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Abstract. Current numerical methods for assessing the statistical sig-
nificance of local alignments with gaps are time consuming. Analytical
solutions thus far have been limited to specific cases. Here, we present a
new line of attack to the problem of statistical significance assessment.
We combine this new approach with known properties of the dynam-
ics of the global alignment algorithm and high performance numerical
techniques and present a novel method for assessing significance of gaps
within practical time scales. The results and performance of these new
methods test very well against tried methods with drastically less effort.
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1 Introduction

Sequence alignment is one of the most commonly used computational tools of
molecular biology. Its applications range from identifying the function of newly
sequenced genes to the construction of phylogenic trees [43, 18]. Its importance
is epitomized by the popularity of the program BLAST [1, 3] which is currently
used 300,000 times a day on the NCBI’s web site alone.

All alignment algorithms have the drawback that they will find an optimal
alignment and an optimal score for any pair of sequences — even randomly
chosen and thus completely unrelated ones. Thus, it is necessary to assess the
significance of a resulting alignment. A popular approach to this problem is
to compare the score of the optimal alignment to the scores generated by the
optimal alignments of randomly chosen sequences. This is quantified by the p-
or E-value. This comparison steadily becomes more important since with the
increasing size of the databases the probability for obtaining a relatively large
score just by chance increases dramatically.

In order to reliably quote a p-value, the distribution of optimal alignment
scores for alignments of random sequences must be known. In the case of align-
ment without “gaps”, it has been worked out rigorously [24–26] that this dis-
tribution is a Gumbel or extreme value distribution [20]. This distribution is
characterized by two parameters that depend on the scoring system used and on



II

the amino acid frequencies with which the random sequences are generated. For
gapless alignment, the dependence of the two Gumbel parameters on the scoring
system is completely known.

However, in order to detect weakly homologous sequences, gaps must be
allowed in an alignment [35]. Unfortunately, for the case of gapped alignment,
there currently exists no theory that describes the distribution of alignment
scores for random sequences. However, there remains a lot of numerical evidence
as well as a number of heuristic arguments that this distribution is still of the
Gumbel form [39, 12, 30, 41, 42, 2]. Nevertheless, even assuming the correctness
of the Gumbel form, finding the two Gumbel parameters for a given scoring
system turns out to be a very challenging problem. The straightforward method
generates a large number of alignment scores by shuffling the two sequences
to be compared and taking a histogram of this distribution. But, because of
the slow exponential tail of the Gumbel distribution, this method is extremely
time consuming. Thus, in practice, the two Gumbel parameters have to be pre-
computed for some few fixed scoring systems [2, 3].

Pre-computed Gumbel parameters have the disadvantage that they restrict
the user to a few scoring systems (substitution matrices and gap costs) for which
the Gumbel parameters have been pre-computed. The necessity of pre-computing
the Gumbel parameters definitely becomes problematic if adaptive schemes, e.g.,
PSI-BLAST [3], are being used. These schemes change their scoring system re-
cursively depending on the sequence data they are confronted with and thus
have to be able to find the two Gumbel parameters after each update of the
scoring system.

To remedy this problem, a more effective numerical method which estimates
the two Gumbel parameters has been proposed [34, 4]. There are also some an-
alytical approximations [31, 37, 32] which are mainly valid for rather large gap
costs where the influence of the gaps on the Gumbel parameters is not yet too
strong. In addition, an analytical scheme has been used to successfully calculate
the Gumbel parameter λ, which describes the tail of the Gumbel distribution,
for just one particular scoring system [8, 10]. In this paper, we will present a
novel approach that calculates λ for a variety of scoring schemes while drasti-
cally reducing the time required to calculate λ and retaining a high degree of
precision in the solution. This approach will expand upon and combine the dif-
ferent analytical works devised in [8, 10] and [16, 17], creating a new scheme for
calculating λ using the numerical tools of [29]. Once λ is known, it then becomes
a simple matter to extract the remaining Gumbel parameter, which characterizes
the mean of the score distribution, numerically via e.g., the island method [34,
4] or direct simulation.

In section 2, we will present an abbreviated review of sequence alignment. We
then point out that, although λ is intrinsically a quantity of local alignments, it
may be calculated from solely studying the simpler global alignment algorithm.
Under some very moderate approximation we then briefly reformulate the prob-
lem of finding λ in terms of an eigenvalue equation, as done with more detail
in [8, 10]. We then show the feasibility of our novel approach by comparing the



III

results from this new method with established analytical [8] and numerical [4]
methods for a variety of scoring systems.

2 Review of Sequence Alignment

In the vast majority of sequence alignment applications, gapped alignment is
used as the fundamental alignment technique. Gapped alignment looks for sim-
ilarities between two sequences a = a1a2 . . . aM , and b = b1b2 . . . bN of length
M and N respectively. The letters ai and bj are taken from an alphabet of size
c. This may be the four letter alphabet {A,C,G,T} of DNA or the twenty letter
amino-acid alphabet. Here, we consider Smith-Waterman local alignment [38].
In this case, a possible alignment A consists of two substrings of the two original
sequences a and b. These subsequences may have different lengths, since gaps
may be inserted in the alignment. For example, the two subsequences GATGC and
GCTC may be aligned as GATGC and GCT-C using one gap. Each such alignment
A is assigned a score according to S[A] =

∑

(a,b)∈A sa,b − δNg where the sum
is taken over all pairs of aligned letters, Ng is the total number of gaps in the
alignment, δ is an additional scoring parameter, the “gap cost,” and sa,b is some
given “scoring matrix” measuring the mutual degree of similarity between the
different letters of the alphabet. A simple example, the match-mismatch matrix

sa,b =

{

1 a = b
−µ a 6= b

(1)

is used for DNA sequence comparisons [33]. For protein sequences, normally the
20 x 20 PAM [13] or BLOSUM matrices [21] are used. Practical applications
usually use the more complicated affine gap cost. For the purpose of clarity, the
following will only consider the case of linear gap cost. However, we want to
stress that our approach is applicable to affine gap costs as well as discussed at
the end of the manuscript. The computational task is to find the subsequences
which give the highest total score for a given scoring matrix sa,b

Σ ≡ max
A

S[A]. (2)

The task is to find the alignment A with the highest score as in Eq. (2). This
can be very efficiently done by a dynamic programming method which becomes
obvious in the alignment path representation [33]. In this representation, the two
sequences to be compared are written on the edges of a square lattice as shown in
Fig. 1 where we chose L ≡ M = N . Each directed path on this lattice represents
one possible alignment. The score of this alignment is the sum over the local
scores of the traversed bonds. Diagonal bonds correspond to gaps and carry the
score −δ. Horizontal bonds are assigned the similarity scores s(r, t) ≡ sa,b where
a and b are the letters of the two sequences belonging to the position (r, t) as
shown in Fig. 1.

If interested in finding the highest scoring global alignment of the two se-
quences a and b, one finds the best scoring path connecting the beginning (0, 0)
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Fig. 1. Local alignment of two sequences. This figure shows the alignment of CGATGCT
and TGCTCGA represented as a directed path on the alignment lattice. The highlighted
alignment path r(t) corresponds to one possible alignment of two subsequences, GATGC
to GCT-C. This path contains one gap. It is also shown how the coordinates r and t are
used to identify the nodes of the lattice.

to the end (0, 2L). This path can be found efficiently by defining the auxiliary
quantity h(r, t) to be the score of the best path ending in the lattice point (r, t)
with initial conditions h(t, t) = −tδ = h(−t, t). This quantity can be calculated
recursively by the Needleman-Wunsch dynamic programming algorithm [33]

h(r, t + 1) = max{h(r, t − 1) + s(r, t), h(r ± 1, t) − δ}. (3)

For local alignments, the Smith-Waterman algorithm [38], supplemented by
the initial conditions S(t, t) = 0 = S(−t, t), describes the appropriate recursion

S(r, t + 1) = max{S(r, t − 1) + s(r, t), S(r ± 1, t) − δ, 0}. (4)

The score of the best local alignment is then given by Σ = maxr,t S(r, t).
Characterizing the statistical significance of alignments requires the distri-

bution of Σ for the alignment of two random sequences whose elements, ak’s
and bk’s, are generated independently from the same frequencies pa as the query
sequences, and scored using the scoring matrix sa,b. In the gapless limit where
δ → ∞, this distribution of Σ has been worked out rigorously for the regime per-
tinent to significance assessment — i.e. in the logarithmic phase characterized by
a negative 〈s〉 ≡ Σa,bpapbsa,b and Σ ∝ log L [7, 25, 26]. For scoring parameters
in the logarithmic phase, it is a Gumbel or extreme value distribution given by

Pr{Σ < S} = exp(−κe−λS). (5)

This distribution is characterized by the two parameters λ and κ with λ giv-
ing the tail of the distribution and λ−1 log κ describing the mean. For gapless
alignment, these parameters can be explicitly calculated [25, 26] from the scoring
matrix sa,b and the letter frequencies pa. For example, λ is the unique positive
solution of the equation

〈exp(λs)〉 ≡
∑

a,b

papb exp(λsa,b) = 1. (6)
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In the presence of gaps, one can still distinguish a logarithmic phase [40]. If
the parameters are chosen such that the expected global alignment score drifts
downwards on average, then the average maximum score 〈Σ〉 for gapped local

alignment remains proportional to the logarithm of the sequence length, as in
the logarithmic phase of gapless alignment. The reduced value of 〈Σ〉 in the
logarithmic phase makes it the regime of choice for homology detection.

Again, the distribution of Σ must be known for local alignments of random
sequences in order to characterize the statistical significance of local alignment.
There exists no rigorous theory for this distribution in the presence of gaps.
However, a slew of empirical evidence strongly suggests that the distribution of
local scores describes the Gumbel distribution [39, 12, 30, 41, 42, 2]. In practice,
they have to be determined empirically by time consuming simulations [4]. In
the absence of a more efficient means of calculating λ and κ, the use of adaptive
schemes such as PSI-BLAST or more finely tuned significance assessment for
various letter compositions remains elusive. Below we will present a new method
to calculate the parameter λ, as well as an explicit calculation of this parameter
for some simple scoring systems, that can resolve this dilemma. Since κ deter-
mines the mean and not tail of the distribution, κ can always be determined
efficiently by simulation once λ is known. The method outlined here may also
be applied directly to more complex scoring schemes, e.g., affine gap costs.

3 Review of Significance Estimation using Global

Alignment as a Dynamic Process

As a first and very crucial step, we will use the fact that, accepting the em-
pirical applicability of the Gumbel distribution to gapped local alignment, the
parameter λ, describing the tail of the Gumbel distribution, can be derived solely
from studying the much simpler global alignment (3). This has been shown in [8,
10]. For our purposes, we will recast the result from [8, 10] in the following form.

Let us define the generating function

ZL(γ; Ω) ≡ 〈exp[γh(0, L)]〉 (7)

where the brackets 〈·〉 denote the ensemble average over all choices of random
sequences a, b and h(0, L) is the global alignment score at the end of a lattice
of length L as shown in Fig. 2(a), and Ω summarizes the parameters pa, µ, and
δ that contribute to the evaluation of h(0, L). This score can be obtained from
the recursion relation (3) with initial condition h(r, 0) = 0. Let us now define

Φ(γ; Ω) = lim
L→∞

1

L
log ZL(γ; Ω) (8)

Then according to [8, 10] the parameter λ of the Gumbel distribution is obtained
as the unique positive solution of the equation

Φ(λ; Ω) = 0. (9)
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Note that this condition reduces simply to Eq. (6) in the case of gapless align-

ment, since for infinite gap cost δ, we have 〈exp[γh(0, L)]〉 = 〈exp[γ
∑L/2

k=1 s(0, 2k−
1)]〉 = 〈exp[γs]〉L

2 and thus Φ(γ; Ω) = 1
2 log〈exp(γS)〉.
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Fig. 2. Global alignment lattice used for significance estimation. (a) shows the right
half of the lattice from Fig. 1. It can represent all possible paths of length L which end
at the point (r, t) = (0, L) and start at (r, 0) for an arbitrary r. (b) shows with the gray
lines, how the triangular lattice similar to the one shown in (a) can be embedded into
a rectangular alignment lattice of width 2W with periodic boundary conditions in the
spatial (vertical) direction as long as L < W .

In order to calculate Φ(γ; Ω), instead of the triangular alignment lattice
shown in Fig. 2(a), we utilize the rectangular lattice of 2W lattice points shown
in Fig. 2(b). Across the lattice, we apply periodic boundary conditions h(0, t) =
h(2W, t) for all t. Defining the generating function of the finite width ZL,W (γ; Ω)
by Eq. (7) with h(r, t) calculated on the lattice of width 2W , we introduce

ΦW (γ; Ω) = lim
L→∞

1

L
ZL,W (γ; Ω). (10)

The function Φ(γ; Ω) on the original lattice is then given by

Φ(γ; Ω) = lim
W→∞

ΦW (γ; Ω). (11)

Thus, our approach will be to first calculate ΦW (γ; Ω) for some small W ’s and
then take the limit for large W . Indeed, the major contribution of this work is
the procedure for successfully extrapolating the infinite W limit Φ(γ; Ω) from
ΦW (γ; Ω) calculated for a few small W ’s. Further details will be given in sec-
tion 4. Here, we stress that this methodology may be used in order to calculate
Φ(γ; Ω) from ΦW (γ; Ω) regardless of the specific scoring scheme and parameters
including affine gap costs. Our method applies equally to all means available for
calculating ΦW (γ; Ω). Ultimately once Φ(γ; Ω) has been determined, we will use
Eq. (9) to infer the value of the parameter λ characterizing local alignment.

In order to illustrate our method as clearly as possible, we will specialize the
remaining discussion to the match–mismatch scoring system given by Eq. (1)
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and even restrict the space of allowable scoring parameters further as discussed
below. For this scoring scheme, we can utilize results from [8, 10] to calculate
ΦW (γ; Ω) for small widths W . Thus, we will next review the appropriate results
from [8, 10]. For the reader who is uninterested in the specifics of how ΦW (γ; Ω) is
calculated here, we suggest skipping forward to the third paragraph of section 4.
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Fig. 3. (a)This figure illustrates the constraint given by Eq. (12). The straight lines
plot those µ–δ values that obey the constraint. For any point on these lines, the solution
for λ may be obtained using the method given in this presentation. The logarithmic
phase is above the solid line denoting the phase transition. The phase transition line
was obtained from [7] and has been supplied here for reference. (b)Building blocks of
the alignment lattice. By construction r and t are either both even or both odd. This
figure shows the relation between the scores at the lattice points and the bond variables
d(r, t).

In addition to specializing to the match–mismatch scoring system, we con-
strain µ and δ such that

2δ = n(1 + µ) − 1 with n ∈ N. (12)

This technical condition is necessary in order to utilize the results from [8, 10].
However, it is not a very severe condition since the (µ, δ)–pairs that fulfill this
condition can be found all over the µ–δ plane as shown in Fig. 3(a).

The sole approximation neglects the correlations arising between the local
scores s(r, t) from the fact that all M × N local scores are generated by just
M +N randomly drawn letters. Instead of taking these correlations into account,
we introduce uncorrelated random variables η(r, t) ∈ {1,−µ} replacing the s(r, t)
calculated from the letters in the sequences, i.e.,

Pr{∀r,t η(r, t) = ηr,t} =
∏

r,t

Pr{η(r, t) = ηr,t} (13)

with match probability Pr{η(r, t) = 1} =
∑

a=b p2
a ≡ p and mismatch proba-

bility Pr{η(r, t) = −µ} =
∑

a6=b papb = 1 − p. This approximation, also known
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as the Bernoulli randomness approximation, is known to change characteristic
quantities of sequence alignment only slightly [14, 15, 5, 6, 9, 19, 11]. This gen-
eral property has been confirmed through numerical studies specifically for the
quantity of interest here λ [8]. Numerical evidence for the similarity between the
values for λ with and without this approximation [8] is reproduced in Fig. 4.

In [8, 10] it was argued that the calculation of ΦW (γ; Ω) can be cast as an
eigenvalue problem. Realizing this requires that we introduce score differences

d(r, t) as defined in Fig. 3(b) and apply them to the finite width picture drawn in
Fig. 2(b). Solely from the Needleman-Wunsch recursion relation given by Eq. (3),
several important properties of these score differences can be derived [8, 10]: (i)
the score differences can only have n + 1 different values where n is the natural
integer characterizing the choice of µ and δ according to Eq. (12); (ii) the score
differences d(r, t+1) can be calculated from the knowledge of the d(r, t) and the
random variables η(r, t) without reference to the h(r, t); (iii) the score increases
h(r, t + 1) − h(r, t) can be calculated from the score differences d(r, t) and the
random variable η(r, t). The first two statements together with the uncorrelated
bonds η(r, t) assumed in Eq. (13) imply that the dynamics of the score differ-
ences d(r, t) can be viewed as a Markov process on the (n + 1)2W –dimensional
state space of the equal time difference vector (d(0, t), d(1, t), . . . , d(2W, t)). This
Markov process may be described by a transfer matrix T̂W (0; Ω). The entries
of this transfer matrix encode the probabilities of the different configurations
of the η(r, t) in terms of the match probability p and the transitions between
the state vectors that these configurations of the η(r, t) imply. Finally, property
(iii) allows us to modify the transfer matrix in such a way that it keeps track
of the changes in the absolute score h(r, t). The curious reader may refer to [10]
which provides a detailed explanation of how this p-dependent modified transfer
matrix T̂W (γ; Ω) is obtained. This modified transfer matrix allows us to write

ZL,W (γ; Ω) = v
T T̂W (γ; Ω)L

w · e γL
2 (14)

with some fixed (n+1)2W –dimensional vectors v and w. For large L the matrix
product is dominated by the largest eigenvalue ρW (γ; Ω) which leads to

ΦW (γ; Ω) = log ρW (γ; Ω) +
γ

2
. (15)

For the very simplest scoring system consistent with condition (12), i.e., n =
1 where µ = 2δ, the analytical limit of limW→∞ ρW (γ; Ω) can be taken and
Eq. (15) yields the closed analytical result [10]

1 +
√

p exp[λ
2 (1 + µ)]

1 +
√

p exp[−λ
2 (1 + µ)]

exp[−λ

2
µ] = 1. (16)

For scoring systems of greater complexity, i.e., larger n, analytic solutions
are not readily available for λ. Next, we will present an approach that combines
the power of computational numerics and the known analytical properties of the
dynamic process described above in order to calculate Φ(γ; Ω).
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4 Numerical Calculation for More Complex Scoring

Systems

The main obstacle to obtaining the function Φ(γ; Ω) (and consequently the Gum-
bel parameter λ) for more complex scoring systems is the extrapolation (11) of
Φ(γ; Ω) from its finite width counterparts ΦW (γ; Ω). In order to get a reliable
estimate of the function Φ(γ; Ω) we need two ingredients: First, we have to be
able to calculate ΦW (γ; Ω) for as large W as reasonably possible. We will do
this using the high performance numerical package ARPACK [29] as described
in the next paragraph. Second, we have to extrapolate from as few finite width
results as possible toward the infinite width limit Φ(γ; Ω). The latter is done by
using some results from statistical physics and is the main contribution of this
manuscript.

The size of the state space, as well as the size of the characteristic matrix
T̂W grows rapidly with the integer n and the width W . Even after exploiting
various symmetries, the problem roughly behaves like (n + 1)2W /nW . Solving
for all eigenvalues in order to discern the greatest quickly becomes exhaustively
expensive for n > 1. However, two features of this eigenvalue problem succor
this otherwise hopeless task for moderate values of n and W . First, the matrix
T̂W is very sparse. The number of non-zero elements grows close to linearly,
namely as O(k log k), where k represents the size of T̂ . Second, this problem
only requires the largest eigenvalue ρW (γ; Ω) and not all the eigenvalues. This
makes it well suited for the implicitly restarted Arnoldi method (IRAM) [36, 28].
The numerical software package ARPACK [29], which implements IRAM, has
been tested as the fastest and most dependable program for finding numerical
eigenvalues and eigenvectors [27]. Indeed, in our context ARPACK allows for
the quick and specific calculation of only the largest eigenvalue ρW (γ; Ω) of the
sparse matrix T̂W for n < 7 for at least a few W .

Our accessible numerical solution for ρW (γ; Ω), gained via the use of the nu-
merical software package ARPACK, directly gives ΦW (γ; Ω) by using Eq. (15).
However, the solutions we can obtain for some few small widths W still skirt far
from the limit of infinite W in Eq. (11). As such, Φ(γ; Ω) cannot be straight-
forwardly approximated from the available ΦW (γ; Ω) with any real accuracy.
In order to extrapolate from the ΦW (γ; Ω) for small finite widths to their infi-
nite limit Φ(γ; Ω), we make use of two results obtained in the statistical physics
community. The first key result is that sequence alignment is a member of the
so-called Kardar-Parisi-Zhang (KPZ) universality class [23, 22]. A universality
class is a large class of problems that are known to share certain quantitative
traits. The second result comes from work by Derrida et al., who were able to
calculate an exact solution for what amounts to our ΦW (γ; Ω) in a different sys-
tem of the same universality class. Derrida et al. conjecture on general grounds
that their exact result for the deviation function ΦW (γ; Ω) − Φ(γ; Ω) from the
infinite system is given by a universal scaling function, i.e., that it’s shape re-
mains the same for all members of the KPZ universality class [16, 17]. Together,
these two findings imply that our ΦW (γ; Ω)− Φ(γ; Ω) have the same functional
form as the Derrida et al. deviation function. Expressed in our notation, this
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means

ΦW (γ; Ω) = Φ(γ; Ω) − aΩG(γW 1/2bΩ)

W 3/2
. (17)

where aΩ and bΩ are unknown scaling factors dependent on the particular pa-
rameters of the alignment Ω and the scaling function G has been explicitly
solved [16, 17] (see appendix A). In order to use property (17) to extrapolate
Φ(γ; Ω) from ΦW (γ; Ω), aΩ and bΩ must be determined. To that end, we take
the difference

ΦW (γ; Ω) − ΦW−1(γ; Ω) = aΩG(γW 1/2bΩ)
W 3/2

− aΩG(γ(W−1)1/2bΩ)
(W−1)3/2

(18)

allowing us to eliminate the unknown function Φ(γ; Ω). We can numerically
evaluate the left hand side of this equation as a function of γ. Knowing the
exact form of G means that on the right hand side only the scales, controlled
by aΩ and bΩ remain undetermined. The act of finding these two scaling factors
then becomes a matter of fitting the left hand side to the right hand side of
Eq. (18). Once aΩ and bΩ have been determined, all that remains is to solve for
λ using Eqs. (9) and (17)

Φ(λ; Ω) = ΦW (λ; Ω) − aΩG(λW 1/2bΩ)

W 3/2
= 0. (19)

The specifics of the computer algorithm used in determining λ follow. First,
we use computer algebra to generate the structure of the transfer matrices T̂W

for different n and W . This process consumes a great deal of time, however,
once done for every of the discrete combinations of n and W , the form of the
transfer matrices are recorded and can be reused for any choice of mismatch cost
µ (which fixes the gap cost δ according to condition (12)) and match probability
p. Once µ and p are supplied and the numerical transfer matrix is tabulated, the
numerical tool ARPACK obtains the eigenvalues ρW (γ; Ω) and ρW−1(γ; Ω) for
γ = 0.8λgapless, 0.9λgapless and λgapless where λgapless is the Gumbel parameter
λ for the same µ and p in the absence of gaps (as calculated by using Eq. (6)).
These initial values, along with the tabulated function G, obtained from KPZ
theory, allow for the first approximations of aΩ and bΩ to be calculated. The
newly found scaling factors are then used along with Eq. (19) in order to choose
a new γ ≈ λ by linear extrapolation toward the root. ρW (γ; Ω) and ρW−1(γ; Ω)
for this new γ are then evaluated. The whole set of ρ-values then feeds into the
reevaluation of aΩ and bΩ . This process iterates until γ converges to the solution
for λ.

5 Results for More Complex Scoring Systems

Table 1 summarizes the performance of the computer program outlined in sec-
tion 4. For each value of the integer n, a combination of µ and δ is chosen that
leads to a gapped λ of approximately λ ∼ 0.8λgapless. This is considered to
be the most relevant region for similarity searches. Most importantly, table 1
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n µ δ W time(seconds) error(%) n µ δ W time(seconds) error(%)

1 2.2 1.1 2 0.4 0.1 3 0.9 2.35 2 <0.1 1.6
3 0.4 0.5 3 0.1 0.3
4 0.3 0.1 4 0.3 0.2
5 0.2 <0.1 5 4.3 0.2
6 0.2 <0.1 6 108.2 0.2
7 0.2 <0.1 4 0.7 2.9 2 0.1 8.7
8 0.3 <0.1 3 0.1 <0.1
9 1.4 <0.1 4 1.0 0.2

10 4.7 <0.1 5 39.0 0.2
11 26.4 <0.1 5 0.7 3.75 2 0.1 <0.1

2 1.5 2.0 2 <0.1 0.2 3 0.2 <0.1
3 0.1 0.4 4 5.3 <0.1
4 0.3 0.4 6 0.55 4.15 2 0.1 3.2
5 0.6 0.4 3 1.1 0.3
6 2.2 0.4 4 39.5 <0.1
7 26.5 0.4

Table 1. This table shows the calculation time and precision with which our algorithm
performs. This table was generated using a 2.4 GHz Intel r©XeonTMprocessor. The
error percentages are based on comparisons of results obtained in the range where
λ ∼ 0.8λgapless using the island method [4]. The exception is for n = 1, where we
have an analytical solution (16), we calculate the error based on the results obtained
through the known equation. It should be noted that the percent error inherent in the
island method for the simple scoring system described by Eq. (1) is 0.5%.

shows us that λ converges for W ≥ 4. (Note that, except for n = 1 where the
reference value for λ is determined from the exact equation (16), the statistical
error on the numerically determined reference values is 0.5% in and of itself.)
Our method lands almost all values within the error range of the numerically
determined values. This result verifies just how reliably the finite size effects of
W are taken into account by the scaling form presented by Derrida et al. Sec-
ondly, table 1 shows that the evaluation of the Gumbel parameter λ by our new
method for all but the largest W (which are unnecessary), finishes in about a
second or less. This compares very favorably with the fastest currently available
alternatives for obtaining λ, i.e., the island method [4]. The major disadvantage
of using the island method for DNA significance assessment lies in the amount of
time needed in order to accurately evaluate each data point — the same machine
that produced the times in table 1 requires approximately a fortnight in order
to obtain an accuracy of 0.5%.

Fig. 4 gives an overview of the dependence of λ on the mismatch cost µ for
different n. The lines show the values obtained by our method. In the n = 1
case, the solution of Eq. (16) is plotted as well. It is quasi-indistinguishable from
the results of our new algorithm. For n > 1 the only way to obtain reference
values for comparison is by the island method the results of which are shown as
the points. Still, our method is within the statistical error of the numerical data
of the island method over the whole parameter range.
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Fig. 4. Values of λ for the DNA alphabet (p = 0.25) as a function of the mismatch
cost µ. The lines are the results of our new approach; the points are results from
stochastic simulation with the island method. The λ-values for n = 1 verify well when
plotted against solutions of Eq. (16) (also shown as a line barely distinguishable from
the line representing the values calculated by our new method) and the island method
in [4]. The λ-values for n = 2, 3, 4, 5, and 6 displayed here also match well with values
obtained from the island method. For n = 1, we also include points obtained without
use of the uncorrelated approximation Eq. (13). The correlated data obtained via the
island method generally compares well with the uncorrelated points and only changes
the value of λ slightly. The estimated error of the island method is approximately one
quarter of the symbol sizes.

6 Conclusions

We have presented a new numerical method to reliably calculate λ with great
accuracy and very little computational effort. The efficiency and dependability
of this method in characterizing the difficult tail end of the Gumbel distribution
removes the major impediment to gapped significance assessment. As previously
stated, the remaining Gumbel parameter may be obtained from direct simulation
Furthermore, this algorithm grants real time access to the Gumbel parameters
and allows for the possibility of updating schemes such as PSI-BLAST to run
without resorting to a small set of pre-computed values. The gains in the ability
to calculate these parameters not only aids sequence comparison tools but also
furthers our ability to discern the most appropriate scoring schemes. We believe
that adaptation of these methods is possible for values of µ and δ that do not
adhere to the technical condition we imposed for the purpose of our work. This
includes the biologically practical and often used affine gap cost schemes. Indeed,
future efforts will be directed at using these methods for the more complicated
affine gap costs as well as for correlated sequence alignments.
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15. Danč́ık, V. 1994. Expected Length of Longest Common Subsequences. PhD thesis,
University of Warwick.

16. Derrida, B. and Lebowitz, J.L. 1998. Exact Large Deviation Function in the Asym-
metric Exclusion Process, Phys. Rev. Lett. 80, 209–213.

17. Derrida, B. and Appert, C. 1999. Universal Large-Deviation Function of the
Karder-Parisi-Zhang Equation in One Dimension, J. Stat. Phys. 94, 1–30.

18. Doolittle, R.F. 1996. Methods in Enzymology 266, San Diego, Calif.: Academic
Press.



XIV

19. Drasdo, D., Hwa, T., and Lassig, M. 2001. Scaling Laws and Similiarity Detection
in Sequence Alignment with Gaps. J. Comp. Biol. 7, 115–141.

20. Gumbel, E.J. 1958. Statistics of Extremes, Columbia University Press, (New York,
NY).

21. Henikoff, S., and Henikoff, J.G. 1992. Amino acid substitution matrices from pro-
tein blocks. Proc. Natl. Acad. Sci. U.S.A. 89, 10915–10919.
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A Deviation Function of the Particle Hopping

The deviation function GD as solved by Derrida et al. is independent of the
model parameters and has the following parametric form [16, 17]

β =
2√
π

∫ ∞

0

ε1/2 Ce−εdε

1 + Ce−ε
(20)

GD(β) =
4

3
√

π

∫ ∞

0

ε3/2 Ce−εdε

1 + Ce−ε
. (21)

As C approaches -1 we require a new representation to go beyond β− = limC→−1 β.
The analytical continuation of GD(β) is beyond β− given by the parametric
equations [16, 17]

β = −4
√

π [− ln(−C)]
1/2 −

∞
∑

q=1

(−C)qq−3/2 (22)

GD(β) =
8

3

√
π [− ln(−C)]

3/2 −
∞
∑

q=1

(−C)qq−5/2, (23)

as C for these equation varies between 0 and -1, this gives the function GD(β)
for all β < β−.

In the limit as β → −∞ [16, 17],

GD(β) ≈ − β3

24π
(24)

implying that for large γ,

W−3/2GD(γW 1/2) ≈ − γ3

24π
. (25)

This term is independent of W , i.e., of finite size effects. In order to appropriately
reflect this, we include this W -independent term in Φ. Therefore, the function
G used in our methodology relates to the Derrida et al. solution for GD(β) via
the equation G(β) = GD(β) + β3/(24π).


