Maintaining Semantics in the Design of Valid and
Reversible SemiStructured Views

Ya Bing Chen Tok Wang Ling Mong Li Lee

School of Computing, National University of Singapore
(chenyabi, lingtw, leeml) @comp.nus.edu.sg

Abstract. Existing systems that support semistructured views do not maintain
semantics during the process of designing views. Thus, there is no guarantee
that the views obtained are valid and reversible views. In this paper, we propose
an approach to designing valid and reversible semistructured views. We employ
four types of view operators, namely, select, drop, join and swap operators, and
develop a set of rules to maintain the semantics of the views when the swap
operator is applied. We also examine the reversible view problem and develop
rules to guarantee the designed views are reversible. Finally, we examine the
possible changes to the participation constraints of relationship types and
propose rules to keep the participation constraints correct.

1 Introduction

Existing systems [1, 2, 3,4, 7,9, 10, 11, 12] for semistructured views do not maintain
semantics during the process of designing views. Thus, they cannot guarantee the
validity and reversibility of the views. [5, 6] propose a novel approach to design valid
views over semistructured data. A conceptual schema for source data is first extracted
based on a semantically rich data model, the Object-Relationship-Attribute model for
Semi-Structured data (ORA-SS) [8]. Semistructured views are created by applying
four transformation operators on the source ORA-SS schema. The operations are
select, drop, join and swap.

In this paper, we develop a complete set of rules to ensure that the designed views
are meaningful and reversible back to the original source schema when the swap
operator is applied. We also develop additional rules to keep the participation
constraints correct for relationship types in the views. To the best of our knowledge,
this is the first work to address the problem of maintaining semantics in the design of
valid and reversible semistructured views.

The rest of the paper is organized as follows. Section 2 reviews the ORA-SS data
model and highlight the semantics that are captured in ORA-SS for the design of valid
and reversible semistructured views. Section 3 presents the design rules for the swap
operator. Additional rules for the evolution of the participation constraints of object
classes in relationships are given in Section 4, and we conclude in Section 5.

2 Motivating Example

The ORA-SS model comprises of three basic concepts: object classes, relationship
types and attributes, and captures richer semantics compared to models such as OEM
and XML DTD/Schema.

Example 1. Figure 1 depicts an ORA-SS source schema. This schema has 4 object
classes: course, student, lecturer and tutor. Each object class has a key attribute,
which is denoted by filled circle. The attribute hobby of student is a multi-valued
attribute which is indicated by an asterisk inside the circle. There is a binary
relationship type between object class course and student, which is labeled as “cs, 2,
I:n, I:n” on the incoming edge of student. In the label, cs denotes the name of the
relationship type, 2 indicates the degree of the relationship type, the first “/:n”
indicates the parent participation constraints in the relationship type, and the second
“I:n” indicates the child participation constraints in the relationship type. The
relationship type has an attribute grade attached to student with label cs on the
incoming edge of the attribute, which implies a functional dependency stuNo, code —
grade. Similarly, there is a ternary relationship type “cst, 3, 1:n, 1:n” labeled on the
incoming edge of rutor. The relationship type involves three object classes course,
student and lecturer. In this case, the first “/:n” indicates the participation constraints
of the relationship type cs in the ternary relationship type. The second “/:n” indicates
the participation constraints of the object class tufor in the ternary relationship type.
m

a2 lnln

0
stfNo office fedbuck o offce fehck o offce fbck 9o e ofice skt
Fig.1. ORA-SS source schema Fig.2. Invalid ORA-SS view Fig. 3. Valid reversible ORA-SS
obtained by swapping course View Obtam?d b}’ swapping course
and student in Figure 1 and student in Figure 1

Based on the ORA-SS schema in Figure 1, let us design a view by swapping course
and student. The attributes of the two object classes will move with their owner object
classes respectively. The attribute grade which belongs to the relationship type cs will
move with student if we design the view based on XML DTD/Schema or OEM graph.
This is because XML DTD/Schema or OEM do not differentiate between attributes of
object classes and attributes of relationship types. For illustration purposes, the view
in Figure 2 attaches grade to student to show such a case, which violates the
functional dependency implied in the source schema, i.e., stuNo, code — grade. The
view in Figure 2 is invalid since it violates the semantics in the source schema.

The above example shows that invalid views arise when important semantics are
not expressed in the underlying data model. Figure 3 shows a valid ORA-SS view
when the swap operator is applied on the same source schema in Figure 1. In Figure
3, the attribute grade is moved down and attached to course to keep the functional
dependency of the relationship type cs intact. The object class lecturer also needs to
move down with course to keep all the three participating object class of cst in one
hierarchical path. Thus, the semantics of the relationship type cst is kept intact.

3 Design Rules for Swap Operator

Valid semistructured views considered in this work can be obtained by applying four
view operators on an ORA-SS schema. The four operators are select, join, drop and
swap. As a subset of XQuery, these operators fulfill most of the data-centered query
requirements for XML. [5] develops a set of rules to guarantee the validity of
semistructured views when the operators select, join, drop are applied, and gives an
initial proposal of how the validity of views can be maintained when swap operator is
applied. In this section, we will detail how valid semistructured views can be designed
with swap operator. The swap operator restructures an ORA-SS source schema by
exchanging the positions of a parent object class and its child object class.

Rule Swap_1: If an object classes O; and its descendant object class O; in a source
schema are swapped in designing a view, then the attributes of O; and O; must remain
attached to O; and O; respectively in the view.

Rule Swap_1 is straightforward and ensures that the attributes of two object classes O;
and O; do not become meaningless in the view after O; and O, are swapped. More
importantly, we observe that the relationship types in an ORA-SS source schema that
involve O; and/or O; are also affected since the hierarchical positions of O; and O,
have been interchanged after a swap operator is applied. Given two object classes O;
and O; where O; is a descendant of O; in an ORA-SS schema, the relationship types
that are affected after a swap of O; and O; can be classified into three categories.

The first category is the set of relationship types which do not involve any other
object classes but O; and/or O; and/or the ancestors of O; or O; in the ORA-SS source
schema. In another words, these relationship types involve object classes that occur in
the straight path of O; and O; (see Figure 4).

The second category is the set of relationship types which involve at least both O;
and object classes in the branch paths between O; and the parent of O;, as shown in
Figure 5. The third category is the set of relationship types which involve at least both
O; and its descendants, as shown in Figure 6. The three categories of affected
relationship types are handled by the rules Swap_2, Swap_3 and Swap_4 respectively.

Rule Swap_2: Suppose an object classes O; and its descendant object class O; in a
source schema S are swapped in designing a view. Let S be the set of relationship
types which do not involve any other object classes but O; and/or O; and/or the
ancestors of O; or O, in the source schema. For each relationship type R in S, the
attributes of R are attached to the lowest participating object class of R in the view.

™

The Second

Category L
The First ~ ‘
Category

The Third
Category
v
Fig. 4. First category of Fig. 5. Second category of Fig. 6. Third category of
relationship types. relationship types. relationship types.

Rule Swap_3: Suppose an object class O; in a source schema is swapped with its
descendant object class O; in designing a view. If there exists a relationship type
which involves at least O; and O, where O, is a descendant of an object class O, that
lies in the path between O; and O; (including O;) but O, does not lie in the path
between O; and O; in the ORA-SS source schema, then the subtree rooted at O, is
attached to O; in the view.

Rule Swap_4: Suppose an object class O; in a source schema is swapped with its
descendant object class O; in designing a view. For each child O, of the object class
O,;, let T be the subtree that is rooted at O, Let S be the set of relationship types
which involve at least O; and its descendants in T. If O, is the lowest participating
object class among all the relationship types in S that lie in the path between O; and
O; after the swap, then the subtree rooted at O is attached to O, in the view.

The swap operator also introduces the issue of reversible views in semistructured
data. A valid view schema V of a source schema S is called a reversible view if S can
be produced back from V through applying our view operators, i.e. select, drop, join
and swap. Here, we only consider swap operator for the issue of reversible view.

We observe that the rules Swap_3 and Swap_4 not only maintain the semantics of
a semistructured view so that it is kept valid, but they also guarantee that the view is
reversible. For example, let us now apply another swap operator to the view in Figure
3 to swap student and course again. Applying the rules Swap_l and Swap_2, the
attributes of student and course will move with their owner object classes. The
relationship attribute grade is thus attached to the object class student again. Applying
the rule Swap_4, the object class lecturer will move up with course as a whole since
course is the lowest participating object class of dcl. On the other hand, tutor will be
attached to student because student is the lowest participating object class of c¢st. In
this way, the semantics of the two relationship types are kept intact. Furthermore, the
view obtained is the same as the original source schema in Figure 1. Thus, the view in
Figure 3 is a reversible view because we can produce the original source schema back
by applying swap operator on it.

4 Participation Constraints in Views

During the design of semistructured views, new relationship types may be derived
from existing relationship types. The view may change the order of participating
object classes of an existing relationship type. Thus, we need to determine the
participation constraints of the relationship type in the view. We design four rules to
handle the participation constraints for relationship types in semistructured views
under the four view operators.

We use p and ¢ to denote the parent and child participation constraints of an
original relationship type R respectively. Likewise, we use p’ and ¢’ to denotes the
parent and child participation constraints of a derived relationship type R’.

The first rule handles the case when a swap operator is applied on two
participating object classes of a binary relationship type. The order of the two
participating object classes will be reversed in the view schema. Thus, in the new
relationship type in the view, the participation constraints will also be reversed.

Rule PC_1: If R’ is derived in the view by swapping two participating object classes
of an existing binary relationship type R in the source schema; then p’ = c and ¢’ = p.

Rule PC_2: If R’ is derived in the view by swapping two participating object classes
in an existing n-ary (n>2) relationship type R in the source schema, and O;, O,, ...,
O, is participating object classes of R’ in the order from ancestor to descendant in the
view schema; then

for p’: If there exists a functional dependency {0}, O, ... O,.;} — O,, then set p’
to be 1:1, otherwise set p’ to be 0:n (or *).

for ¢’: if there exists a functional dependency: O, — {O,, O, ... O,_;}, then set ¢’
to be 1:1, otherwise ¢’ is set 0:n (or *).

Rule PC_3: If R’ is derived in the view by projecting an existing relationship type R
in the source schema, and O;, O,, ..., O, is participating object classes of R’ in the
order from ancestor to descendant in the view schema; then

for p’: If there exists a functional dependency {O;, O, ... 0,1} — O,, then set p’
to be 1:1, otherwise set p’ to be 0:n (or *).

for ¢’: if there exists a functional dependency: O, — {O,, O, ... O,_;}, then set ¢’
to be 1:1, otherwise ¢’ is set 0:n (or *).

Rule PC_4: [f R’ is derived in the view by joining one relationship type R; (O;;, Oy,
..., Oyp,) with another relationship type R, (O3, Oz, ..., Oy,), where Op, = Oy; is the
common object class they are joined on, then

Jor p’: If there exists a functional dependency {O,;, Oy, ..., Oip1), Oz -, Oz 1)}
— Oy, or a functional dependency {Oz, Oy ..., Oymi)} — Oz or the two
Sunctional dependencies {O;;, Oy, ..., Oypnp)} — O and {Oz, Oz, ..., Ozpr)} —
0,,,; then set p’ to be 1:1, otherwise, set p’ to be 0:n.

Jor ¢’: If there exists a functional dependency O, — {Oy;, Op, ..., Oypy) Oz,
ey Ozm-1)}, then set ¢’ to be 1:1, otherwise set ¢’ to be O:n (or *).

The second rule handles the case where the order of participating object classes of
n-ary (n>2) relationship types is changed. The third rule then handles the case where
new relationship types are derived by projecting existing relationship types. Finally,

the last rule handles the case where new relationship types are derived by joining
existing relationship types.

5 Conclusions

Existing systems for semistructured views do not maintain semantics at all in the
process of designing the views. Thus, they cannot guarantee the validity and
reversibility of the views. This paper proposes a novel approach to solve the two
issues based on a semantically rich semistructured data model — ORA-SS. The swap
operator is unique in semistructured data as it interchanges the positions of parent and
child object classes, and raises the issue of view reversibility. In this paper, we have
developed a complete set of rules for the swap operator and show that the proposed
approach can maintain the evolution and integrity of relationships. We also examine
the possible changes for participation constraints of the relationship types and propose
rules to keep the participation constraints correct in the view. To the best of our
knowledge, this approach is the first work to employ a semantic data model for
maintaining semantics of semistructured views and solving the reversible view
problem. By considering the validity and reversibility of semistructured views, this
approach provides for a more robust view mechanism so that we can greatly exploit
the potential of XML/semistructured data to exchange data on the Web.

References

1. Serge. Abiteboul, S. Cluet, L. Mignet, et. al., “Active views for electronic commerce”,
VLDB, pp.138-149, 1999.

2. Chaitanya. Baru, A. Gupta, B. Ludaescher, et. al., “XML-Based Information Mediation with
MIX”, ACM SIGMOD Demo, 1999.

3. Michael. Carey, J. Kiernan, J. hanmugasundaram, et. al., “XPERANTO: A Middleware for
Publishing Object-Relational Data as XML Documents”, VLDB, pp. 646-648, 2000.

4. Michael. Carey, D. Florescu, Z. Ives, et. al., “XPERANTO: Publishing Object-Relational
Data as XML”, WebDB Workshop, 2000.

5. Ya Bing. Chen, Tok Wang Ling, Mong Li Lee, “Designing Valid XML Views”, ER
Conference, 2002

6. Ya Bing Chen, Tok Wang Ling, Mong Li Lee, “Automatic Generation of SQLX Definitions
from ORA-SS Views”, DASFAA, 2004.

7. Sophie. Cluet, P. Veltri, D. Vodislav, “Views in a large scale xml repository”, VLDB, pp.
271-280, 2001.

8. Gillian. Dobbie, X.Y Wu, T.W Ling, M.L Lee, “ORA-SS: An Object-Relationship-Attribute
Model for SemiStructured Data”, Technical Report TR21/00, School of Computing,
National University of Singapore, 2000.

9. Mary. Fernandez, W. Tan, D. Suciu, “Efficient Evaluation of XML Middleware Queries”,
ACM SIGMOD, pp. 103-114, 2001.

10. Mary. Fernandez, W. Tan, D. Suciu, “SilkRoute: Trading Between Relations and XML”,
World Wide Web Conference, 1999.

11. Philip. Bohannon, H. Korth, P. Narayan, S. Ganguly, and P. Shenoy. Optimizing view
queries in ROLEX to support navigable tree results. VLDB, 2002.

12. Alin. Deutsch and V. Tannen. MARS: A System for Publishing XML from Mixed and
Redundant Storage. VLDB, 2003.

