−wi = fss(2i)−fss(i).
fss(i) = Σn

j=ixj , it is the suffix sum which is the sum of the last n− i+ 1 values
of stream x when xn comes. Therefore, the criterions of increasing burst and
decreasing burst in Definition 1 can be depicted by wi ≥ β(w2i − wi) (β > 1)
and wi ≤ β(w2i −wi) (0 < β < 1) respectively. They can also be transformed to

w2i ≥ (β + 1)(w2i − wi), (β > 1) (1)

and
w2i ≤ (β + 1)(w2i − wi), (0 < β < 1) (2)

Detecting bursts false positively is achieved by augmenting the left side of in-
equality (1) and the right side of inequality (2) relatively. This is fulfilled by two
functions. One is IH.getLargerValue(i) which returns a value larger than real wi

from IH. The other is IH.getSmallerValue(i) which returns a value smaller than
real wi from IH. It can be seen that the accuracy of our method is only affected
by these two functions. Their details and bounds are introduced in section 4.

When xn comes and is inserted into histogram, this algorithm is called for
detecting bursts induced by xn. The algorithm has no input parameter. Its out-
put is the alarm information. Here, we just return the number of bursts. The
algorithm behaves level wise detection from level 1 to level n

2 . Each level is a pair
of the latest two consecutive windows with the same length on stream x. In level
i, the algorithm detects burst between such two windows with length i. That is
accomplished by two steps. The first step is to compute wi and w2i with the two
functions above, just as the statements in Line 4 and Line 5. The second step
is to detect the occurrence of a burst by inequality (1) as the statement in Line
6. The level wise detection is broken at Line 9 when inequality (1) is not met,
for remnant bursts are all induced by bumps. Because of different applications
oriented, there are at least three algorithms can be shown. First one is to detect
increasing bursts only. Second one is to detect decreasing bursts only. Third one
is to detect both two kinds of bursts. For the limitation of space, we show only
the first algorithm to which the others are similar.

6

Algorithm 1 detectBurstsFalsePositively

1: burstNum← 0;
2: winSize← 1;
3: while winSize ≤ n

2
do

4: temp1=IH.getLargerValue(winSize);
5: temp2=IH.getSmallerValue(2 ∗ winSize);
6: if temp2 ≥ (β + 1)(temp2-temp1) then

7: increase burstNum and winSize by 1;
8: else

9: break;
10: end if

11: end while

12: return burstNum;

Algorithm 1 can catch all bursts induced by xn on overall stream in O(k)
time, k(0 ≤ k ≤ n

2) is the number of bursts found by it. Therefore, it takes time
O(nk) for detecting all bursts in a stream with length n. If we just want to know
whether one burst occurs or not when xn comes instead of on which window
burst occurs or how many bursts are induced on overall stream, the time cost
can be O(1). We can claim the following theorem by denoting the space cost of
a B-bucket histogram with B and its updating cost for each xi with TB.

Theorem 1. Algorithm 1 can detect bursts false positively on data stream in

O(n(TB + k)) time and O(B) space.

3.2 False Negative Algorithm

Similar to the analysis in the above section, detecting bursts false negatively
is achieved by abating the left side of inequality (1) and the right side of in-
equality (2) relatively. Algorithm 1 can be capable of detecting bursts false
negatively when given minor modification. We can just put the statements,
temp1=IH.getSmallerValue(winSize) and temp2=IH.getLargerValue(2∗winSize),
instead of Line 4 and Line 5 in Algorithm 1. The analysis of its cost is same as
that of Algorithm 1. We can claim the following theorem.

Theorem 2. We can detect bursts false negatively on data stream in O(n(TB +
k)) time and O(B) space.

It is clear that in addition to sum, the two algorithms above can monitor not
only monotonic aggregates with respect to the window size for example max,
min, count and spread, but also non-monotonic ones such as average.

4 Buckets Order Inverted Histogram—IH

In this section, we begin to introduce a novel histogram, called Inverted His-
togram (i.e., IH in brief). It is the base of burst detecting algorithms presented

7

in section 3. At the beginning, a simple histogram is introduced. It is better than
the existing approximate V-optimal histograms for its cheap space and time
when being used to answer burst queries. But both the existing approximate
V-optimal histograms and the simple histogram are facing the great challenge
that the absolute error in buckets created recently are getting larger and larger.
The everlasting increasing of absolute error in buckets will decay the accuracy of
burst detection rapidly. Later, we introduce the enhanced histogram—IH, which
not only has cheap space and time, but also answers burst queries precisely.

4.1 A Simple Histogram

Each point of stream x′

1, ..., x
′

n we read can be thought of the prefix sum of
x1, ..., xn with x′

i = fps(i). fps(i) is the prefix sum of stream x when xi comes,
fps(i) = Σi

j=1xj . Details of our idea are as follows. What we want is to partition

stream x′ into B intervals(buckets), (ba
1 , b

b
1), ..., (b

a
B, bb

B). bi is the i-th bucket,
1 ≤ i ≤ B. ba

i and bb
i are the minimum and maximum value within bucket bi

respectively. It’s possible that ba
i = bb

i . We also want to bound the relative error δ

in each bucket. The maximum relative error in bi is δ =
bb

i
−ba

i

ba

i

. One bucket should

maintain ba
i , bb

i and the number of values in it, namely, its width. Furthermore,
the buckets are disjoint and cover x′

1..x
′

n. Therefore, ba
1 = x′

1 and bb
B = x′

n.
During the processing, bb

i ≤ (1+δ)ba
i is maintained. The algorithm on seeing the

n’st value xn, will compute x′

n = fps(n) = bb
B + xn. We just have to update the

last bucket, either by setting bb
B = x′

n when x′

n ≤ (1 + δ)ba
B, or creating a new

bucket when x′

n > (1 + δ)ba
B, with ba

B+1 = bb
B+1 = x′

n. The algorithm is quite
simple. It will not be shown here. The proof of Theorem 3 is in Appendix A.

Theorem 3. We can build the simple histogram with O(log n+log R
log(1+δ)) space in

O(n) time. The relative error in each bucket is at most δ.

Although the simple histogram can be built with cheap cost of time and space,
both the approximate V-optimal histogram and the simple histogram have same
defect in detecting bursts. That is the absolute error and size of the last bucket
are getting larger and larger as the increasing of stream length. Thus, the errors
induced by using these buckets to compute aggregates are also increasing. When
a new value xn comes, we use the bucket from the last one to the first one to
estimate wi from 1-length window to n

2 -length window. Therefore, the errors
of aggregates on small windows are much larger than those on large windows.
According to Definition 1, window L + 1 is not detected, if there is no burst
occurs in window L. Provided that the aggregate of window L is computed
falsely, the bursts of windows whose sizes are larger than L may be neglected.
In consequence, the greater the stream length is, the more error the detecting
methods will suffer. In the later of this paper, the analysis can be validated from
experiments. We present IH in next section which overcomes this defect.

8

Algorithm 2 updateIH(xn)

1: increase bucket number B by 1;
2: j ← B;
3: create a new bucket and put xn into it;
4: for i = B − 1 to 1 do

5: add xn to both ba
i and bb

i ;
6: if bb

i ≤ (1 + δ)ba
j then

7: bb
j ← bb

i ;
8: add width of bi to width of bj ;
9: delete bi;

10: decrease bucket number B by 1;
11: end if

12: decrease j by 1;
13: end for

4.2 Enhanced Histogram—IH

Let us reconsider the size of the latest bucket in the above two histograms. They
are getting large when stream length increases. However, we hope the recent
bucket has higher precision, in other words, the recent bucket has smaller width.

Our idea is to invert the buckets order which uses the smaller bucket to store
the newer points, such as in Fig.3.(b). The oldest point x′

1 and the latest point x′

n

of stream x′ are in b1 and bB respectively. In Fig.3.(a), x′

i = fps(i). In Fig.3.(b),
x′

i = fss(i). fss(i) is the suffix sum, fss(i) = Σn
j=ixj . Fig.3.(a) is the bucket

series of our simple histogram and approximate V-optimal histogram. The size
of the last bucket in Fig.3.(a) is getting larger and larger as time goes on.

(a) Normal Buckets Order (b) Inverted Buckets Order

Fig. 3. Buckets Orders of Approximate V-optimal Histogram and IH

Same as the simple histogram, we want to minimize the bucket number with
relative error guaranteed in each bucket. The only difference is the stream we
read can be thought of as x′

i = fss(i). Details of our idea is similar to that of
the simple histogram. IH can be built with following algorithm.

Algorithm 2 has an input parameter xi and no output. On seeing a new value
xn, it has to update all buckets, namely, O(log n+log R

log(1+δ)) buckets by executing the

statements from Line 4 to 13. First, at Line 3, it creates a new bucket for xn

and puts the bucket on the last position of buckets series. Then, at Line 5, it
updates the maximum and minimum value of all the buckets by adding xn to

9

them from the new created one to the oldest one. In the process of updating,
from Line 6 to 11, the algorithm merges consecutive buckets bi and bj when
bb
i ≤ (1 + δ)ba

j , with bb
j = bb

i . In fact, IH can also be constructed by the simple
histogram algorithm feeded with inverted data stream xn, .., x1. That is a very
nice situation, the maximum relative error in each bucket of IH can be bounded
and the space and time cost are still cheap. We claim the following theorem to
guarantee these. The proof of it is in Appendix B.

Theorem 4. Algorithm 2 can build an IH with O(log n+log R
log(1+δ)) space in O(n(log n+log R)

log(1+δ))

time. The relative error in each bucket is at most δ.

As described in section 3, two functions are called for getting wi. Provided
that the real value of wi is within bucket bj , IH.getLargerValue(i) returns bb

j

and IH.getSmallerValue(i) returns ba
j . The relative error of their return values is

bounded by δ. The precision of them can be improved by considering the values
within a bucket are equidistant. To guarantee false positive or false negative
detection, we need to maintain maxD and minD within each bucket. maxD is
the maximum distance between two consecutive point within the bucket. minD
is the minimum distance between two consecutive point within the bucket. Pro-
vided that the real value of wi is within bucket bj, IH.getLargerValue(i) returns
the value of min(bb

j, b
a
j +maxD(i−Σi−1

k=1Wid(bk)−1)) and IH.getSmallerValue(i)

returns ba
j + minD(i−Σi−1

k=1Wid(bk)− 1). Based on Theorem 1, Theorem 2 and
Theorem 4, we can get the following corollary.

Corollary 1. We can detect bursts false positively or false negatively on data

stream in O(n(log n+log R
log(1+δ) + k)) time and O(log n+log R

log(1+δ)) space.

5 Performance Evaluation

In this section, our empirical studies show the adaptive method in this paper
can efficiently give accurate alarms to bursts with just a small cost of space.

5.1 Experimental Setup

All the histogram constructing algorithms and burst detecting algorithms are
implemented by using Microsoft Visual C++ Version 6.0. We conducted all
testing on a 2.4GHz CPU Dell PC with 512MB main memory running Windows
2000. Our algorithms are tested on a variety of data sets. Due to the limitation
of space, we report the results for only two representative data sets here:

– Web Site Requests (Real): This data set is obtained from the Internet Traffic
Archive [1, 3]. It consists of all the requests made to the 1998 World Cup
Web site between April 26, 1998 and July 26, 1998. During this 92 days
period of time the site received 1,352,804,107 requests. Our basic window,
namely, an item xi is the requests number in one second. So, the stream
length is n = 92 ∗ 24 ∗ 3600 = 7, 948, 800s. It is denoted by D1.

10

– Network Traffic (Synthetic): This data set is generated with the burst arrival
of data stream using a pareto[4] distribution, which is often used to simulate
network traffic where packets are sent according to ON OFF periods. The
density function of pareto distribution is P (x) = aba

xa+1 , where b ≥ x and

a is the shape parameter. The expected burst count, E(x), is ab
a−1 . The

tuple arrive rate λ1 is driven by an exponential distribution and the interval
λ2 between signals is also generated using exponential distribution. In this
data set, we set expect value E(λ1) = 400tuples/s, E(λ2) = 500tuples, a =
1.5, b = 1. The size of this time series data set is n = 10, 000, 000s. It is
denoted by D2.

In the experiments, two accuracy metrics are measured: recall and precision.
Recall is the ratio of true alarms raised to the total true alarms should be
raised. Precision is the ratio of true alarms raised to the total alarms raised. Our
aggregate function F is sum.

5.2 Performance Study

Precision of burst detection based on IH and AVOH We study the
precision of detecting bursts false positively based on IH and AVOH on D1 and
D2 respectively. In this experiment, we set δ = 0.01. It can be confirmed from

β β

(a) varying β on D1 (b) varying β on D2

Fig. 4. Precision of burst detection based on IH and AVOH varying β (δ = 0.01)

Fig.4 that the burst detecting method based on IH is far more accurate than
that based on AVOH at any setting of threshold β.

Precision and Recall of Adaptively Burst Detecting We test the preci-
sion and recall of both false positive algorithm(FP in short) and false negative
algorithm(FN in short) on D1 and D2 respectively. In this experiment, we set
β = 1.1, δ = 0.01. It can be seen from Fig.5 that on both data sets the precision
of FP are at least 99.99% and with recall guaranteed 1, and the recall of FN
are also at least 99.99% and with precision guaranteed 1. In Fig.5.(a), we see

11

(a) varying data set size on D1 (b) varying data set size on D2

Fig. 5. Precision and Recall of FP and FN varying data set size (β = 1.1, δ = 0.01)

the precision and recall of FP and FN are all 1 when stream length is 1k. When
stream length is 10k, precision and recall are all 99.99% for occurring an error.
Because the accuracy of burst detection does not decay with the increasing of
stream length, the precision and recall are always above 99.99% and getting
better as time goes on. The same result can be got from Fig.5.(b). Therefore,
our method can give highly accurate answers to burst detection over streaming
data.

How to Set an Appropriate δ to a β We discuss the setting of β and δ.
From that, we can know the most appropriate setting of δ, if β have been set.
It means with that setting of δ we can use the most economic space and time to
find bursts accurately under relative threshold β. It can be seen from Fig.6 that

δ

β=0.5
β=0.9
β=1.01
β=1.1
β=1.5
β=2.0

β=0.5
β=0.9
β=1.01
β=1.1
β=1.5
β=2.0

δ

(a) varying δ on D1 (b) varying δ on D2

Fig. 6. Precision of detecting bursts false positively (varying δ and β, on D1 and D2)

the most adaptable setting of δ on each data set is max(β−1
10 , 0.01). The same

heuristic result is also got from other experiments we have made.

12

Compare Space Cost of IH and AVOH We test the space cost of IH and
AVOH on D1 and D2 respectively on condition that both of them have the same
maximum relative error in their buckets. Here, we set k = 1 for AVOH and vary
the maximum relative error δ in each bucket of both IH and AVOH from 0.1
to 0.001. In this experiment, β has no influence on results. It can be seen from

δ δ

(a) varying δ on D1 (b) varying δ on D2

Fig. 7. Space cost of IH and AVOH (varying δ on D1 and D2)

Fig.7 that IH consumes less memory than AVOH on any condition of δ. The
space saved by IH is getting larger and larger as the decreasing of δ. Therefore,
our histogram is more adaptable to be used to detect bursts over streaming data.

Processing Time By varying size of data sets, we study the time cost of our al-
gorithms on D1 and D2 respectively. In this experiment, we set β = 1.1, δ = 0.01.
Our method is very efficient. This is confirmed in Fig.8, where the processing

(a) varying data set size on D1 (b) varying data set size on D2

Fig. 8. Processing Time of FP and FN varying data set size (β = 1.1, δ = 0.01)

time of FP and FN are same. The method of us can processing 400 ∗ 107 tuples

13

in 20 seconds. This means that it is easily capable of processing traffic rates on
100Mbs links, and with some work then 1Gbps and higher are within reach.

6 Conclusions and Future Work

In this paper, we studied the problem of detecting bursts in data streams. A
novel concept of adaptive aggregation burst is introduced for precisely modelling
real-life data streams. This burst model empowers us to detect double-side rel-
ative bursts dynamically without disturbed by bumps. We propose the effective
algorithms for accurately detecting such bursts under false positive and false
negative constraints. The algorithms are developed based on a space and time
efficient histogram, IH, which can be maintained with low overhead while being
more suitable for burst detection than other popular histograms. Intensive ex-
periments on both synthetic and real-life data sets show that our method is quite
efficient for analyzing high speed data streams. Furthermore, it is shown that IH
based algorithm cost less space and time than using approximate V-optimal his-
togram. Future work includes the study of extension of current IH-based burst
detection method on multiple correlated data streams and burst forecasting.

References

1. Internet traffic archive. http://ita.ee.lbl.gov/.
2. S. Ben-David, J. Gehrke, and D. Kifer. Detecting change in data streams. In Proc.

of VLDB, 2004.
3. G. Cormode and S. Muthukrishnan. Whats new: Finding significant differences in

network data streams. In Proc. of INFOCOM, 2004.
4. M. E. Crovella, M. S. Taqqu, and A. Bestavros. Heavy-tailed probability distri-

butions in the world wide web. A practical guide to heavy tails: STATISTICAL

TECHNIQUES AND APPLICATIONS, pages 3–26, 1998.
5. M. Garofalakis and P. B. Gibbons. Wavelet synopses with error guarantees. In

Proc. of SIGMOD, 2003.
6. A. C. Gilbert and et al. Fast, small-space algorithms for approximate histogram

maintenance. In Proc. of STOC, 2002.
7. A. C. Gilbert, Y. Kotidis, S. Muthukrishnan, and M. Strauss. Surfing wavelets

on streams: One-pass summaries for approximate aggregate queries. In Proc. of

VLDB, 2001.
8. S. Guha, N. Koudas, and K. Shim. Datastreams and histograms. In Proc. of

STOC, 2001.
9. Y. Ioannidis. The history of histograms. In Proc. of VLDB, 2003.

10. J. Kleinberg. Bursty and hierarchical structure in streams. In Proc. of SIGKDD,
2002.

11. B. Krishnamurthy, S. Sen, Y. Zhang, and Y. Chen. Sketch-based change detection:
Methods, evaluation, and applications. In Proc. of IMC, 2003.

12. S. Muthukrishnan and M. Strauss. Rangesum histograms. In Proc. of SODA, 2003.
13. Y. Zhu and D. Shasha. Efficient elastic burst detection in data streams. In Proc.

of SIGKDD, 2003.

14

A The Proof of Theorem 3

The proof of Theorem 3 is as follows.

Proof. Let us assume that the simple histogram needs to maintain at most B
buckets for stream x1, .., xn. x′

i = fps(i). Therefore, we have x′

1(1 + δ)B−1 < x′

n.
Then, B < log1+δ(x

′

n/x′

1)+1 = (log x′

n−log x′

1)/ log(1+δ)+1. x′

n can be at most
nR where R is the maximum value of xi. So, B < (log n+log R− logx′

1)/ log(1+
δ) + 1. Furthermore, clearly, the algorithm takes an incremental O(1) time per
new value. These prove the theorem.

B The Proof of Theorem 4

The proof of Theorem 4 is as follows.

Proof. In fact here, we require at most (2(log n+log R)
log(1+δ)) buckets for stream x(x1, .., xn).

Because the process of merging consecutive buckets cannot minimize bucket
number as the simple histogram. We assume a buckets series b1, .., bm, which is
constructed by the simple histogram feeded with inverted data stream xn, .., x1.
b1 is the oldest bucket with ba

1 = xn. bm is the new created bucket with bb
m =

Σ1
j=nxj . We assume another buckets series c1, .., cl is constructed by Algorithm 2

feeded with data stream x1, .., xn. Then, the latter buckets series can be think of
as a division and remerging of the former and l ≥ m. A bucket bi can be divided
into three consecutive buckets at most in c1, .., cl. Furthermore, the first bucket
and the third bucket must have been merged with other buckets. Namely, there
is at most one bucket cj in c1, .., cl that cj ⊆ bi. Now, we assume there are two
buckets cj , ck(j < k) in c1..cl that cj ⊆ bi and ck ⊆ bi. Then, we have cb

j ≤ ca
k,

because cb
j and ca

k are all come from same bucket bi. However, Algorithm 2 must
have merged them, if they exist. Therefore, there is at most one bucket cj in
c1, .., cl that cj ⊆ bi. Then, b1, .., bm can be at most divided into 2m− 1 buckets,
namely, l ≤ 2m− 1. This proves the theorem.

