Skip to main content

Pairwise Local Alignment of Protein Interaction Networks Guided by Models of Evolution

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 3500))

Abstract

With ever increasing amount of available data on protein-protein interaction (PPI) networks and research revealing that these networks evolve at a modular level, discovery of conserved patterns in these networks becomes an important problem. Recent algorithms on aligning PPI networks target simplified structures such as conserved pathways to render these problems computationally tractable. However, since conserved structures that are parts of functional modules and protein complexes generally correspond to dense subnets of the network, algorithms that are able to extract conserved patterns in terms of general graphs are necessary. With this motivation, we focus here on discovering protein sets that induce subnets that are highly conserved in the interactome of a pair of species. For this purpose, we develop a framework that formally defines the pairwise local alignment problem for PPI networks, models the problem as a graph optimization problem, and presents fast algorithms for this problem. In order to capture the underlying biological processes correctly, we base our framework on duplication/divergence models that focus on understanding the evolution of PPI networks. Experimental results from an implementation of the proposed framework show that our algorithm is able to discover conserved interaction patterns very effectively (in terms of accuracies and computational cost). While we focus on pairwise local alignment of PPI networks in this paper, the proposed algorithm can be easily adapted to finding matches for a subnet query in a database of PPI networks.

This research was supported in part by NIH Grant R01 GM068959-01 and NSF Grant CCR-0208709.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altschul, S.F., Madden, T.L., Schäffer, A.A., Zhang, Z., Miller, W., Lipman, D.J.: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nuc. Acids Res. 25, 3389–3402 (1997)

    Article  Google Scholar 

  2. Thompson, J.D., Higgins, D.G., Gibson, T.J.: CLUSTAL-W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nuc. Acids Res. 22, 4673–4680 (1994)

    Article  Google Scholar 

  3. Hartwell, L.H., Hopfield, J.J., Leibler, S., Murray, A.W.: From molecular to modular cell biology. Nature 402, C47–C51 (1999)

    Article  Google Scholar 

  4. Titz, B., Schlesner, M., Uetz, P.: What do we learn from high-throughput protein interaction data? Exp. Rev. Prot. 1, 111–121 (2004)

    Article  Google Scholar 

  5. Ito, T., Chiba, T., Ozawa, R., Yoshida, M., Hattori, M., Sakaki, Y.: A comprehensive two-hybrid analysis to explore the yeast protein interactome. PNAS 98, 4569–4574 (2001)

    Article  Google Scholar 

  6. Ho, Y., et al.: Systematic identification of protein complexes in Saccharomyces cerevisae by mass spectrometry. Nature 415, 180–183 (2002)

    Article  Google Scholar 

  7. Gavin, A.C., et al.: Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415, 141–147 (2002)

    Article  Google Scholar 

  8. Wuchty, S., Oltvai, Z.N., Barabási, A.L.: Evolutionary conservation of motif constituents in the yeast protein interaction network. Nature Gen. 35, 176–179 (2003)

    Article  Google Scholar 

  9. Tohsato, Y., Matsuda, H., Hashimoto, A.: A multiple alignment algorithm for metabolic pathway analysis using enzyme hierarchy. In: 8th Intl. Conf. Intel. Sys. Mol. Bio (ISMB 2000), pp. 376–383 (2000)

    Google Scholar 

  10. Koyutürk, M., Grama, A., Szpankowski, W.: An efficient algorithm for detecting frequent subgraphs in biological networks. In: Bioinformatics Suppl. 12th Intl. Conf. Intel. Sys. Mol. Bio (ISMB 2004), pp. i200–i207 (2004)

    Google Scholar 

  11. Kelley, B.P., Yuan, B., Lewitter, F., Sharan, R., Stockwell, B.R., Ideker, T.: Path BLAST: a tool for aligment of protein interaction networks. Nuc. Acids Res. 32, W83–W88 (2004)

    Article  Google Scholar 

  12. Vázquez, A., Flammini, A., Maritan, A., Vespignani, A.: Modeling of protein interaction netwokrs. ComPlexUs 1, 38–44 (2003)

    Article  Google Scholar 

  13. Dandekar, T., Schuster, S., Snel, B., Huynen, M., Bork, P.: Pathway alignment: application to the comparative analysis of glycolytic enzymes. Biochem. J. 343, 115–124 (1999)

    Article  Google Scholar 

  14. Lotem, E.Y., Sattath, S., Kashtan, N., Itzkovitz, S., Milo, R., Pinter, R.Y., Alon, U., Margalit, H.: Network motifs in integrated cellular networks of transcription-regulation and protein-protein interaction. PNAS 101, 5934–5939 (2004)

    Article  Google Scholar 

  15. Sharan, R., Ideker, T., Kelley, B.P., Shamir, R., Karp, R.M.: Identification of protein complexes by comparative analysis of yeast and bacterial protein interaction data. In: 8th Intl. Conf. Res. Comp. Mol. Bio (RECOMB 2004), pp. 282–289 (2004)

    Google Scholar 

  16. Barabási, A., Albert, R.: Emergence of scaling in random networks. Science 286, 509–512 (1999)

    Article  MathSciNet  Google Scholar 

  17. Eisenberg, E., Levanon, Y.: Preferential attachment in the protein network evolution. Phys. Rev. Let. 91, 138701 (2003)

    Article  Google Scholar 

  18. Qin, H., Lu, H.H.S., Wu, W.B., Li, W.: Evolution of the yeast protein interaction network. PNAS 100, 12820–12824 (2003)

    Article  Google Scholar 

  19. Pastor-Satorras, R., Smith, E., Solé, R.V.: Evolving protein interaction networks through gene duplication. J. Theo. Bio. 222, 199–210 (2003)

    Article  Google Scholar 

  20. Wagner, A.: The yeast protein interaction network evolves rapidly and contains few redundant duplicate genes. Mol. Bio. Evol. 18, 1283–1292 (2001)

    Google Scholar 

  21. Wagner, A.: How the global structure of protein interaction networks evolves. Proc. R. Soc. Lond. Biol. Sci. 270, 457–466 (2003)

    Article  Google Scholar 

  22. Chung, F., Lu, L., Dewey, T.G., Galas, D.J.: Duplication models for biological networks. J. Comp. Bio. 10, 677–687 (2003)

    Article  Google Scholar 

  23. Smith, T.F., Waterman, M.S.: Identification of common molecular subsequences. J. Mol. Bio. 147, 195–197 (1981)

    Article  Google Scholar 

  24. Feige, U., Peleg, D., Kortsarz, G.: The dense k-subgraph problem. Algorithmica 29, 410–421 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  25. Hassin, R., Rubinstein, S., Tamir, A.: Approximation algorithms for maximum dispersion. Oper. Res. Let. 21, 133–137 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  26. Tornow, S., Mewes, H.W.: Functional modules by relating protein interaction networks and gene expression. Nuc. Acids Res. 31, 6283–6289 (2003)

    Article  Google Scholar 

  27. Bader, J.S.: Greedily building protein networks with confidence. Bioinformatics 19, 1869–1874 (2003)

    Article  Google Scholar 

  28. Remm, M., Storm, C.E.V., Sonnhammer, E.L.L.: Automatic clustering of orthologs and in-paralogs from pairwise species comparisons. J. Mol. Bio. 314, 1041–1052 (2001)

    Article  Google Scholar 

  29. Jansen, R., Yu, H., Greenbaum, D., et al.: A Bayesian networks approach for predicting protein-protein interactions from genomic data. Science 302, 449–453 (2003)

    Article  Google Scholar 

  30. Ashtana, S., King, O.D., Gibbons, F.D., Roth, F.P.: Predicting protein complex membership using probabilistic network reliability. Genome Research 14, 1170–1175 (2004)

    Article  Google Scholar 

  31. Gilchrist, M.A., Salter, L.A., Wagner, A.: A statistical framework for combining and interpreting proteomic datasets. Bioinformatics 20, 689–700 (2003)

    Article  Google Scholar 

  32. Kelley, B.P., Sharan, R., Karp, R.M., Sittler, T., Root, D.E., Stockwell, B.R., Ideker, T.: Conserved pathways withing bacteria and yeast as revealed by global protein network alignment. PNAS 100, 11394–11399 (2003)

    Article  Google Scholar 

  33. Xenarios, I., Salwinski, L., Duan, X.J., Higney, P., Kim, S., Eisenberg, D.: DIP: The Database of Interacting Proteins. A research tool for studying cellular networks of protein interactions. Nuc. Acids Res. 30, 303–305 (2002)

    Article  Google Scholar 

  34. Boonyaratanakornkit, V., et al.: High-mobility group chromatin proteins 1 and 2 functionally interact with steroid hormone receptors to enhance their DNA binding in vitro and transcriptional activity in mammalian cells. Mol. Cell. Bio. 18, 4471–4488 (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Koyutürk, M., Grama, A., Szpankowski, W. (2005). Pairwise Local Alignment of Protein Interaction Networks Guided by Models of Evolution. In: Miyano, S., Mesirov, J., Kasif, S., Istrail, S., Pevzner, P.A., Waterman, M. (eds) Research in Computational Molecular Biology. RECOMB 2005. Lecture Notes in Computer Science(), vol 3500. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11415770_4

Download citation

  • DOI: https://doi.org/10.1007/11415770_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25866-7

  • Online ISBN: 978-3-540-31950-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics