

Novel Generic Middleware Building Blocks for
Dependable Modular Avionics Systems

Christophe Honvault1, Marc Le Roy1, Pascal Gula2,
Jean Charles Fabre3, Gérard Le Lann4, Eric Bornschlegl5

1 EADS Astrium SAS, 31 avenue des Cosmonautes, 31402 Toulouse Cedex 4, France
{Christophe.Honvault, Marc.LeRoy}@astrium.eads.net

2 AXLOG Ingéniérie, 19-21 rue du 8 mai 1945, 94110 Arcueil, France,
3 LAAS-CNRS, 7, avenue du Colonel Roche, 31077 Toulouse, France
4 INRIA, Domaine de Voluceau - B.P. 105, 78153 Le Chesnay, France

5 ESA/ESTEC, Keplerlaan 1 - P.O Box 299, 2200 AG Noordwijk, The Netherlands

Abstract. The A3M project aimed to define basic building blocks of a middle-
ware meeting both dependability and real-time requirements for a wide range of
space systems and applications. The developed middleware includes Uniform
Consensus (UCS) and Uniform Coordination (UCN) protocols and two services
implemented to solve two recurring problems of space applications: “distrib-
uted consistent processing under active redundancy” and “distributed replicated
data consistency, program serialization and program atomicity”. The protocols
have been verified through extensive and accurate testing under the Real Time
OS simulator RTSim supporting fault injections. The performances measured
on a representative platform based on three LEON SPARC microprocessors in-
terconnected with point-to-point SpaceWire links show that A3M solution may
be applied to very different fields, from high performance distributed comput-
ing to satellite formation flying coordination.

1 Introduction and motivations

The complexity of the satellite and launcher on-board data management systems tends
to increase rapidly, as well as the strictness of their performance requirements. The
efficiency of their development depends on the availability and integration of standard
software products (e.g. COTS) solving recurrent problems in space vehicle avionics
systems. To address these problems, our objective in this project was to define a basic
middleware support for a wide range of space systems and applications. Indeed, the
evolution of space platforms is nowadays faced with the inherent distribution of re-
sources and must meet strong real-time and dependability requirements. The handling
of combined real-time constraints and fault tolerance strategies raises new problems
and calls for new approaches. The A3M (Advanced Avionics Architecture and Mod-
ules) project was launched to address these issues. The objective was to develop a
new generation of space platforms for a wide range of infrastructures, providing ge-
neric components as basic building blocks for the development of ad hoc middleware
targeting various on-board space applications. The core components of this middle-
ware enable real-time fault tolerant applications to be developed and reused without
experiencing the traditional limitations of existing approaches.

The major components of the architecture rely on distributed fault-tolerant consensus
and coordination protocols developed at INRIA [1]. These are based on an asynchro-
nous computational model, thus making no assumption about underlying timing prop-
erties at design time. Therefore, the logical safety and liveness properties always hold
without assuming the availability of a global time in the system. The interest of asyn-
chronous solutions for safety-critical systems – choice made by ESA/ESTEC and
EADS Astrium – is examined in [2] and explored in details in [3].

These facilities are key features from a dependability viewpoint, as most distributed
fault tolerance strategies rely, in one way or another, on this kind of protocols. Their
role is essential as far as replicated processing is concerned. For instance, they ensure
that all replicas of a given software task receive the same inputs in the same order.
Assuming that replicas are deterministic, the processing of the same inputs leads to
the same results in the absence of faults. In addition, they are used to ensure that dis-
tributed scheduling decisions are consistent in a distributed system as a whole. For
instance, in systems where tasks cannot be rolled back (our case), tasks must be
granted access to shared persistent resources (updating data in particular) in some
total ordering that must be unique system-wide.

In other words, concurrent accesses to shared resources can be serialized by relying
on scheduling algorithms based on these protocols. This is a significant benefit, since
avoiding uncontrolled conflicts enables real-time deadlines to be met despite failures.
One essential assumption regarding failure modes is that nodes in the system fail by
crashing, this being a conventional assumption in distributed dependable systems.
Note however that the proposed solution may tackle more severe failure modes. Con-
sequently, we assumed a very high coverage of this assumption [4], the means to
achieve this being out of the scope of this paper (e.g. evaluation of failure modes as in
[5,6]). As usual, it was assumed that no more than f crash failures could be experi-
enced during the execution of a service – middleware-level service in our case.

Application problems are most conveniently tackled at the middleware layer. Such a
layer provides appropriate generic services for the development of fault tolerant ap-
plications, independently from the underlying runtime support, namely COTS operat-
ing system kernel. The core components mentioned earlier constitute the basic layer
of this middleware architecture, on top of which standard personalities (e.g. CORBA
or better a microCORBA, Java) could be developed. The focus in A3M Phase 2 was
the development and the validation (incl. real time characterisation) of this basic
layer. The development standard personalities such as CORBA or POSIX are long
term objectives not covered by the work reported here.

The paper is organized as follows. Section 2 sketches the A3M architectural frame-
work. In Section 3, we describe the basic principles of the core components, namely
UCS and UCN protocols and their variants developed in the project. In Section 4 we
describe two key problems in space applications and their corresponding solutions
based on these protocols. Section 5 focuses on the development strategy and justifies
its interest from a validation viewpoint. Section 6 addresses the final platform used
for the implementation and gives an overview of the A3M results in term of perform-
ance. Section 7 draws conclusions of this work.

2 Architectural framework

The architectural framework of the middleware comprises a basic layer implementing
core components for the development of fault tolerant and real-time applications. This
basic layer was designed and developed in A3M phase 2 on top of an off-the-shelf
Real-Time Operating System kernel (RTOS), namely VxWorks [7], and a protocol
stack specific to space platforms (COM). The design was such that no particular as-
sumption was made regarding the selected candidates for RTOS or COM. The mid-
dleware itself has two facets. On top of the basic layer (facet 1) providing key algo-
rithms, some additional services and personalities can be developed (facet 2) for tar-
geting new problems and new application contexts. The work done until now was to
develop the basic layer, i.e. the first facet of the A3M middleware. The overall archi-
tecture of the middleware is depicted in Fig. 1.

(COTS) RTOS COM

FDM
UCS UCN

Additional services and personalities

Basic layer
(core components)

A3M
middleware

Fig. 1. Architectural framework

The basic A3M middleware layer comprises two major algorithms [1], Uniform Con-
sensus (UCS) and Uniform Coordination (UCN), both relying on a Failure Detection
Module (FDM). The A3M middleware layer is also populated with some specific
services to tackle problems specific to space applications (see Sect. 4).

3 Basic components and protocols

3.1 Uniform ConsensuS (UCS): basic principles

UCS is the name of the protocol that solves the Uniform Consensus problem, in the
presence of processor crashes and arbitrarily variable delays. UCS comprises two
algorithms, one which consists of a single round of message broadcasting, accessible
to application programs via a UCS primitive, another called MiniSeq, that runs at a
low level (above the physical link protocol level). Both algorithms run in parallel.

UCS works as follows. Upon the occurrence of some event, every processor runs
UCS by (1) invoking a best effort broadcasting (BEB) algorithm, which broadcasts a
message containing its Proposal to every other processor, (2) invoking MiniSeq. A
Proposal may be anything (the name of a processor to be shut down, a list of pending
requests to be scheduled system-wide, the name of a processor chosen as the “leader”,
etc.). Upon termination, UCS delivers a Decision. A Decision must be (1) unique and
(2) one of the initial Proposals. Uniformity requires that even those processors that are
about to crash cannot Decide differently (than correct processors) before crashing.
Note that, in practice, Consensus without the Uniformity property is useless.

The MiniSeq election algorithm, which is sequential, is run by processors according
to their relative orderings (based upon their names, from 1 to n, every processor hav-

ing known predecessors and known successors in set [1, n]). It is via MiniSeq that the
Decision is made. MiniSeq uses a Failure Detector, denoted FD. Every processor is
equipped with a Strong FD [10]. An FD periodically (every τ) broadcasts FD-
messages meaning “I am alive”. When processor p has not been heard by processor q
“in due time”, q puts p on its local list of “suspects”. Analytical formulae (see [1])
which express an upper bound (denoted Γ) on FD-message delays are used for setting
timers. An interesting feature (F) of Strong FDs is that it suffices to have just one
correct processor never suspected by any other processor for solving the Uniform
Consensus problem (even though lists of suspects are inconsistent).

Sequentially, every processor waits until some condition fires (namely, its Proposal
has been sent out), and then, it broadcasts a Failure Manager message (FM-message),
which is an FD-message that contains the name of the processor proposed as the
“winner”. This name is the name received from the nearest predecessor or its own
name if all predecessors are “suspected”. The winning value is the value heard last in
set [1, n]. The condition for running MiniSeq locally is that every predecessor has
been heard of (or is suspected). Thanks to (F), the “winner” is unique system-wide.
The Proposal sent by the “winner” is the Decision. Note that we do not assume that
broadcasts are reliable (a processor may crash while broadcasting).

The rationale for decoupling BEB and MiniSeq (parallel algorithms) simply is to
minimize the execution time of UCS. Indeed, the upper bound B on middleware-level
messages that carry Proposals (BEB) is very often much larger than bound Γ on FD-
message delays. The execution time of MiniSeq is “masked” by the execution time of
BEB whenever some analytical condition is met (see [1]). A simplified condition is as
follows: B > (f+1) d, d given in Sect. 4. There is no a priori ordering of invocations of
the UCS primitive (they may be truly concurrent). This above is referred to as the
regular UCS invocation mode.

Another invocation mode of UCS, called the Rooted UCS invocation mode is avail-
able. R-UCS serves to make a particular kind of unique Decision, namely whether to
abort or to commit a set of updates computed for data variables that may be distrib-
uted and/or replicated across a number of processors. R-UCS implements Atomic
Commit. The major difference with the regular mode is that instead of having proces-
sor number 1 in charge of starting MiniSeq, it is the processor that actually runs the
updating task – called the root processor – that is in charge of starting MiniSeq.

3.2 Uniform CoordinatioN (UCN): basic principles

The objective UCN is to reach distributed agreement on a collection of data items,
each item (a Proposal) being sent by some or all processors. UCN makes use of UCS,
starting with a round where every processor broadcasts a message containing a Con-
tribution (to some calculus). At the end of that round, having collected all Contribu-
tions sent (up to f Contributions may be missing), every processor runs some compu-
tation (called “filters” – see below). The result of that computation is a Proposal. UCS
is then run to select one unique result that becomes the Decision.

UCN may serve many purposes and can be customized on a case-by-case basis. The
algorithm used to establish the final result is called a filter. Such filter determines the

final result from a collection of input values, namely the proposals. Examples of typi-
cal filtering algorithms are: majority voting on input values, aggregation of input
values, logical and/or arithmetic expressions on input values, etc. This has many mer-
its since it enables solving several problems such as distributed scheduling.

3.3 Real-time and asynchrony

Another innovative feature of the work presented is the use of algorithms designed in
the pure asynchronous model of computation augmented with Strong (or Perfect) FDs
[10] aimed at “hard” real-time systems. The apparent contradiction between asyn-
chrony and timeliness is in fact unreal, and can be easily circumvented by resorting to
the “design immersion” principle (see [2] for a detailed exposition). Very briefly, let
us explain the general ideas. With “hard” real-time systems, worst-case schedulability
analyses should be conducted. It is customary to do this considering algorithms de-
signed in some synchronous model, running in a system S conformant to some syn-
chronous model of computation (S-Mod). It is less customary to do this considering
algorithms designed in some asynchronous model, running in S, i.e. “immersed” in S-
Mod. Within S-Mod, every computation/communication step “inherits” some delay
bound proper to S-Mod, this holding true for any kind of algorithm. Hence, the fact
that asynchronous algorithms are timer-free does not make worst-case schedulability
analyses more complex. One lesson learned has been that the analytical formu-
lae/predictions regarding bounded response times for UCS and UCN were matched
with the measurements performed on the A3M platform.

4 Case studies

A major objective of the A3M study was to assess the interest of UCS/UCN algo-
rithms for space applications. For this purpose, the following two generic and recur-
rent problems have been selected:

- Problem 1: distributed consistent processing under active redundancy,

- Problem 2: distributed replicated data consistency, program serialization and
program atomicity.

This section describes each problem and its solution based on the UCS and UCN
algorithms.

Table 1. Hypothesis common to both problems

(F1) Application level programs are denoted Pk. An instance of every such program is mapped
and run, fully, on exactly 1 processor. Programs are assumed to be deterministic.

(F2) Application level programs, or instances of such programs, can be invoked, activated and
run at any time. This means that triggering events can be aperiodic, sporadic or periodic,
that programs can be suspended and resumed later, and speed of execution of a program
need not be know in advance (asynchronous computational model)

(F3) There should be no restriction regarding the programming models. In other words, there
is no restriction regarding which variable can be accessed by any given program, nor is
there any restriction regarding which variables happen to be shared by which program,

(F4) Neither application level programs nor the system’s environment can tolerate the rolling
back of a program execution. When a program has begun its execution, it should termi-
nate – in the absence of failure – without replaying some portions of its code.

(F5) A processor is unambiguously identified by a unique name; names are positive integers;
the total ordering of integers induces a total ordering on the set of processors,

(F6) The system includes n processors. Up to f processors can fail by stopping (crash, no side-
effect) while executing some A3M middleware algorithm (UCS, UCN). This number
obeys the following condition: 0<f<n.

Every processor is equipped with a Failure Detection & Management (FDM) module,
which consists of an FD module – which broadcasts FD-messages periodically, every
τ – and a failure manager (FM), which runs MiniSeq. Locally, at every processor, an
FDM module maintains a list of suspected/crashed processors.

“Good” clocks are such that their relative drift is null – or infinitesimal – over “short”
time interval, equal to d, the worst-case latency for detecting the occurrence of a
processor failure. We have d = τ + 2Γ − γ, where Γ is a (tight) upper bound on FD-
messages transit delays and γ a lower bound on such delays. It is important to note
that the processors do not share a common clock (i.e. a common absolute time scale).

In addition, the following assumptions are made about the failures:

- Failures at software level: the software (application software and middleware) is
supposed to be “perfect”, or monitored by application level failure detectors that
halt the processor in case of unrecoverable software error. The middleware is not
in charge of application software internal failures detection and recovery. Never-
theless, in the particular case of problem 1, the proposed solution is able to mask
a software failure that generates an incorrect result, provided that a majority of
processors compute the correct result. Other software failures are not tolerated by
the middleware (e.g. common mode failures and Byzantine failures).

- Failures at processor hardware level: the hardware is supposed to have only one
failure mode, “crash” having the same effect as a processor halt. Like a halted
processor, a crashed processor is no longer able to send any message to the other
processors. This implies that the processors have built-in failure detection mecha-
nisms, which is generally the case with space computers.

Failures at communication link or network level: the communication network is sup-
posed to be reliable. This assumption can be “enforced” via classic retransmission-
based protocols. For any message the maximum number of retransmissions (denoted
R) needed for delivery is finite and bounded. A message can be lost (and recovered),
but not corrupted. With the SpaceWire protocol, this assumption is valid concerning
the demonstration platform. If the reliability of the SpaceWire error detection mecha-
nism is not considered as acceptable for a real application, some higher level protocol
can be added. If a processor halts or crashes during the transmission of a message, the
receiver ignores the partially received message. If the error is only transient, the sub-
sequent messages are transmitted correctly. Of course, analytical formulae for delay
bounds such as B or Γ are established taking into account variable R (conventional
worst-case schedulability analysis). Recall that we do not assume a reliable broadcast
service for neither the BEB nor the MiniSeq algorithms.

4.1 Problem 1: Replicated processing

The computer system is made of n identical computers linked by a network or point-
to-point links. The application software can be described as sets of programs, with
causal dependencies, i.e. the output of programs are the input of other programs (i.e. a
“chain” of application programs – see Fig. 2). External data acquisition comes first in
the chain. Two cases are possible for implementing data acquisition (in both cases, the
commands are sent by only one processor): only one processor performs the data
acquisition or each processor performs the data acquisition in parallel with the others,
via its own data acquisition interface.

P0 P1 P2
Node 1Acquisition

manager
Command
manager

P0 P1 P2
Node 2Acquisition

manager
Command
manager

P0 P1 P2
Node 3Acquisition

manager
Command
manager

ag
re

em
en

t

ag
re

em
en

t

ag
re

em
en

t

ag
re

em
en

t

Fig. 2. Replicated processing framework

The same set of programs run in parallel on each computer, exactly in the same way:
the output result of each program instance must be validated with respect to those
produced by the other replicas, before delivering them as inputs to the next programs
in the chain. The middleware allows each Pi replica to make an agreement on input or
outputs values by calling dedicated functions. For example, in the case depicted in
Fig. 2, P0 calls a function to validate the data produced by the acquisition manager.
The measurement may be identical or different on the three processors, but in any
case, all the P0 replicas will use as inputs exactly the same values.
The same mechanism is activated after execution of P0, in order to ensure that all the
P1 replicas will run with the same inputs, and so on … The use of this agreement
service is not limited to a single sequential chain of applications. For example, if P0
and P0’ are running “in parallel” replicated on each processor, both can use the agree-
ment service without having to be synchronized.
UCN with a “max filter” solves problem 1. This filter performs a majority selection
on contributions. If no majority can be decided, the result is any of the contributions.
Application-level programmers can insert calls for agreement in their code wherever
this seems appropriate. The consistency of these calls within application programs
must be verified beforehand during the development process of the software.

4.2 Problem 2: Distributed access to shared objects

The second problem consists in replacing the existing “Data-Pool” mechanism used in
the current Astrium mono-processor software by an equivalent compatible with the
distribution of the processes on several processors – see Fig. 3.
The existing Data-Pool is a collection of data issued from software applications
(“software data”) or from equipments connected to avionics buses like MIL1553B
(“hardware acquisitions”). In addition to inter process communication, the data pool is
used by the periodic housekeeping data reporting applications, by the spy application,

and by the monitoring library. Its main purpose is to provide to data consumers con-
sistent data generated from various producers at various frequencies. Concurrent
processes running on different processors perform update operations in a pool of data
items, called variables. These variables are shared by all processes and replicated for
availability reasons. The objective here is to solve the mutual exclusion problem by
means of consistent distributed scheduling among competing processes.

P2 Node 1
P1

P3 Node 2
P4

P5

P6 Node 3
P7

D
is

tr
ib

ut
ed

«
da

ta
-p

oo
l»

Fig. 3. Distributed access to shared objects

The application tasks use middleware services to ensure the consistency of operations
performed on data pool variables sets. The programming model selected for these
services is based on the notion of “critical section”. The critical section of an applica-
tion shall be considered as atomic by all the other applications with respect to the
data-pool contents. There is no limitation on the number of read and write accesses
performed on data-pool variables in a single critical section. Obviously, the duration
of the critical sections should be kept as small as possible, in order to avoid a signifi-
cant degradation of the overall system performance.
In order to reach this objective, we have introduced two additional services:
− The monitoring service receives from local and remote applications the requests

for operations to the distributed data-pool. Using the UCN with a “total ordering
filter”, it ensures the system-wide serialization of the conflicting operations on
shared variables.

− The guardian service executes the write operation on the replicated data pool, en-
suring that any operation is executed on all the copies or on none of the copies.
This property is ensured by a variant of UCS, called R-UCS, ensuring atomic pro-
gram termination (Atomic Commit).

Processor 1

Begin

Application process Monitoring process

UCN2

End R-UCS

Guardian process

A, B

Read

Read/
Write

Processor 2
Monitoring process

UCN2

R-UCS

Guardian process

A, B

WriteRead(*)

Processor 3
Monitoring process

UCN2

R-UCS

Guardian process

A, B

WriteRead(*)

Data-pool replicas (one on each processor)

the value will be
used in case of
processor 1 failure
during R-UCS.

(*)

Fig. 4. Process entering a critical section

Fig. 4 illustrates the mechanism in the simple case where only one process wants to
enter into a critical section. This process sends a request to the monitoring process
that performs an UCN call to agree on which process must run first. Obviously, in this
simple case, the requesting process wins, as there are no other competing processes.
More generally, thanks to UCN, concurrent requests to enter a critical section are
sorted out in the same order on all processors, i.e. all requesting processes will be

triggered by the monitoring process in the same order on every processor. The first in
the list (according to any urgency criteria) is elected as the next process to be run.

It is worth noting however that, as processes are not replicated here (problem 2), only
one processor P will host the active application process, say p. When the elected
process p terminates its critical section on processor P, it signals the guardian process,
which then calls R-UCS to perform a consistent update of the replicated copies of
shared variables in the data-pool. However, as process p was running on processor P
only, R-UCS must also be triggered on other processors different from P (those not
running a copy of process p). This is done via the monitoring process, which directly
signals the guardian process, which in turn activates a R-UCS call.

5 Development and validation

The main originality of the development was to fully develop (in C) the building
blocks (BBs) and validate their behavior by simulation, including in the presence of
faults. This approach was possible thanks to RTSim, a real-time executive simulator
[8]. A distributed framework enabled us to execute complex scenarios, including the
creation of an architecture, the setting of a network model, various ways of algorithms
stimulation, and temporal and logic fault injection mechanism [9].

5.1 RTSim Overview

RTSim is a product developed by AXLOG. It aims at the development, in host-based
environment, of real-time software based on various real-time executives of the mar-
ket (pSOS+m, VXWORKS, Chorus, ARINC653, etc.), and their running under simu-
lation without any target hardware. By creating nodes, which are the representation of
a hardware module running a real-time executive, RTSim could manage simulated
architecture from a tiny application running on a single-target system to complex
multi-node architecture running a complex distributed application.
One of the main interests of this tool is that it is the real (final) code which is used in
the simulation runs, which avoids the problem of abstraction mapping. Moreover, this
tool offers advanced debugging, monitoring, controlling and instrumentation facilities
over the application. In addition, RTSim has its own internal simulation clock, which
enables us to replay a given simulation indefinitely with the same behavior, permit-
ting a fast and reliable way to track defects.

5.2 Development and simulation environment

The first phase – the development of the BBs – followed a test-driven development
approach (TDD), where each function described by the application programming
interface (API) is unitary tested. The main advantages of this approach are:
− a use of the API in tests as in the future user code, giving possible refactoring en-

hancements before effective coding;
− a test database provides indicators on the current development velocity;
− non-regression tests could be passed easily in case of future implementation.

The second phase was the integrated testing of the BBs (to pass functional validation).

The architecture of the distributed simulation framework used for that purpose, shown
in Fig. 5, consists of a multi-node architecture composed of a set of Processor under
Test (PuT) representing the target hosting the module to be validated and a special
node, the Processor of Test (PoT), responsible for the network simulation, scenarios
execution and reporting. All these nodes are connected to a perfect link.

The PoT is in charge of stimulating and controlling the distributed applications, simu-
lating the network, and archiving all actions taken by the system. The PuT hosts the
algorithm module, a synthetic applicative workload, and a network service.

Control
Application

UCS/UCN

Network
Service

Pu
T

1

Ideal bus for node
communication

Control
Application

UCS/UCN

Network
Service

Pu
T

2 Control
Application

UCS/UCN

Network
Service

Pu
T

3
Archiver

Simulator

Network
Simulation

Po
T

Fig. 5. Simulation framework

5.3 Test scenarios

After integration of the building blocks in the distributed simulation framework, test
scenarios must be identified to cover the entire range of the application use and failure
modes. Since UCS and UCN are asynchronous algorithms, time has no effect on their
safety and liveliness properties, thus failure occurrence is the only parameter we have
to handle (which reduces the complexity of integrated testing very significantly). The
algorithms being described by state-machine diagrams, the only concern was to place
the failure occurrences in these state diagrams, to derive the scenarios. An analysis of
the state diagrams and the effects of a failure have led to simplifying the state dia-
grams, since the effect of a failure on some contiguous states was unique. The number
of test scenarios is a solution to a combinatorial problem, i.e. the assignment of a
number of failures varying from 0 to k (k = 2 in our case).
Crash faults have been injected according to this abstract behavioral model, in such a
way that all possible states of the protocol are covered. The experiments showed that
the implementation was correct according to the considered failure model.

6 Demonstration and evaluation

The demonstration and evaluation of the middleware has been performed on a plat-
form representative of the next generation of on-board computer platform.

BLADE cPCI

FPGA

SRAM

SpW SpW

LEON

SpaceWire links

BLADE cPCI

FPGA

SRAM

SpW SpW

LEON

BLADE cPCI

FPGA

SRAM

SpW SpW

LEON

Fig. 6. The A3M Platform

This platform (fully operational at ESA/ESTEC) mainly consists in three double
Europe Blade boards plugged in a CompactPCI cabinet. Each Blade board includes a
FPGA programmed with a LEON processor and is connected to the two others by a
SpaceWire link, and its two serial ports are connected to a RS232/Ethernet adapter.
The SpaceWire communication software has been tested, and its performance meas-
ured. The raw performance of the hardware is pretty good (30 Mbits/s from memory
to memory with a bit rate equal to 40 Mbit/s, which correspond to 99.5% of practical
data rate), but the software mechanisms required at communication level by the mid-
dleware algorithms decrease the data transfer rate.
The test software consists in several tasks that can run either fully replicated on, or
distributed across, the three processors. The objectives of the tests were to perform
accurate performance measurements and check the behavior of the system in nominal
conditions and in the presence of failures. To match these objectives, the duration of
the different services of the middleware and operating system was measured with a
great precision, i.e. less than 4µs. Computation errors and failures could be generated
at predefined times.
To obtain a trustworthy characterization of the middleware, the tests have been exe-
cuted on different platform configurations, with diverse parameters for FD algorithms
(τ, γ and Γ) to be representative of existing spaceborne networks and with different
size of exchanged data. The analysis of the measurements also had to take into ac-
count the resolution of the operating system timer, which has an negative impact on
the worst-case latency for detecting the occurrence of a processor failure. These pa-
rameters are summarized in Table 1.

Table 2. Test configuration parameters (time expressed in milliseconds and size in bytes)

Test parameters Set 1 Set 2 Set 3 Set 4
Processor number 1 to 3
Variable size 40 272
Variable set size (2 variables) 80 544
Maximum number of tasks 16
τ (FD messages period) 1000 100 50 1000
γ (min. transmission time of the FD message): 100 0 0 100
Γ (max. transmission time of the FD message) 1000 18 18 1000
ε (operating system timer resolution) 17

The measures performed during the tests are compared with the theoretical maximum
delay d for the detection of a failure on a processor given by the formula:

d = τ + 2.Γ − γ + 2.ε . (1)

Test of service 1: distributed consistent processing under active redundancy.
This service is supported by a single function belonging to the middleware API, “int
dp1_check(dp_varset_id varset_id)”. Several processes running on the processors call
the service to make a consensus on a set of values to use at the next step of a compu-
tation. The duration of the computation may vary from a processor to another to simu-
late a diversified programming.

Table 2. Measures performed during test executions of service 1

At failure
Best Worst Worst

3 1 7.5 14.5 1300
2 1 5.5 7.8 1200
1 1 0.5 0.6 N/A
3 2 8 12 222
2 2 5.9 6.8 528
1 2 1.4 1.5 N/A
3 2 8 10 -
3 3 7.6 12.8 82.5
2 3 5.7 9.2 92.5
3 4 11 16 -

Service duration (ms)
Without failure

Nb of
Proc.

Param.
set

The results of the tests show the
correct behaviour and performances
of the middleware that are in accor-
dance with the underlying theory.
The WCET for the failure detection
delay is never reached and errors are
corrected without overhead. More-
over, the size of the exchanged data
is not the main factor of service
duration. By exchanging nearly
700% more data, the service dura-
tion only increases by 35%.

Test of service 2: distributed replicated data consistency. This service is supported
by a couple of functions belonging to the middleware API, “int dp2_begin(dp_task_id
task_id, dp_varset_id varset_id)” and “int dp2_end(dp_task_id task_id)” respectively
used to enter and leave a critical section associated to a set of variables. Several proc-
esses running on the processors call the service to access shared variables. The dura-
tion of the reservation may vary. The next table shows some of the measures per-
formed during test executions.

Table 3. Measures performed during test executions of service 2

At failure
Best Worst Worst

begin 10,5 12 1805
end 6 7,2 1929

begin 10,5 11 130,5
end 6,2 10 240

begin 9,5 10,5 1921
end 5,8 6,8 1628

begin 9,25 11,1 786,5
end 6,3 7,5 404

begin 9,5 11,5 93
end 6,3 7,6 59,8

begin 10,6 11,8 786,5
end 7,6 10 404

3 4

2 2

3 3

3 2

2 1

Without failure

3 1

Nb of
Proc.

Param.
Set

Operation
Service duration (ms)

In all the tests, the service fulfils
its specifications. The data con-
sistency is ensured on all proces-
sors and the priority for accessing
them is respected. The WCET for
the failure detection delay is
never reached. As for service 1,
the duration of the procedures is
weakly tight to the size of the
exchanged variables.

In additional tests, not presented here, the two middleware services have run concur-
rently and the results obtained were totally consistent.

7 Conclusion and perspectives

The aim of the A3M project is to investigate and develop a new generation middle-
ware for space applications. The distributed nature of the space platforms, the real-
time requirements of the on-board applications together with stringent dependability
constraints call for novel architectural frameworks and core services. The full picture
also includes development processes and tools at various stages of the design and the

implementation of a system. As far as real-time constraints are concerned, a detailed
specification of the application organization, the shared resources (variables, critical
sections, etc.) and their timing behavior must be built first. Then, a detailed analysis
aimed at establishing timeliness properties must be conducted a priori. This entails
analyzing middleware-level algorithms, such as schedulers, and how they cope with
concurrency, failures and timing constraints.
The work carried out in A3M Phase 2 led to the development of the basic sub-layer of
the middleware. The core components rely on UCS and UCN-based modules devoted
to solving conventional problems in space applications, ensuring fault-tolerance and
real-time behavior in a distributed environment.
This work is the starting point for the development of middleware-based platforms for
space applications. It demonstrates the benefits of advanced research results in this
context and calls for further development of middleware-based systems for depend-
able modular avionics systems. It also shows the significant interest of simulation-
based approaches for the development of basic middleware services and their valida-
tion, including in the presence of faults using fault injection techniques. This work
should be continued, possibly with other industrial partners and targeting different
application contexts. The results obtained are very promising and the development of
additional middleware capabilities should be very attractive for the space industry at
large.

References

1. J.-F. Hermant, G. Le Lann, Fast Asynchronous Uniform Consensus in Real-Time Distributed
Systems », IEEE Transactions on Computers, vol. 51(8), August 2002, pp. 931-944

2. G. Le Lann, Asynchrony and Real-Time Dependable Computing, Proceedings of the 8th
IEEE Intl. Workshop on Object-Oriented Real-Time Dependable Systems (WORDS), Janu-
ary 2003, Guadalajara, Mexico

3. G. Le Lann, U. Schmid, How to Maximize Computing Systems Coverage, Technical Report
183/1-128, Department of Automation, Technical University, Vienna (Austria), April 2003

4. D. Powell, Failure mode assumptions and assumption coverage, 22nd IEEE Annual Interna-
tional Symposium on Fault-Tolerant Computing (FTCS-22), Boston (USA), 8-10 Juillet
1992, pp.386-395. [Revised version in Predictably Dependable Computing Systems,
Springer, ISBN 3-540-59334-9, 1995, pp.123-140]

5. J.-C. Fabre, F. Salles, M. Rodríguez Moreno and J. Arlat, Assessment of COTS Micro-
kernels by Fault Injection, in Proc. 7th IFIP Conf. on Dependable Computing for Critical
Applications (DCCA-7), San Jose, January 1999, pp. 25-44 .

6. J. Arlat, J.C.Fabre, M. Rodriguez, F. Salles: Dependability of COTS Microkernel-based
Systems, IEEE Transactions on Computers, Special Issue on Embedded Fault Tolerant Sys-
tems, Feb. 2002, pp.138-163.

7. VxWorks Realtime Kernel, WindRiver Systems, 1998.
(see http://www.windriver.com/products/platforms/general_purpose/)

8. RTSIM real-time executives simulator, AxLog. (see http://www.axlog.fr/prod/rtsim.html)
9. M.-C. Hsueh, T. K. Tsai and R. K. Iyer: Fault Injection Techniques and Tools, Computer,

vol. 30, no. 4, pp. 75-82, April 1997.
10. T. Chandra, S. Toueg, “ Unreliable Failure Detectors for Reliable Distributed Systems”,

Journal of the Association for Computing Machinery, Vol. 43, N. 2, Mar. 1996, pp 225-267.

