Skip to main content

A High-Throughput Approach for Associating microRNAs with Their Activity Conditions

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 3500))

Abstract

Plant microRNAs (miRNAs) are short RNA sequences that bind to target mRNAs and change their expression levels by influencing their stabilities and marking them for cleavage. We present a high throughput approach for associating between microRNAs and conditions in which they act, using novel statistical and algorithmic measures. Our new prototype tool, miRNAXpress, computes a (binary) matrix T denoting the potential targets of microRNAs. Then, using T and an additional predefined matrix X indicating expression of genes under various conditions, it produces a new matrix that predicts associations between microRNAs and the conditions in which they act.

The computational intensive part of miRNAXpress is the calculation of T. We provide a hybridization search algorithm which given a query microRNA, a text mRNA, and a predefined energy cutoff threshold, finds and reports all targets (putative binding sites) of the query in the text with binding energy below the predefined threshold. In order to speed it up, we utilize the sparsity of the search space without sacrificing the optimality of the results. Consequently, the time complexity of the search algorithm is almost linear in the size of a sparse set of locations where base-pairs are stacked at a height of three or more.

We employed our tool to conduct a study, using the plant Arabidopsis thaliana as our model organism. By applying miRNAXpress to 98 microRNAs and 380 conditions, some biologically interesting and statistically strong relations were discovered.

Further details, including figures and pseudo-code, can be found at: http://www.cs.technion.ac.il/~michalz/LinearRNA.ps

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aggarawal, A., Park, J.: Notes on searching in multidimensional monotone arrays. In: Proc. 29th IEEE Symp. on Foundations of Computer Science, pp. 497–512 (1988)

    Google Scholar 

  2. Chatfield, C.: Statistics for technology, a course in applied statistics, Sci. Papreback (1970)

    Google Scholar 

  3. Dugas, D.V., Bartel, B.: MicroRNA regulation of gene expression in plants. Curr. Opin. Plant Biol. 7, 512–520 (2004)

    Article  Google Scholar 

  4. Enright, A.J., et al.: MicroRNA targets in drosophila. Genome Biol. 5(1), 12 (2003)

    Article  Google Scholar 

  5. Eppstein, D., Galil, Z., Giancarlo, R.: Speeding up dynamic programming. In: Proc. 29th IEEE Symp. on Foundations of Computer Science, pp. 488–496 (1988)

    Google Scholar 

  6. Eppstein, D., Galil, Z., Giancarlo, R., Italiano, G.F.: Sparse dynamic programming I: Linear cost functions. JACM 39, 519–545 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  7. Eppstein, D., Galil, Z., Giancarlo, R., Italiano, G.F.: Sparse dynamic programming II: Concave and convex cost functions. JACM 39, 519–545 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  8. Galil, Z., Giancarlo, R.: Speeding up dynamic programming with applications to molecular biology. Theoretical Computer Science 64, 107–118 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  9. Hirshberg, D.S., Larmore, L.L.: The least weight subsequence problem. SIAM J. Compt. 16(4), 628–638 (1987)

    Article  Google Scholar 

  10. Kasschau, K.D., et al.: P1/HC-Pro, a viral suppressor of RNA silencing, interferes with Arabidopsis development and miRNA function. Dev. Cell 4, 205–217 (2003)

    Article  Google Scholar 

  11. Larmore, L., Schieber, B.: On-line dynamic programming with applications to the prediction of RNA secondary structure. J. Algorithms 12(3), 490–515 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  12. Llave, C., et al.: Cleavage of scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA. Science 23, 2053–2056 (2002)

    Article  Google Scholar 

  13. Mathews, D.H., Sabina, J., Zuker, M., Turner, D.H.: Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. J. Mol. Biol. 288, 911–940 (1999)

    Article  Google Scholar 

  14. Miller, W., Myers, E.: Sequence comparison with concave weighting functions. Bull. of Mathematical Biology 50(2), 97–120 (1988)

    MATH  MathSciNet  Google Scholar 

  15. Myers, E., Miller, W.: Chaining multiple-alignment fragments in sub-quadratic time. In: ACM-SIAM Symposium on Discrete Algorithms, pp. 1–10 (1995)

    Google Scholar 

  16. Palatnik, J.F., et al.: Control of leaf morphogenesis by microRNAs. Nature 425, 257–263 (2003)

    Article  Google Scholar 

  17. Rajewsky, N., Socci, N.C.: Computational identification of microRNA targets. Genome Biology 5 (2004)

    Google Scholar 

  18. Rehmsmeier, M., Steffen, P., Hochsmann, M., Giegerich, R.: Fast and effective prediction of microRNA/target duplexes. RNA 10, 1507–1517 (2004)

    Article  Google Scholar 

  19. Rhoades, M.W., et al.: Prediction of plant microRNA targets. Cell 23, 513–520 (2002)

    Article  Google Scholar 

  20. Setubal, J., Meidanis, J.: Introduction to computational molecular biology (1997)

    Google Scholar 

  21. Shevchenko, A., et al.: Plant virus infection development as affected by heavy metal stress. Archives of Phytopathology and Plant Protection 23, 139–146 (2004)

    Google Scholar 

  22. Stark, A., et al.: Identification of Drosophila microRNA targets. PLoS. Biol. 1(3) (2003)

    Google Scholar 

  23. Tang, G., et al.: Framework for RNA silencing in plants. Genes Dev. 17, 49–63 (2003)

    Article  Google Scholar 

  24. van Emde Boas, P., Kaas, R., Zijlstra, E.: Design and implementation of an effcient priority queue. Mathematical Systems Theory 10, 99–127 (1977)

    Article  MATH  Google Scholar 

  25. Waterman, M.S., Smith, T.F.: Rapid dynamic programming algorithms for RNA secondary structure. Adv. Appl. Math. 7, 455–464 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  26. Xie, Z., et al.: Negative feedback regulation of dicer-like1 in Arabidopsis by microRNA-guided mRNA degradation. Curr. Biol. 13, 784–789 (2003)

    Article  Google Scholar 

  27. Yekta, S.: MicroRNA-directed cleavage of HOXB8 mRNA. Science 304, 594–596 (2004)

    Article  Google Scholar 

  28. Zuker, M.: Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 31(13), 3406–3415 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zilberstein, C.BZ., Ziv-Ukelson, M., Pinter, R.Y., Yakhini, Z. (2005). A High-Throughput Approach for Associating microRNAs with Their Activity Conditions. In: Miyano, S., Mesirov, J., Kasif, S., Istrail, S., Pevzner, P.A., Waterman, M. (eds) Research in Computational Molecular Biology. RECOMB 2005. Lecture Notes in Computer Science(), vol 3500. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11415770_11

Download citation

  • DOI: https://doi.org/10.1007/11415770_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25866-7

  • Online ISBN: 978-3-540-31950-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics