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Abstract. Constraint programming provides a declarative approach to solving 
combinatorial (optimization) problems. The user just states the problem as a 
constraint satisfaction problem (CSP) and a generic solver finds a solution 
without additional programming. However, in practice, the situation is more 
complicated because there usually exist several ways how to model the problem 
as a CSP, that is using variables, their domains, and constraints. In fact, 
different constraint models may lead to significantly different running times of 
the solver so constraint modeling is a crucial part of problem solving. This 
paper describes some known approaches to efficient modeling with constraints 
in a tutorial-like form. The primary audience is practitioners, especially in logic 
programming, that would like to use constraints in their projects but do not have 
yet deep knowledge of constraint satisfaction techniques. 

1   Introduction 

“Constraint programming (CP) represents one of the closest approaches computer 
science has yet made to the Holy Grail of programming: the user states the problem, 
the computer solves it.” [4] This nice quotation might convince a reader that 
designing a constraint model for a particular combinatorial problem is an easy and 
straightforward task and that everything stated as a constraint satisfaction problem can 
be solved efficiently by the underlying constraint solver. This holds for simple or 
small problems but as soon as the problems are more complex, the role of constraint 
modeling is becoming more and more important. The reason is that different 
constraint models of the same problem may lead to very different solving times. 
Unfortunately, there does not exist (yet) any guide that can steer the user how to 
design an efficiently solvable model. This “feature” of constraint technology might be 
a bit depressing for novices. Nevertheless, there are many rules of thumb about 
designing efficient constraint models. We also believe that it is important to be aware 
of the insides of constraint satisfaction to understand better the behavior of the solvers 
and, as a consequence, to design models that exploit the power of the solvers. 

The goal of this paper is to introduce the basic terminology useful for reading 
further CP texts and to give an overview of modeling techniques used to state 
problems as constraint satisfaction problems. The emphasis is put to novice users of 
the constraint technology, in particular to the current users of logic programming 



technology that can be naturally extended by constraints. Respecting what has been 
said above we will first survey the mainstream constraint satisfaction technology. In 
the main part of the paper we will demonstrate some modeling techniques namely 
symmetry breaking, dual models, and redundant constraints, using practical examples. 

2   Constraint Satisfaction at Glance 

Constraint programming is a framework for solving combinatorial (optimization) 
problems. The basic idea is to model the problem as a set of variables with domains 
(the values for the variables) and a set of constraints restricting the possible 
combinations of variables’ values (Figure 1). Usually, the domains are finite and we 
are speaking about constraint satisfaction problems (CSP)1. The task is to find an 
assignment of all the variables satisfying all the constraints – a so called complete 
feasible assignment. Sometimes, there is also an objective function defined over the 
problem variables. Then the task is to find a complete feasible assignment minimizing 
or maximizing the objective function – an optimal assignment. Such problems are 
called constraint optimization problems (COP). 

Note that modeling problems as a CSP or a COP is natural because constraints can 
describe arbitrary relations and various constraints can be easily combined within a 
single system. Opposite to frameworks like linear and integer programming, 
constraints in a CSP/COP are not restricted to linear equalities and inequalities. The 
constraint can express arbitrary mathematical or logical formula, like (x2<y ∨ x=y). 
The constraint could even be an arbitrary relation that can be hardly expressed in an 
intentional form, for example restricted resource state transitions in scheduling 
applications. Then, a table is used to describe tuples satisfying the constraint. 

 
 
 
 
 
 

Fig. 1. A CSP consists of variables (X,Y,Z), their domains (in this case identical [1,2,3,4,5]), 
and constraints (X<Y, Y<X-2). It can be represented as a constraint (hyper) graph 

Solving problems using constraints typically involves three steps. First, the problem is 
expressed in terms of variables, their domains, and constraints – this is called 
constraint modeling. Second, the constraint model is passed to a generic constraint 
solver that, hopefully, finds a feasible (or optimal) assignment – constraint 
satisfaction. Finally, this assignment is interpreted as a solution of the original 
problem. To understand better the important role of constraint modeling let us first 
look inside the mainstream technique of constraint satisfaction that is a combination 
of depth-first search (enumeration) with constraint propagation. Despite the fact that 

                                                           
1 There also exist constraint problems over infinite domains, for example over real numbers, 

but constraint solving over infinite domains is not covered by this paper. 

X in [1,2,3,4,5] 

X<Y 

Y in [1,2,3,4,5] 
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many researchers outside CP put equality between constraint satisfaction and simple 
enumeration, the reality is that the real power of CP is hidden in constraint 
propagation. Note however, that some other techniques, for example local search, can 
also be applied to solve the problems with constraints. 

Constraint propagation is based on the idea of using constraints actively to reduce 
domains of the variables by removing the values that do not satisfy the constraint. 
Assume that variables X and Y have an identical domain {1,2,3,4,5} and there is a 
constraint X<Y between the variables. Visibly, the value 1 can be removed from the 
domain of Y because there is no value a in the domain X such that the pair (a,1) 
satisfies the constraint. Similarly, the value 5 can be removed from the domain of X. 
This domain filtering is realized by a so called filtering algorithm that is attached to 
each constraint. After applying the filtering algorithm, the constraint becomes (arc) 
consistent, that is for any value in the domain of a constrained variable there is a 
compatible value(s) in the domain of the other constrained variable(s) such that the 
pair (tuple) satisfies the constraint. The filtering algorithm is evoked every time a 
domain of some variable in the constraint is changed and this change is propagated to 
domains of the other variables in the constraint and so on (Figure 2). 

 
 

 
 
 

Fig. 2. Constraint propagation does domain reduction by repeated evoking of the filtering 
algorithms until a fix-point is reached 

Notice that a filtering algorithm for a particular constraint may be evoked several 
times in the propagation loop but because values can only be removed from domains, 
propagation must finish sometime either by reaching a fix point or by emptying some 
domain. This basic constraint propagation scheme is called (generalized) arc 
consistency (AC) and it ensures that after finishing the propagation loop each 
constraint is (arc) consistent. Note however, that arc consistency ensures local 
consistency only meaning that the values which cannot be part of the complete 
feasible assignment may still remain in the domains. There exist consistency 
techniques stronger than AC, like path consistency, but they are rarely used in 
practice. More frequently, filtering is being strengthened by encapsulating a subset of 
constraints into a so called global constraint. Note finally that the same problem can 
often be modeled using different sets of constraints leading to different domain 
pruning and hence the important role of constraint modeling. 

Global constraints. Due to its local character arc consistency cannot detect all global 
inconsistencies. Assume the constraint network on right. All 
binary constraints are consistent so arc consistency deduces no 
change of the domains. However, a more global view can 
discover that values 5 and 6 cannot be assigned to X3 because 
they both will be used for X1 and X2. If we see the set of 
primitive constraints as a single n-ary constraint – a global 
constraint – we can use a special filtering algorithm for this constraint that achieves 
stronger pruning of domains. Régin proposed an efficient filtering algorithm for such a 
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constraint called all-different based on finding a maximal matching in the bipartite graph 
with variables on one side and values on the other side [8]. 

There exist many other global constraints; some of them were designed for a particular 
problem area. For example, global constraints in scheduling are used to describe resources 
to which activities can be allocated. Assume a unary resource that can process only one 
activity at given time. If we model the position of activity in time using its start time S 
and processing time P then the main feature of the unary resource, namely that no two 
activities overlap in time, can be modeled using a set of disjunctions Si+Pi≤Sj ∨ Sj+Pj≤Si. 
Again, domain pruning via AC over such a set of disjunctive constraints is weak and 
stronger pruning can be achieved for example using a global constraint over all Si and Pi 
based on a technique called edge-finding [1]. 

As we mentioned above, arc consistency is a local consistency technique so some 
infeasible values may still sit in the domains of the variables and thus search (with 
backtracking) is necessary to find a complete feasible assignment of the variables. 
This stage is often called labeling because the variables are being labeled there – the 
values from respective domains are assigned to the variables. After each assignment, 
the value is propagated to other variables using the above described AC scheme – this 
is called maintaining arc consistency during search. If a failure is detected (any 
domain becomes empty during AC) then another value is tried and if no value 
remains in the domain then the algorithm backtracks to the last but one variable and 
so on. In general, the labeling procedure adds new constraints to the system to resolve 
the remaining disjunctions until domains of all the variables are singleton. For 
example, finding a value for the variable X with the domain {5,6,7} is equivalent to 
resolving the disjunction X=5 ∨ X=6 ∨ X=7 which is called enumeration (the 
constraint X=5 is added first, then X=6 is tried, and finally X=7). Resolving 
X=5 ∨ X≠5 is called a step labeling and resolving X≤6 ∨ X>6 is called bisection. By 
adding the above mentioned constraints, the constraint solver actually builds different 
constraint models in different branches of the search tree so in some sense choosing 
the right branching scheme is a part of constraint modeling. We will present later how 
different branching schemes influence efficiency of constraint satisfaction. 

Variable and value selection. The labeling procedure needs to be accompanied by 
heuristics for choosing the variable to be labeled and for selecting the value to be tried 
first (or, in general, for selecting the branch). If the variables are labeled in a fix ordered 
then we are speaking about the left-most variable selection. Frequently, fail-first variable 
selection is used where the variable with the smallest domain is labeled first (ties are 
broken randomly). Value selection heuristics are usually problem dependent, for example 
the smallest value for the time variables is tried first if we are minimizing the makespan 
(the end time of the latest activity) in scheduling problems. 

The standard constraint satisfaction technique looking for feasible assignments can be 
extended to find out an optimal assignment. Usually a technique of branch-and-bound 
is used there. First, some feasible assignment is found and then, a next assignment 
that is better than the previous assignment is looked for and so on. This could be 
realized by posting a new constraint restricting the value of the objective function by 
the value of the objective function for the so-far best assignment. This is repeated 
until no feasible assignment is found and then the last found feasible assignment is the 
optimal assignment. 

A deep and general view of constraint programming can be found in [2,6,7,11]. 



3   Modeling with Constraints 

In this section, we will present several example problems and their constraint models. 
We will use these problems to demonstrate typical constraint modeling techniques 
like global constraints, symmetry breaking, dual models, and redundant constraints. 
The main idea behind these techniques is to improve solving efficiency of the models. 
To allow immediate testing of the presented ideas, the constraint models are 
programmed using the clpfd library of SICStus Prolog [3,9]. 

3.1   A Seesaw Problem: Symmetry Breaking and Global Constraints 

Let us start our journey with a toy combinatorial problem of placing children to a 
seesaw [7]. Assume that Adam, Boris, and Cecil want to sit in a seesaw in such a way 
that the seesaw balances. There are five seats placed uniformly on both arms of the 
seesaw and one seat is placed in the middle (see Figure 3). Moreover, the boys want 
to have some space around them. In particular, they require that they are at least three 
seats apart. The weights of Adam, Boris, and Cecil are respectively 36, 32, and 16 kg. 
To solve the problem, we need to assign the seats to all children (or vice versa). 
Figure 3 shows one of the acceptable solutions to this problem. 

 
 
 

Fig. 3. A seesaw problem and one of its solutions 

To model the problem as a constraint satisfaction problem, one needs to decide about 
the variables, their domains, and the constraints. The natural model for the seesaw 
problem is using a variable for each boy describing his position on the seesaw: A for 
Adam, B for Boris, C for Cecil. If we choose carefully the domain for these variables, 
that is a position on the seesaw: -5,-4,…,+4,+5, then the constraint that the seesaw 
balances is simply that the moments of inertia sums to 0: 

36*A + 32*B + 16*C = 0. 

To restrict the minimal distances between the boys we can use a standard formula for 
computing the distances that is an absolute value of the difference of the positions. 
Thus we get the constraints: 

|A-B| > 2, |A-C| > 2, |B-C| > 2. 

Note that |A-B| > 2 is a compact representation of the disjunctive constraint (A-B > 2 
∨  B-A > 2) and that it also ensures that two boys are not sitting on the same seat. 

The above constraints describe completely the seesaw problem. To get the 
solution we need to post all these constraints and to do labeling that is a procedure 
deciding about the variables’ values via depth first search. Figure 4 shows a coding in 
SICStus Prolog. 



seesaw(Sol):- 
 Sol = [A,B,C], 
  
 domain([A,B,C],-5,5), 
 36*A+32*B+16*C #= 0, 
 abs(A-B) #> 2, 
 abs(A-C) #> 2, 
 abs(B-C) #> 2. 
  
 labeling([ff],Sol). % fail-first variable selection 

Fig. 4. A constraint model for the seesaw problem 

Notice that the constraint model for the seesaw problem is fully declarative. So far, 
we said no single word about how to solve the problem. We merely concentrate on 
describing the problem in terms of variables, domains, and constraints. The 
underlying constraint solver that encodes constraint propagation as well as the 
labeling procedure does the rest of the job. 

If we now run the program from Figure 4 we get six different solutions (Figure 5). 
 

?- seesaw(X). 
 
X = [-4,2,5] ? ; 
X = [-4,4,1] ? ; 
X = [-4,5,-1] ? ; 
X = [4,-5,1] ? ; 
X = [4,-4,-1] ? ; 
X = [4,-2,-5] ? ; 
no 

Fig. 5. All solutions of the seesaw problem 

An open-minded reader might notice that only three of the above solutions are really 
different while the remaining three solutions are merely their symmetrical copies. 
These symmetrical solutions can be removed from the search space by adding a so 
called symmetry breaking constraint. For example it could be a constraint restricting 
Adam to sit on the seats marked by the non-positive numbers: A≤0. 

Rule of thumb – symmetry breaking. Some solutions of the problem can be easily 
deduced from their symmetrical counterparts. These symmetrical solutions should be 
removed from the search space to decrease its size and thus to improve time efficiency of 
the search procedure. The easiest way how to realize it is via adding symmetry breaking 
constraints that avoid symmetrical solutions and reduce the search space. There exist 
other techniques of symmetry breaking, for details see [10]. For a more convincing 
example, how the symmetry breaking constraint improves efficiency of the constraint 
model, see the section on Golomb rulers. 

Let us now try to improve further the constraint model from Figure 4. Usually, the 
constraint model that propagates more is assumed to be better so our goal is to 
improve the initial domain pruning. Figure 6 shows the result of the initial domain 
pruning before the start of labeling (the symmetry breaking constraint is included). 

 



A in -4..0 
B in -1..5 
C in -5..5  

Fig. 6. Initial domain pruning for the seesaw problem (including symmetry breaking) 

As we already mentioned a typical way of improving domain pruning is using global 
constraints that encapsulate a set of primitive constraints. If we look at the constraint 
model for the seesaw problem (Figure 4), we can identify a set of similar constraints, 
namely the distance constraints, that is a good candidate to be encapsulated into a 
global constraint. Notice that these constraints express the same information as non-
overlapping constraints in scheduling. In fact, we can see each boy as a box of width 
three and if these boxes do not overlap then all boys are at least three seats apart 
(Figure 7). So the seesaw behaves like a unary resource in scheduling problems. 

 
 
 

Fig. 7. Allocating boys to seats is similar to scheduling activities to a unary resource 

Thus, we can see the seesaw problem via glasses of scheduling and we can use a 
global constraint modeling the unary resource to substitute the set of distance 
constraints. For example, the following constraint may by used in SICStus Prolog: 

serialized([A,B,C],[3,3,3],[ bounds_only(false)]) 

The first argument of the serialized constraint describes the start times of the 
“activities”, the second argument describes their duration, and the third argument is 
used for options of the filtering algorithm (above, we asked to propagate the domains 
completely, not only their bounds). Figure 8 shows the initial domain pruning when 
the serialized constraint is used. We can see that more infeasible values are removed 
from the variables’ domains and thus the search space to be explored by the labeling 
procedure is smaller. 

 
A in -4..0 
B in -1..5 
C in (-5..-3)\/(-1..5)  

Fig. 8. Initial domain pruning for the seesaw problem with the serialized constraint 

Rule of thumb – global constraints. More values pruned from variables’ domains mean 
smaller search space so the constraint models that prune more are assumed better. Most 
constraint solvers use (generalized) arc consistency so the global constraints are the best 
way how to improve pruning while keeping good time efficiency. Thus the basic rule in 
the design of constraint models is using global constraint wherever possible. 

Typically, the global constraint substitutes a homogeneous set of primate constraints, 
like differences or distances between the variables. So if such a subset of constraints 
appears in the constraint model, it is a good candidate for a global constraint. As we 
showed in the seesaw problem, it is useful to look for global constraints even in the 
problem areas which do not seem to be directly related to a given problem. 

A 
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3.2   An Assignment Problem: Dual Models 

The second studied problem is more real-life oriented than the seesaw problem. It 
belongs to the category of assignment problems like allocating ships to berths, planes 
to stands, crew to planes etc. In particular, we will describe a problem of assigning 
workers to products. 

Consider the following simple assignment problem [7]. A factory has four workers 
W1, W2, W3, and W4, and four products P1, P2, P3, and P4. The problem is to assign 
workers to products so that each worker is assigned to one product and each product 
is assigned to one worker (Figure 9). 

  

 
Fig. 9. A simple assignment problem 

The profit made by the worker Wi working on the product Pj is given by Table 1. 

Table 1. The profit made by workers on particular products 

  P1 P2 P3 P4 
W1 7 1 3 4 
W2 8 2 5 1 
W3 4 3 7 2 
W4 3 1 6 3 

 
The task is to find a solution to the above assignment problem such that the total 
profit is at least 19. 

A straightforward constraint model can use a variable for each worker indicating 
the product on which the worker is working. The domain of such a variable will 
naturally consists of the products that can be assigned to a given worker. The fact that 
each worker is working on a different product can be described via a set of binary 
inequalities or better using the all-different constraint. To describe the profit of the 
worker, we can use a set of tabular constraints element encoding Table 1. The 
semantics of element(X,List,Y) is as follows: X-th element of List equals Y. 
Then the sum of the individual profits must be at least 19. Figure 10 shows the 
constraint model for the assignment problem in SICStus Prolog. 

 



assignment_primal(Sol):- 
 Sol = [W1,W2,W3,W4], 
  
 domain(Sol,1,4), 
 all_different(Sol), 
 element(W1,[7,1,3,4],EW1), 
 element(W2,[8,2,5,1],EW2), 
 element(W3,[4,3,7,2],EW3), 
 element(W4,[3,1,6,3],EW4), 
 EW1+EW2+EW3+EW4 #>= 19, 
 
 labeling([ff],Sol). 

Fig. 10. A constraint model for the assignment problem 

By running the above program we get four different assignments that satisfy the 
minimal profit constraint (Figure 11). The first two assignments have the profit 19, 
the third assignment has the profit 21 and the last assignment has the profit 20. 

 
?- assignment_primal(X). 
 
X = [1,2,3,4] ? ; 
X = [2,1,3,4] ? ; 
X = [4,1,2,3] ? ; 
X = [4,1,3,2] ? ; 
no 

Fig. 11. All solutions of the assignment problem 

Frequently, the assignment problem is formulated as an optimization problem. The 
nice feature of the CP approach is that one does not need to change a lot the constraint 
model to solve the optimization problem instead of the feasibility problem. Only the 
standard labeling procedure is substituted by a procedure looking for optimal 
assignments. In practice, the value of the objective function is encoded into a variable 
and the system minimizes or maximizes the value of this variable. Figure 12 shows a 
change in the code necessary to solve the optimization problem where the task is to 
find an assignment with the maximal profit. 

 
… 
EW1+EW2+EW3+EW4 #= E, 

 
maximize(labeling([ff],Sol),E). 

Fig. 12. A change of the constraint model to solve the optimization problem 

The branch and bound technique behind the maximize procedure will now find the 
optimal solution which is X=[4,1,2,3]. 

Let us now turn our attention back from optimization to the original constraint 
model. We decided to use the variables for the workers and the values for the 
products. However, we could also assign workers to products so the variables will 
correspond to the products while the values will identify the workers. Figure 13 
shows such a dual constraint model. 



assignment_dual(Sol):- 
 Sol = [P1,P2,P3,P4], 
  
 domain(Sol,1,4), 
 all_different(Sol), 
 element(P1,[7,8,4,3],EP1), 
 element(P2,[1,2,3,1],EP2), 
 element(P3,[3,5,7,6],EP3), 
 element(P4,[4,1,2,3],EP4), 
 EP1+EP2+EP3+EP4 #>= 19, 
 

 labeling([ff],Sol). 

Fig. 13. A dual model for the assignment problem 

It may seem that both primal (Figure 10) and dual (Figure 13) models are equivalent. 
However, somehow surprisingly the dual model requires a smaller number of choices 
to be explored to find all the solutions of the problem (11 vs. 15). The reason is that 
the profit depends more on the product than on the worker. Thus, the profitability 
constraint propagates more for the products than for the workers. Figure 14 compares 
the initial pruning before the start of labeling procedure for both models.  It shows 
that the dual model propagates more so it is a better model for this particular problem. 

 
W1 in 1..4 
W2 in 1..4 
W3 in 1..4 
W4 in 1..4 

P1 in 1..2 
P2 in 1..4 
P3 in 2..4 
P4 in 1..4 

Fig. 14. Initial domain pruning for the assignment problem (left – primal model, right – dual 
model) 

The propagation power of both primal and dual models can be combined in a single 
model. In practice, variables and constraints from both models are used together and 
special “channeling” constraints interconnect the models (SICStus Prolog provides 
the assignment constraint to interconnect the models). Figure 15 shows the 
combined constraint model. Notice that it is enough to label only the variables from 
one of the original models. Thanks to stronger domain pruning the combined model 
requires only 9 choices to be explored to find all the solutions of the problem. Figure 
16 shows the initial pruning of the combined model. 
 

Rule of thumb – dual models. In many problems, the role of variables and values can be 
swapped and a so called dual model to the original primal model can be obtained. 
Comparing the initial pruning of both primal and dual models could be a good guide for 
selecting one of them. Usually, the best model will be the one in which information is 
propagated more. 

Sometimes, both primal and dual models can be combined together interconnected via 
channeling constraints. This combined model exploits the propagation power of both 
models but it also requires overhead to propagate more constraints. Consequently, one 
must be very careful when combining models with many constraints. Empirical evaluation 
of the models could be a good guide there. 

 



assignment_combined(Workers):- 
Workers= [W1,W2,W3,W4], 

  
domain(Workers,1,4), 
all_different(Workers), 
element(W1,[7,1,3,4],EW1), 
element(W2,[8,2,5,1],EW2), 
element(W3,[4,3,7,2],EW3), 
element(W4,[3,1,6,3],EW4), 
EW1+EW2+EW3+EW4 #>= 19, 

 
Products = [P1,P2,P3,P4], 

  
domain(Products,1,4), 
all_different(Products), 
element(P1,[7,8,4,3],EP1), 
element(P2,[1,2,3,1],EP2), 
element(P3,[3,5,7,6],EP3), 
element(P4,[4,1,2,3],EP4), 
EP1+EP2+EP3+EP4 #>= 19, 

 
assignment(Workers,Products), 

 
labeling([ff],Workers). 

Fig. 15. A combined model for the assignment problem 

 
W1 in (1..2)\/{4} 
W2 in 1..4 
W3 in 2..4 
W4 in 2..4 

P1 in 1..2 
P2 in 1..4 
P3 in 2..4 
P4 in 1..4 

Fig. 16. Initial domain pruning for the assignment problem with the combined model 

3.3   A Golomb Ruler Problem: Redundant Constraints 

Lessons learnt in the previous sections will now be applied to solving a really hard 
problem of finding an optimal Golomb ruler of given size. In particular, we will show 
how “small” changes in the constraint model, like adding the symmetry breaking and 
redundant constraints, may influence dramatically the efficiency of the solver. 

Golomb ruler of size M is a ruler with M marks placed in such a way that the 
distances between any two marks are different. The shortest ruler is the optimal ruler. 
Figure 17 shows an optimal Golomb ruler of size 5. 

 

 
Fig. 17. An optimal Golomb ruler of size 5 

0 1 4 9 11 



Finding an optimal Golomb ruler is a hard problem. In fact, there is not known an 
exact algorithm to find an optimal ruler of size M ≥ 24 even if there exist some best 
so far rulers of size up to 150 [5]. Still, these results are not proved yet to be (or not to 
be) optimal. Golomb ruler is not only a hard theoretical problem but it also has a 
practical usage in radio-astronomy. Let us now design a constraint model to describe 
the problem of the Golomb ruler. 

A natural way how to model the problem is to describe a position of each mark 
using a variable. Thus for M marks we have M variables X1,…, XM. The first mark 
will be in the position 0 and the position of the remaining marks will be described by 
a positive integer. Moreover, to prevent exploring all permutations of the marks, we 
can sort the marks (and hence the variables) from left to right by using constraints in 
the form Xi<Xi+1. Finally, we need to describe the difference of distances between the 
marks. Thus for each pair of marks i and j (i<j) we introduce a new distance variable 
Di,j = Xj – Xi. The difference of distances is modeled using the all-different constraint 
applied to all distance variables. Figure 18 shows this base constraint model. 

 
X1 = 0 
X1<X2<…<XM 
∀i<j Di,j = Xj – Xi 
all_different({D1,2,D1,3,…,DM,M-1}) 

Fig. 18. A base constraint model for the Golomb ruler 

The base constraint model already includes several features discussed in the previous 
sections. In particular, we use a global constraint all-different instead of the set of 
binary inequalities. We already removed many symmetric solutions by using the 
ordering constraints (permutation can be seen as a special case of symmetry). There is 
no doubt about a positive effect of this feature. Still, there is one more symmetric 
solution to be removed and this is mirroring of the ruler. Assume the optimal ruler 
[0,1,4,9,11], then the ruler [0,2,7,10,11] is a mirror of this ruler that should be 
removed from the solution space. The mirror solutions can be removed for example 
by assuming only the solutions where the distance between the first two marks is 
smaller than the distance between the last two marks. The symmetry breaking 
constraint has the following form: 

D1,2 < DM-1,M 

As we can see from Table 2, adding the above symmetry breaking constraint 
decreases significantly the running time because the symmetric areas of the search 
tree are not explored during search. 

We can further improve efficiency of the model by adding some redundant 
constraints. The redundant constraint is not necessary to define the solution, it can be 
deduced from the existing constraints, but it can improve the propagation power. In 
case of the Golomb ruler, we can derive better bounds for the difference variables. Di,j 
is a distance between the marks i and j. Notice that this distance consists of the 
distances (i,i+1), (i+1,i+2) …( j-1,j). Formally, 

Di,j = Di,i+1 + Di+1,i+2 + … + Dj-1,j 



Because all distances must be different, we can estimate the minimal sum of distances 
(i,i+1), (i+1,i+2) …( j-1,j) as a sum of (j-i) different positive numbers. In particular: 

Di,j ≥ Σj-i = (j-i)*(j-i+1)/2 

Let us now try to estimate the upper bound for Di,j using a similar principle: 

XM = XM–X1 = D1,M =  D1,2 + D2,3 + … + Di-1,I + Di,j + Dj,j+1 + … + DM-1,M 

Di,j = XM – (D1,2 + … Di-1,i + Dj,j+1 + … + DM-1,M) 

Again, all distances must be different so we can estimate the minimal sum of 
distances (1,2),..,(i-1,i), (j,j+1), …, (M-1,M). There are (M-1-j+i) different numbers 
so the upper for Di,j can be defined as: 

Di,j ≤ XM – (M-1-j+i)*(M-j+i)/2 

The above analysis of the problem deduced three additional redundant constraints that 
can be added to the base model to improve domain pruning. Figure 19 surveys all the 
additional constraints. 

 
D1,2 < DM-1,M 
∀i<j Di,j ≥ (j-i)*(j-i+1)/2 
∀i<j Di,j ≤ XM–(M-1-j+i)*(M-j+i)/2 

Fig. 19. An extension of the model for the Golomb ruler 

As we can see from Table 2, the model with redundant constraints pays off and the 
running times are significantly smaller. For the interested reader, the complete code 
(SICStus Prolog) of the constraint model with symmetry breaking and redundant 
constraints is given in Appendix. 

Table 2. Running times (in milliseconds on Mobile Pentium 4-M 1.70 GHz, 768 MB RAM) to 
find out optimal Golomb rulers using different constraint models 

size Base model Base model
+ symmetry 

Base model 
+ symmetry 
+ redundant constraints 

7 220 80 30 
8 1 462 611 190 
9 13 690 5 438 1 001 

10 120 363 49 971 7 011 
11 2 480 216 985 237 170 495 

 
 

Rule of thumb – redundant constraints. From the constraints in the base model we can 
sometimes deduce some derived constraints that bridge the weak domain pruning. These 
so called redundant constraints are not necessary to define the solution but if they are 
added to the base constraint model they can improve domain pruning. On the other hand, 
propagation via the redundant constraints adds overhead to solving time so one must be 
careful what and how many redundant constraints are added. A good test for adding 
redundant constraints can be improved initial pruning. A dual model added to the primal 
model is a special case of redundant constraints. 



 
As we mentioned in the survey of constraint satisfaction technology, efficiency of 
problem solving is influenced by the constraint model but also by choosing the right 
labeling strategy. We achieved the above results (Table 2) by using a labeling strategy 
which selects the variable with the smallest index for assignment (leftmost variable 
selection) and which uses the step branching scheme (X=Value ∨ X≠Value). We 
compared two standard variable selection heuristics, namely fail-first and leftmost 
variable selection, and three branching schemes, namely enumeration, step labeling, 
and bisection, on the Golomb ruler problem (Table 3). The combination of the 
leftmost variable selection with the bisection branching scheme seems to be the best 
option for solving the Golomb ruler problem. Note that different parameters of the 
labeling strategy may be more appropriate for other problems. Usually, fail-first in the 
combination with step branching is used as the first choice. 

Table 3. Comparison of variable and value selection heuristics for the Golomb ruler problem 
(runtime is measured in milliseconds on Mobile Pentium 4-M 1.70 GHz, 768 MB RAM) 

size leftmost fail first 
 enum step bisect enum step bisect 

7 30 30 30 40 60 40 
8 220 190 200 390 370 350 
9 1 182 1 001 921 2 664 2 384 2 113 

10 8 782 7 011 6 430 20 870 17 545 14 982 
11 209 251 170 495 159 559 1 004 515 906 323 779 851 

4   Conclusions 

Determining the efficiency of different constraint models is a difficult problem and 
one which relies upon an understanding of the underlying constraint solver. The best 
model will be the one in which information is propagated earliest [7]. In this paper, 
we explained the basics of the constraint technology and we presented several 
techniques that usually improve efficiency of the constraint models by following the 
above rule on propagating earliest. 

Encapsulating a set of constraints into a global constraint is always the 
recommended way of modeling especially if the appropriate global constraints are 
implemented in the system. As we showed, sometimes a global constraint intended to 
a different application area can be applied to the problem so do not be restricted to the 
subset of the global constraints for your problem area only. 

We have also showed that some parts of the solution (search) space can be 
removed because the solutions from these parts can be easily reconstructed from other 
solutions. In particular, including so called symmetry breaking constraints always 
speeds up the solver because they prevent the solver to explore irrelevant 
(symmetrical) parts of the search space. 

Last but not least we presented the idea of redundant constraints. Redundancy 
means that these constraints are not necessary to define the solution but they can 
significantly speed up the solver by improving domain pruning (and thus restricting 
the search space). One example of adding redundancy to the model is combining the 



primal model with the dual model where the role of variables and values is swapped. 
However, redundant constraints add overhead necessary to propagate through them so 
the user must be careful about using them. Empirical evaluation of the models could 
be a good guide there. 
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Appendix 

The following code describes a complete constraint model to solve the Golomb ruler 
problem of size M. More precisely, the largest problem that we have solved was of 
size 13 and it took almost eleven hours on Mobile Pentium 4-M 1.70 GHz. The code 
follows the syntax of constraints and built-in predicates of SICStus Prolog 3.11.2 [9]. 
For example, SICStus Prolog uses the all_distinct constraint that implements 



the Régin’s filtering algorithm while the all_different constraint implements a 
simple propagation where the value is removed from domains after its assignment to 
some variable. The last comment is about the upper bound for the variables describing 
marks. As the built-in labeling procedure requires the domains of the labeled variables 
to be finite we decided to use M2 as the upper bound for these variables. 

 
 
:-use_module(library(clpfd)). 
:-use_module(library(lists)). 

 
golomb(M,Sol):- 
 UpperBound is M*M, 
 ruler(M,-1,UpperBound,Sol), 
 Sol = [0|_],        % set the first mark to 0 
 last(Sol,XM),       % find the last mark 
 distances(Sol,1,M,XM,Dist), 
 all_distinct(Dist), % distances between marks are different 
 (Dist=[DF,_|_] -> last(Dist,DL), DF#<DL ; true), 

                         % symmetry breaking 
 minimize(labeling([leftmost,bisect],Sol),XM). 

 
% generate variables for marks and post ordering constraints 
ruler(0,_,_,[]). 
ruler(K,PrevX,UpperBound,[X|Rest]):- 
 K>0, 
 PrevX#<X, X#=<UpperBound, 
 K1 is K-1,!, 
 ruler(K1,X,UpperBound,Rest). 
 
% generate distance variables and post redundant constraints 
distances([],_,_,_,[]). 
distances([X|Rest],I,M,XM,Dist):- 
 J is I+1, 
 distances_from_x(Rest,X,I,J,M,XM,Dist,RestDist), 
 I1 is I+1,!, 
 distances(Rest,I1,M,XM,RestDist). 

 
% compute distances between XI and the rest marks YJ, I<J 
% and post redundant constraints for distances 
distances_from_x([],_,_,_,_,_,RestDist,RestDist). 
distances_from_x([Y|Rest],X,I,J,M,XM,[DXY|Dist],RestDist):- 
 DXY #= Y-X, 
 LowerBound is integer(((J-I)*(J-I+1))/2), 
 LowerBound #=< DXY, 
 UpperBoundP is integer(((M-1-J+I)*(M-J+I))/2), 
 DXY #=< XM - UpperBoundP, 
 J1 is J+1,!, 
 distances_from_x(Rest,X,I,J1,M,XM,Dist,RestDist). 

 


