
ar
X

iv
:c

s/
04

12
02

8v
1

 [c
s.

LO
]

8
D

ec
 2

00
4 A feasible algorithm for typing in

Elementary Affine Logic

Patrick Baillot
Laboratoire d’Informatique de Paris-Nord /CNRS

Université Paris-Nord, France
pb@lipn.univ-paris13.fr

Kazushige Terui
National Institute of Informatics

Tokyo, Japan
terui@nii.ac.jp

Abstract

We give a new type inference algorithm for typing lambda-terms in Elementary
Affine Logic (EAL), which is motivated by applications to complexity and optimal
reduction. Following previous references on this topic, the variant of EAL type
system we consider (denotedEAL

⋆) is a variant without sharing and without
polymorphism. Our algorithm improves over the ones alreadyknown in that it
offers a better complexity bound: if a simple type derivation for the termt is given
our algorithm performsEAL

⋆ type inference in polynomial time.

1 Introduction

Since [GSS92, Gir98], Linear logic (LL) has been shown a fruitful logical setting
in which computational complexity can be brought into the picture of the proofs-as-
programs correspondence. In particular Light linear logic([Gir98]) and Soft linear
logic ([Laf04]) are variants of LL in which all numerical functions programmed are
polynomial time. Another system, Elementary linear logic (ELL, see [Gir98, DJ03])
corresponds to Kalmar elementary complexity.

Hence one can consider specific term calculi designed through the Curry-Howard
correspondence and program directly in these languages with the guaranteed complex-
ity bound ([Rov98, Ter01]). However this turns out in practice to be a difficult task, in
particular because these languages require managing specific constructs corresponding
to the logical modalities. Considering theaffinevariant (i.e. with unrestricted weaken-
ing) of these systems is an advantage ([Asp98]) but does not suppress the difficulty.

An alternative point of view is to keep ordinary lambda-calculus and use the logic
as a type system: then if a program is well-typed the logic provides a way to execute it

http://arxiv.org/abs/cs/0412028v1

with the guaranteed complexity bound. The difficulty is thenmoved to the problem of
type inference.

This approach and the corresponding type inference problems have been studied
in [CM01, CRdR03] for Elementary affine logic (EAL) and [Bai02, Bai04] for Light
affine logic (LAL). It was shown that type inference in the propositional fragments
of these systems is decidable. Typing in EAL is actually alsomotivated by another
goal (see [CM01, ACM00]): EAL terms can be evaluated with theoptimal reduction
discipline much more easily than general terms, by using theabstract part of Lamping’s
algorithm. Thus EAL typing can be seen as an intermediate step which, if it succeeds,
allows to speed up optimal reduction.

However though these type inference problems have been shown decidable the al-
gorithms provided, either for EAL or LAL, are not really efficient. They all run at least
in exponential time, even if one considers as input a simply typed lambda-term. Our
goal is to improve this state-of-the-art by providing more efficient and possibly more
simple algorithms. Our motivation is typing in Dual light affine logic (DLAL, [BT04])
which is a simplification of LAL and corresponds to Ptime, buthere as a first step we
propose a new procedure for EAL.

Contribution. Technically speaking the difficulty with EAL typing is to findout
wherein the derivation to place!-rules andhow manyof them. This corresponds in
proof-nets terminology to placingboxes. The algorithms in [CM01] and [CRdR03] are
based on two tactics forfirst placing abstract boxes andthenworking out their number
using linear constraints. Our approach also uses linear constraints but departs from this
point of view by determining the place of boxesdynamically, at the time of constraints
solving. This method was actually already proposed in [Bai02] for LAL typing but with
several conditions; in particular the term had to be in normal form. In the present work
we show that in a system without sharing (like DLAL, but unlike LAL) this approach
is considerably simplified. In particular it results that:

• one can use as intermediary syntax a very simple term calculus (introduced in
[AR02]) instead of proof-nets like in [Bai02];

• the procedure can be run in polynomial time, if one considersas input a simply
typed lambda-term (instead of an untyped lambda-term).

Outline. The paper will proceed as follows: in section 2 we introduce Elementary
affine logic and the type systemEAL⋆ we consider for lambda-calculus; in section 3
we describe the term calculus (pseudo-terms, or concrete syntax) we will use to denote
EAL⋆ derivations and we prove a theorem (Theorem 7) onEAL⋆ typability; finally in
section 4 we give anEAL⋆ decoration algorithm (based on Theorem 7), prove it can
be run in polynomial time (4.2) and derive from it anEAL⋆ type inference algorithm
(4.3).

Notations. Given a lambda-termM we denote byFV (M) the set of its free
variables. Given a variablex we denote byno(x,M) the number of occurrences
of x in M . We denote by|M | the structural size of a termM . The notation−→
will stand forβ-reduction on lambda-terms. We denote substitution (without capture
of variable) byM [N/x]. When there is no ambiguity we will writeM [Mi/xi] for
M [M1/x1, . . . ,Mn/xn].

2

Notations for lists:ǫ will denote the empty list and pushing elementa on list l will
be denoted bya :: l. The prefix relation on lists will be denoted by≤.

2 Typing in Elementary Affine Logic

The formulas of Intuitionistic multiplicative Elementaryaffine logic (Elementary affine
logic for short, EAL) are given by the following grammar:

A,B ::= α | A⊸ B | !A | ∀α.A

We restrict here to propositional EAL (without quantification). A natural deduction
presentation for this system is given on Figure 1.

A ⊢ A
(var) Γ ⊢ B

Γ, A ⊢ B
(weak)

Γ1 ⊢ A⊸ B Γ2 ⊢ A

Γ1,Γ2 ⊢ B
(appl)

Γ, A ⊢ B

Γ ⊢ A⊸ B
(abst)

Γ1 ⊢ !A1 · · ·Γn ⊢ !An A1, . . . , An ⊢ B

Γ1, . . . ,Γn ⊢ !B
(prom)

Γ ⊢ !A !A, . . . , !A,∆ ⊢ B

Γ,∆ ⊢ B
(contr)

Figure 1: Natural deduction for EAL.

We callerasureA− of an EAL formulaA the simple type defined inductively by:

α− = α, (!A)− = A−, (A⊸ B)− = A− → B−.

Conversely, given a simple typeT we say that an EAL formulaA is adecorationof T
if we haveA− = T .

We will use EAL as a type system for lambda-terms, but in a way more constrained
than that allowed by this natural deduction presentation:

Definition 1 LetM be a lambda-term; we sayM is typable inEAL⋆ with typeΓ ⊢
M : A if there is a derivation of this judgment in the system from Figure 3 where any
(contr) rule is either followed by an (abst) on the contracted formula, or is the last rule
of the derivation.

The main restriction of this definition is that it does not allow sharing for typing
lambda-terms. This comes in contrast with the computational study of ELL carried
out for instance in [DJ03] but is motivated by several points:

• if we use sharing for typing, some important structure of theproof is lost when
we look at the term after forgetting the type derivation and the computational
behaviour of the proof and the term will differ (see the discussion in [BT04]);

3

x1 : !A, . . . , xn : !A,Γ ⊢M : B

x : !A,Γ ⊢M [x/x1, . . . , xn] : B
(contr)

x : !!A, !Γ ⊢M [x/x1, . . . , xn] : !B
(prom)

⇓

x1 : !A, . . . , xn : !A,Γ ⊢M : B

x1 : !!A, . . . , xn : !!A,Γ ⊢M : !B
(prom)

x : !!A, !Γ ⊢M [x/x1, . . . , xn] : !B
(contr)

Figure 2:

• this approach without sharing is enough to define Dual Light Affine Logic (DLAL)
typing ([BT04]) which is sufficient to capture polynomial time computation;

• sharing-free derivations are necessary to be able to use EALfor optimal reduc-
tion with the abstract part of Lamping’s algorithm, as argued by Coppola and
Martini in [CM01];

• finally: using sharing would make type inference more difficult . . .

Actually, the notion of EAL-typability for lambda-terms considered by Coppola
and Martini in [CM01] even if it does not allow sharing is slightly more liberal than
EAL⋆-typability. In their case one might follow a (contr) rule bya (prom) rule pro-
vided all theMis are variables (we can then keep only the main premise of the rule).
However it follows from [CRdR03] (with the notion of canonical abstract terms) that
if a judgmentΓ ⊢ M : A is derivable in Coppola-Martini’s type system, then it is
derivable inEAL⋆. The key point for this remark is the fact that one can performthe
commutation of Figure 2. In proof-net words ([DJ03]) this means pushing the contrac-
tion nodes which are premises of an auxiliary door of a box outside the box.

x : A ⊢ x : A
(var) Γ ⊢M : B

Γ, x : A ⊢M : B
(weak)

Γ1 ⊢M1 : A⊸ B Γ2 ⊢M2 : A

Γ1,Γ2 ⊢ (M1M2) : B
(appl)

Γ, x : A ⊢M : B

Γ ⊢ λx.M : A⊸ B
(abst)

Γ1 ⊢M1 : !A1 · · ·Γn ⊢Mn : !An x1 : A1, . . . , xn : An ⊢M : B

Γ1, . . . ,Γn ⊢M [Mi/xi] : !B
(prom)

x1 : !A, . . . , xn : !A,∆ ⊢M : B

x : !A,∆ ⊢M [x/x1, . . . , xn] : B
(contr)

Figure 3: Typing rules forEAL⋆.

4

3 Concrete syntax and box reconstruction

3.1 Pseudo-terms

In order to describe the structure of type derivations we need a term calculus more
informative than lambda-calculus. We will use the languageintroduced in [AR02]
(calledconcrete syntaxin this paper), which is convenient because it has no explicit
construct neither for boxes, nor for contractions. It was stressed in this reference that
this syntax is not faithful for LAL: several type derivations (LAL proofs) correspond to
the same term. However it is faithful forEAL⋆, precisely because there is no sharing
and no ambiguity on the placement of contractions.

Let us introducepseudo-terms:

t, u ::= x | λx.t | (t)u | !t | !t

The idea is that! constructs correspond to main doors of boxes inproof-nets([Gir87,
AR02]) while ! constructs correspond to auxiliary doors of boxes. But notethat there
is no information in the pseudo-terms to link occurrences of! and! corresponding to
the same box.

There is a natural erasure map(.)− from pseudo-terms to lambda-terms consisting
in removing all occurrences of! and!. Whent− =M , t is called adecorationof M .

For typing pseudo-terms the rules are the same as in Definition 1 and Figure 3, but
for (prom):
Γ1 ⊢ t1 : !A1 · · ·Γn ⊢ tn : !An x1 : A1, . . . , xn : An ⊢ t : B

Γ1, . . . ,Γn ⊢ !t [!ti/xi] : !B
(prom)

We want to give an algorithm to determine if a pseudo-term canbe typed inEAL⋆:
this can be seen as a kind of correctness criterion allowing to establish if boxes can be
reconstructed in a suitable way; this issue will be examinedin 3.2.

Actually, when searching forEAL⋆ type derivations for (ordinary) lambda-terms
it will be interesting to consider a certain subclass of derivations. A type derivation in
EAL⋆ is restrictedif in all applications of the rule (prom),

(i) the subjectM of the main premisex1 : A1, . . . , xn : An ⊢ M : B is not a
variable, and

(ii) the last rules to derive auxiliary premisesΓi ⊢ Mi :!Ai (1 ≤ i ≤ n) are either
(var) or (appl).

A pseudo-term isrestrictedif it is obtained by the following grammar:

a ::= x | λx.t | (t)t

t ::= !ma,

wherem is an arbitrary value inZ and!ma is defined by:

!ma = ! · · · !
︸︷︷︸

m times

a if m ≥ 0;

= ! · · · !
︸︷︷︸

−m times

a if m < 0.

5

We then have:

Proposition 1

1. (For lambda-terms) ifΓ ⊢ M : A has a type derivation, then it also has a
restricted type derivation.

2. (For pseudo-terms) Every restricted derivation yields arestricted pseudo-term.

Proof (Sketch).1. Notice that the typing rules in Figure 3 satisfy the following substi-
tution property:

if Γ1 ⊢ M1 : A has a derivation of lengthl1 andx : A,Γ2 ⊢ M2 : B
has a derivation of lengthl2 such that no(cntr) rule has been performed
onx : A, thenΓ1,Γ2 ⊢ M2[M1/x] : B has a derivation of length shorter
thanl1 + l2.

Given a derivation ofΓ ⊢M : A that is not restricted and contains for instance
....

Γ1 ⊢ N1 :!A1 y : A1 ⊢ y : A1

(var)

Γ1 ⊢ N1 :!A1

(prom)

violating the condition (i), one can rewrite it into

....
Γ1 ⊢ N1 :!A1,

strictly shortening the length of the derivation.
Given a derivation that is not restricted and contains

....
Γ1 ⊢ N :!C

....
y : C ⊢M1 : A1

Γ1 ⊢M1[N/y] :!A1

(prom)
....

x1 : A1 ⊢M : B

Γ1 ⊢M [M1[N/y]/x1] :!B
(prom)

violating the condition (ii), we havey : C ⊢ M [M1/x1] : B by the substitution
property. Therefore, one can rewrite the derivation into

....
Γ1 ⊢ N :!C

....
y : C ⊢M [M1/x1] : B

Γ1 ⊢M [M1/x1][N/y] :!B
(prom)

,

strictly shortening the length of the derivation.
The proof is similar whenM contains more than one free variables. The other

cases are immediate.
2. By induction on the length of the restricted derivation.

6

3.2 Box reconstruction

We will consider words over the languageL = {!, !}⋆.
If t is a pseudo-term andx is an occurrence of variable (either free or bound) int,

we definet〈x〉 as the word ofL obtained by listing the occurrences of!, ! holdingx in
their scope. More formally:

x〈x〉 = ǫ,

(t1)t2〈x〉 = ti〈x〉 whereti is the subterm containingx,

(λy.t)〈x〉 = t〈x〉 (y might be equal tox),

(!t)〈x〉 = ! :: (t〈x〉),

(!t)〈x〉 = ! :: (t〈x〉).

We define a map:s : L → Z by:

s(ǫ) = 0,

s(! :: l) = 1 + s(l)

s(! :: l) = −1 + s(l)

We calls(l) thesumassociated tol.
Let t be a pseudo-term. We say thatt satisfies thebracketing conditionif:

• for any occurrence of variablex in t,

∀l ≤ t〈x〉, s(l) ≥ 0,

• moreover ifx is an occurrence of free variable:

s(t〈x〉) = 0.

That is to say: if! is seen as an opening bracket and! as a closing bracket, int〈x〉 any
! matches a! (we will say thatt〈x〉 is weakly well-bracketed) and if x is freet〈x〉 is
well-bracketed.

We sayt satisfies thescope conditionif: for any subtermλx.v of t, for any occur-
rencexi of x in v, v〈xi〉 is well-bracketed:

• ∀l ≤ v〈xi〉, s(l) ≥ 0,

• ands(v〈xi〉) = 0.

It is obvious that:

Lemma 2 If t is a pseudo-term which satisfies the scope condition, then any subterm
of t also satisfies this condition.

Proposition 3 If t is anEAL⋆ typed term, thent satisfies the bracketing and scope
conditions.

7

Proof. By induction on theEAL⋆ type derivations.
Now, we can observe the following property:

Lemma 4 (Boxing) If !u is a pseudo-term which satisfies the bracketing condition then
there existv, u1, . . . ,un unique (up to renaming ofv’s free variables) such that:

• FV (v) = {x1, . . . , xn} and for1 ≤ i ≤ n, no(xi, v) = 1,

• !u = !v[!u1/x1, . . . , !un/xn],

• for 1 ≤ i ≤ n, v〈xi〉 is well-bracketed.

Proof. We denote by!0 the first occurrence of! in the term considered:!0u. Denote
by !1, . . . , !n the occurrences of! matching!0 in the words!u〈x〉, wherex ranges over
the occurrences of variables in!u. Let ui, with 1 ≤ i ≤ n, be the subterms of!u such
that !iui is a subterm of!u, for 1 ≤ i ≤ n. Then it is clear that noui is a subterm of
auj , for i 6= j. Let nowv be the pseudo-term obtained fromu by replacing each!iui
by a distinct variablexi. Then naturally we have!u = !v[!u1/x1, . . . , !un/xn], and by
definition of!i we know that for1 ≤ i ≤ n, v〈xi〉 is well-bracketed.

Finally let us assumex is an occurrence of free variable inv distinct fromxi, for
1 ≤ i ≤ n. Thenx is an occurrence of free variable in!u, and as!u is well-bracketed
we have thats(!u〈x〉) = 0, hencex is in the scope of a!0 matching!0. Then!0 must be
one of the!i, for 1 ≤ i ≤ n, hencex is in ui and thus does not occur inv, which gives
a contradiction. Therefore we haveFV (v) = {x1, . . . , xn} and the proof is over.

Given a pseudo-termt we callEAL type assignmentfor t a mapΓ from the vari-
ables oft (free or bound) toEAL formulas. EAL type assignments are simply called
assignments when there is no danger of confusion. This mapΓ is extended to a partial
map from subterms oft toEAL formulas by the following inductive definition:

Γ(!u) = !A, if Γ(u) = A,

Γ(!u) = A, if Γ(u) = !A, undefined otherwise,
Γ(λx.u) = A⊸ B, if Γ(x) = A,Γ(u) = B,
Γ((u1)u2) = B, if Γ(u2) = A andΓ(u1) = A⊸ B, undefined otherwise.

Given a pair(t,Γ) of a pseudo-termt and an assignmentΓ (we omitΓ if it is natural
from the context) we say that(t,Γ) satisfies thetyping conditionif:

• Γ(t) is defined (so in particular each subterm oft of the form(u1)u2 satisfies the
condition above),

• for any variablex of t which has at least 2 occurrences we have:Γ(x) is of the
form !B for some formulaB.

Given anEAL⋆ type derivation for a pseudo-termt there is a natural assignment
Γ obtained from this derivation: the value ofΓ on free variables is obtained from the
environment of the final judgment and its value on bound variables from the type of the
variable in the premise of the abstraction rule in the derivation.

Proposition 5 If t is anEAL⋆ typed pseudo-term andΓ is an associated assignment
then(t,Γ) satisfies the typing condition.

8

Moreover it is easy to observe that:

Lemma 6 If (t,Γ) satisfies the typing condition andu is a subterm oft, then(u,Γ)
also satisfies the typing condition.

Now, the conditions on pseudo-terms we have listed up to now are sufficient to ensure
thatt is an EAL⋆ typed pseudo-term:

Theorem 7 If t is a pseudo-term andΓ an assignment such that:

• t satisfies the bracketing and scope conditions,

• (t,Γ) satisfies the typing condition,

thent is typable in EAL⋆ with a judgment∆ ⊢ t : A such that:Γ(t) = A and∆ is
the restriction ofΓ to the free variables oft.

Proof. Let us use the following numeration for the conditions:
(i) bracketing, (ii) scope, (iii) typing.
We proceed by induction on the pseudo-termt:

• t = x is trivial.

• t = λx.u,

it is clear thatu satisfies the first part of the bracketing condition. The second
part of the bracketing condition (for free variables) is ensured by the fact thatt
satisfies the scope condition forx. It is then trivial thatu satisfies conditions (ii),
(iii), thus by induction hypothesis we have inEAL⋆ : ∆, x : A ⊢ u : B where
Γ(x) = A, Γ(u) = B and by an abstraction rule we get the expected property
for t.

• t = (t1)t2,

the subtermst1, t2 then satisfy conditions (i) to (iii), hence by induction hypoth-
esis we have:

∆1 ⊢ t1 : A1

∆2 ⊢ t2 : A2.

whereΓ(ti) = Ai and∆i is the restriction ofΓ to the free variables ofti. As t
satisfies the typing condition (iv) we know thatA1 is of the formA1 = A2 ⊸

B1. If t1 andt2 have a free variabley in common then ast satisfies the typing
condition we have thatΓ(y) = !B. We rename int1, t2 the free variables that
they have in common, and from the previous judgments applying an (appl) rule
and a (contr) rule we get the expected judgment fort.

• t = !u,

thent does not satisfy the bracketing condition (i), so the implication is valid.

9

• t = !u,

by the Boxing Lemma 4,t can be written ast = !v[!u1/x1, . . . , !un/xn] where
FV (v) = {x1, . . . , xn} and eachv〈xi〉 is well-bracketed.

Let us show thatui satisfies conditions (i)–(iii). Takey an occurrence of variable
in ui. We have:

t〈y〉 = ! :: v〈xi〉 :: ! :: ui〈y〉,

thus asv〈xi〉 is well bracketed,ui〈y〉 satisfies the bracketing condition andui
satisfies (i).

By Lemmas 2 and 6 ast satisfies (ii) and (iii),ui also satisfies (ii) and (iii).
Therefore by induction hypothesis we get that there exists an EAL⋆ derivation
of conclusion:

∆i ⊢ ui : Ai,

whereAi = Γ(ui), for 1 ≤ i ≤ n.

Let us now examine the conditions forv. As t satisfies the bracketing condition
and by the Boxing Lemma 4, we get thatv satisfies (i). By the Boxing Lemma
again we know that all free variables ofv have exactly one occurrence. It is easy
to check that ast satisfies the scope condition (ii), so doesv.

Consider now the typing condition. LetΓ̃ be defined asΓ but Γ̃(xi) = Γ(!ui) for
1 ≤ i ≤ n. If y has several occurrences inv then it has several occurrences int,
henceΓ(y) = !B, soΓ̃(y) = !B. If (v1)v2 is a subterm ofv then(v′1)v

′

2, where
v′i = vi[!u1/x1, . . . , !un/xn], is a subterm oft andΓ̃(v′i) = Γ(vi). Therefore as
(t,Γ) satisfies the typing condition, then so does(v, Γ̃).

As Γ(ui) = Ai andΓ(!ui) is defined we haveAi = !Bi and Γ̃(xi) = Bi.
Finally asv satisfies conditions (i)–(iii), by i.h. there exists anEAL⋆ derivation
of conclusion:

∆, x1 : B1, . . . , xn : Bn ⊢ v : C,

whereC = Γ̃(v).

If ui anduj for i 6= j have a free variabley in common then ast satisfies the
typing condition we haveΓ(y) = !B. We rename the free variables common to
several of theuis, apply a (prom) rule to the judgements onui and the judgement
onv, then some (contr) rules and get a judgement:

∆′ ⊢ t : !C.

Hence the i.h. is valid fort, which concludes the proof.

4 A decoration algorithm

4.1 Decorations and instantiations

We consider the followingdecoration problem:

10

Problem 1 (decoration) let x1 : A1, . . . , xn : An ⊢ M : B be a simply typed term;
does there exist EAL decorationsA′

i of theAi for 1 ≤ i ≤ n andB′ of B such that
x1 : A′

1, . . . , xn : A′

n ⊢M : B′ is a valid EAL⋆ judgement forM?

For that we will need to find out the possible concrete terms corresponding toM . Actu-
ally following section 3.1 and Prop. 1 it is sufficient to search for a suitable term in the
set of restricted pseudo-terms, instead of considering thewhole set of pseudo-terms. To
perform this search we will useparameterized restricted pseudo-terms(parameterized
pseudo-terms, for short), defined by the following grammar:

a ::= x | λx.t | (t)t

t ::= !na

wheren is a fresh parameter (meant to range overZ).
Given a parameterized pseudo-term we denote bypar(t) the set of its parameters.

An instantiationφ : par(t) → Z allows to define a restricted pseudo-termφ(t) ob-
tained by substituting each parametern by the integerφ(n).

We will also considerparameterized typesdefined by:

A ::= !nα | !n(A⊸ A)

wheren is a fresh parameter.
We denote bypar(A) the set of parameters ofA. If φ is an instantiationφ :

par(A) → Z, thenφ(A) is defined only when a nonnegative integer is substituted for
each parameter. We define the size|A| of a parameterized formulaA as the structural
size of its underlying simple type (so the sum of the number of⊸ connectives and
atomic subtypes).

Just as we have defined EAL type assignments for pseudo-termswe will consider
parameterized type assignmentsfor parameterized pseudo-terms with values parame-
terized types, andsimple type assignmentsfor lambda-terms with values simple types.
Let Σ be a parameterized type assignment for a parameterized pseudo-termt. We de-
note bypar(Σ) the set of parameters occurring in parameterized typesΣ(x), for all
variablesx of t. Let φ : par(Σ) → Z be an instantiation and suppose thatφ(n) ≥ 0
holds for everyn ∈ par(Σ). Then one can define the mapφΣ by: φΣ(x) = φ(Σ(x)).
When it is defined, it is an EAL type assignment forφ(t). We define the size|Σ| of Σ
as the maximum of|Σ(x)| for all variablesx.

The erasure map(.)− is defined for parameterized pseudo-terms and parameterized
types analogously to those for pseudo-terms and EAL types. It is clear that given a
lambda-termM there exists a unique parameterized pseudo-termt (up to renaming
of its parameters) such thatt− = M . We denotet by M and call it theparameter
decorationof M . Note that the size ofM is linear in the size ofM . Given a simple
typeT , its parameter decorationT is defined analogously. Finally, given a simple type
assignmentΘ for a lambda-termt (with values simple types), itsparameter decoration
Θ is defined pointwise, by takingΘ(x) = Θ(x), where all these decorations are taken
with disjoint parameters.

The following picture illustrates the relationship among various notions introduced
so far:

11

pseudo-terms
EAL types

EAL typ. assign.

instantiation
←−

param. pseudo-terms
param. types

param. typ. assign.

erasure
−→
←−

param. decoration

lambda-terms
simple types

simple typ. assign.

Given a simple type derivation ofx1 : T1, . . . , xn : Tn ⊢M : T , one can naturally
obtain a simple type assignmentΘ forM . Furthermore, it is automatic to build param-
eter decorationsM andΘ. Suppose now that there is an instantiationφ for (M,Θ) for
whichφΘ is defined. ThenφΘ(xi) is a decoration ofTi for 1 ≤ i ≤ n andφΘ(M)
is a decoration ofT . Conversely, any decorations ofTi’s andT are obtained through
some instantiations for(M,Θ). Therefore, the decoration problem boils down to the
following instantiation problem:

Problem 2 Given a parameterized pseudo-termt and a parameterized type assign-
mentΣ for it: does there exist an instantiationφ such thatφ(t) has an EAL⋆ type
derivation associated toφΣ?

To solve this problem we will use Theorem 7 to find suitable instantiationsφ if
there exists any. For that we will need to be able to state the conditions of this theorem
on parameterized pseudo-terms; they will yield linear constraints. We will speak of
linear inequations, meaning in fact both linear equations and linear inequations.

We will consider lists over parametersn. Let us denote byL′ the set of such lists.
As for pseudo-terms we define fort a parameterized pseudo-term andx an occur-

rence of variable int, a list t〈x〉 in L′ by:

x〈x〉 = ǫ,

(t1)t2〈x〉 = ti〈x〉 whereti is the subterm containingx,

(λy.t)〈x〉 = t〈x〉(y might be equal tox),

(!na)〈x〉 = n :: (a〈x〉).

The sums(l) of an elementl of L′ is a linear combination defined by:

s(ǫ) = 0,

s(n :: l) = n+ s(l).

Let t be a parameterized pseudo-term. We define theboxing constraintsfor t as the
set of linear inequationsCb(t) obtained fromt in the following way:

• bracketing: for any occurrence of variablex in t and any prefixl of t〈x〉, add
the inequation:s(l) ≥ 0; moreover ifx is an occurrence of free variable add the
equations(t〈x〉) = 0.

• scope: for any subtermλx.v of t, for any occurrencexi of x in v, add similarly
the inequations expressing the fact thatv〈xi〉 is well-bracketed.

It is then straightforward that:

Proposition 8 Given an instantiationφ for t, we have:φ(t) satisfies the bracketing
and scope conditions iffφ is a solution ofCb(t).

12

Note that the number of inequations inCb(t) is polynomial in the size oft (hence also
in the size oft−).

In the sequel, we will need to unify parameterized types. Forthat, given 2 parame-
terized typesA andB we define their unification constraintsU(A,B) by:

U(!mα, !nα) = {m = n}
U(!m(A1 ⊸ A2), !

n(B1 ⊸ B2)) = {m = n} ∪ U(A1, B1) ∪ U(A2, B2)

andU(A,B) = {false} (unsolvable constraint) in the other cases.
LetΣ be a parameterized type assignment for a parameterized pseudo-termt. Then

we extendΣ to a partial map from the subterms oft to parameterized types in the
following way:

Σ(!na) = !mA with m fresh, if Σ(a) = !kA,
Σ(λx.u) = !m(A⊸ B) with m fresh, if Σ(x) = A,Σ(u) = B,
Σ((u1)u2) = B, if Σ(u1) = !n(A⊸ B), undefined otherwise.

We define thetyping constraintsfor (t,Σ) as the set of linear inequationsCtyp(t,Σ)
obtained fromt, Σ as follows:

• abstractions: for any subterm oft of the formλx.uwith Σ(λx.u) =!m(A⊸ B),
addm = 0.

• applications: for any subterm oft of the form(u1)u2 with Σ(u1) = !m(A1 ⊸

B1) andΣ(u2) = A2 add the constraintsU(A1, A2)∪{m = 0}; if Σ(u1) is not
of this form thenCtyp(t,Σ) = {false}.

• bang: for any subterm oft of the form!nuwith Σ(!nu) = !mA andΣ(u) = !kA,
add the constraintsm = k+ n andm ≥ 0.

• contractions: for any variablex of twhich has at least 2 occurrences andΣ(x) =
!mA, add the constraintm ≥ 1.

• types: for any parameterm in par(Σ), add the constraintm ≥ 0.

We then have:

Proposition 9 Let t be a parameterized pseudo-term andΣ be a parameterized type
assignment fort such thatΣ(t) is defined. Given an instantiationφ for (t,Σ), we
have:φΣ is defined and(φ(t), φΣ) satisfies the typing condition iffφ is a solution of
Ctyp(t,Σ).

Note that the number of inequations inCtyp(t,Σ) is polynomial in(|t|+ |Σ|).
We defineC(t,Σ) = Cb(t) ∪ Ctyp(t,Σ). Using the two previous Propositions and

Theorem 7 we get the following result, which solves the instantiation problem:

Theorem 10 Let t be a parameterized pseudo-term,Σ be a parameterized type as-
signment fort such thatΣ(t) is defined, andφ be an instantiation fort, Σ. The two
following conditions are equivalent:

13

• φ(t) is typable in EAL⋆ with a judgment∆ ⊢ φ(t) : A such thatφΣ(t) = A
and∆ is the restriction ofφΣ to the free variables oft,

• φ is a solution ofC(t,Σ).

Moreover the number of inequations inC(t,Σ) is polynomial in(|t|+ |Σ|).

If t andΣ come from a simply typed lambda-termM and its typing derivation, then
Σ(t) is always defined andCtyp(t,Σ) never gives rise tofalse. By noting this fact, we
obtain the following result, which solves the decoration problem:

Theorem 11 Let x1 : A1, . . . , xn : An ⊢ M : B be a simply typed term and letΘ
be the associated simple type assignment. There exist decorationsA′

i of theAi for
1 ≤ i ≤ n andB′ of B such thatx1 : A′

1, . . . , xn : A′

n ⊢ M : B′ is a valid EAL⋆

judgement iff there is a solutionφ to C(M,Θ).
In this case each solutionφ gives a suitableEAL⋆ judgmentx1 : A′

1, . . . , xn :
A′

n ⊢ M : B′. Moreover the number of inequations and the number of parameters in
C(t,Θ) are polynomial in(|t|+ |Θ|).

We give an example of execution of the algorithm in the Appendix.

4.2 Solving the constraints

Now we turn our attention to the constraints and their solutions. Lett be a param-
eterized pseudo-term andΣ be an assignment. We consider instead of the previ-
ous instantiation maps with values inZ, maps with rational numbers as values:ψ :
par(t) ∪ par(Σ)→ Q.

If ψ is such a map anda is a non-negative integer we defined the mapaψ by:
(aψ)(n) = a.ψ(n), for any parametern.

Lemma 12 If ψ is a solution ofC(t,Σ) anda is a strictly positive integer thenaψ is
also a solution ofC(t,Σ).

Proof. It is enough to observe that for any inequation ofCb(t) andCtyp(t,Σ) if ψ is
a solution then so isaψ:

• all inequations fromCb(t) and all those fromCtyp(t,Σ) except the contractions
case are homogeneous (no constant element in combinations)and asa ≥ 0 the
inequalities are preserved when multiplying both members by a;

• the inequations coming from the contraction cases inCtyp(t,Σ) are of the form
m ≥ 1, so asa ≥ 1 we have: ifψ(m) ≥ 1 holds then so doesaψ(m) ≥ 1.

Recall that the problem of finding if a linear system of inequationsC admits a solution
in Q can be solved in polynomial time in the size ofC and its number of variables.
Hence we have:

Proposition 13 The problem of whether the systemCtyp(t,Σ) admits a solution with
values inZ can be solved in time polynomial in(|t|+ |Σ|).

14

Proof. As the number of inequations and the number of parameters inCtyp(t,Σ) is
polynomial in(|t|+ |Σ|) and by the result we recalled above we have: one can decide
if Ctyp(t,Σ) admits a solution with values inQ in time polynomial in(|t|+ |Σ|).

Then, if there is no solution inQ there is no solution inZ. Otherwise ifψ is a solu-
tion in Q take fora the least multiple of the denominators ofψ(n), for all parameters
n. Then by Lemma 12,aψ is a solution inZ. It then follows that:

Theorem 14 The decoration problem of Theorem 11 can be solved in time polynomial
in (|t|+ |Γ|).

4.3 Type inference

The procedure forEAL⋆ decoration we have given can be extended to a type inference
procedure forEAL⋆ in the way used in [CM01]: given an ordinary termM ,

• compute the principal assignmentΘ forM (giving the principal simple type),

• use the procedure of Theorem 11 to find ifM , Θ admits a suitableEAL⋆

decoration.

It follows from a result of [CRdR03] that:

Proposition 15 if M is EAL⋆ typable and admits as principal simple type judgment
∆ ⊢ M : A, thenM admits an EAL⋆ type judgment which is a decoration of this
judgment.

In order to have a self-contained presentation and to take advantage of the simplicity
of our framework we will give a proof of Prop. 15 here. It follows from it that the
algorithm for EAL⋆ type inference we gave is complete.

First we define two functionsTE(.) andE(.) on pseudo-terms allowing to find for
a pseudo-termt all its possibleEAL⋆ types:TE(.) gives a typing scheme andE(.) the
associated set of equations. Note that the termt might not beEAL⋆ typable anyway
as we are not considering here the boxing conditions. The functions are defined by
induction on pseudo-terms below:

• if t = x:
thenTE(t) =< x : α;α >, E(x) = ∅.

• if t = λx.t1 andTE(t1) =< Γ;B >:
thenTE(t) =< Γ′;A ⊸ B > with: A = Γ(x) andΓ′ = Γ if Γ(x) is defined;
A = α (fresh variable) andΓ′ extendsΓ with Γ′(x) = α otherwise.E(t) =
E(t1).

• if t = (t1)t2 andTE(ti) =< Γi;Ai > for i = 1, 2:
let FV (t1) ∩ FV (t2) = {x1, . . . , xk}, Γ be defined by:Γ(y) = Γi(y) if y ∈
FV (ti) andy 6∈ {x1, . . . , xk}; Γ(xj) = !βj for 1 ≤ j ≤ k, where theβjs
are fresh type variables. LetTE(t) =< Γ;α > (α fresh variable) andE(t) =
E(t1) ∪ E(t2) ∪ {A1 ≡ (A2 ⊸ α); Γ1(xj) ≡ !βj ,Γ2(xj) ≡ !βj , 1 ≤ j ≤ k}.

15

• if t = !t1 andTE(t1) =< Γ1;A1 > thenTE(t) =< Γ1; !A1 > andE(t) =
E(t1).

• if t = !t1 andTE(t1) =< Γ1;A1 > thenTE(t) =< Γ1;α > (α fresh variable)
andE(t) = E(t1) ∪ {A1 ≡ !α}.

Call EAL substitution(resp. simple type substitution) a mapσ from type variables to
EAL formulas (resp. simple types). Given an EAL-substitutionσ and an EAL formula
A, σA is the formula obtained by substituting type variablesα in A by σα. Given a set
of equationsE we say thatσ is a solution ofE if for anyA1 ≡ A2 in E , σA1 = σA2

holds.
We have:

Proposition 16 Let t be a pseudo-term. The two following conditions are equivalent:

• (t,Γ) satisfies the typing condition andΓ(t) = B;

• TE(t) =< ∆, A > and there exists a solutionσ of E(t) such that:Γ = σ∆ and
B = σA.

Now, we define similar functionsTS(.) andS(.) for typing terms in simple types:

• if t = x:
thenTS(t) =< x : α;α >, S(x) = ∅.

• if t = λx.t1 andTS(t1) =< Γ;B >:
thenTS(t) =< Γ′;A ⊸ B > with: A = Γ(x) andΓ′ = Γ if Γ(x) is defined;
A = α (fresh variable) andΓ′ extendsΓ with Γ′(x) = α otherwise.S(t) =
S(t1).

• if t = (t1)t2 andTS(ti) =< Γi;Ai > for i = 1, 2:
let FV (t1) ∩ FV (t2) = {x1, . . . , xk}, Γ be defined by:Γ(y) = Γi(y) if y ∈
FV (ti) andy 6∈ {x1, . . . , xk}; Γ(xj) = βj for 1 ≤ j ≤ k, where theβjs
are fresh type variables. LetTS(t) =< Γ;α > (α fresh variable) andS(t) =
S(t1) ∪ S(t2) ∪ {A1 ≡ (A2 ⊸ α); Γ1(xj) ≡ βj ,Γ2(xj) ≡ βj , 1 ≤ j ≤ k}.

• if t = !t1 andTS(t1) =< Γ1;A1 > thenTS(t) =< Γ1;A1 > andS(t) = S(t1).

• if t = !t1 andTS(t1) =< Γ1;A1 > thenTS(t) =< Γ1;α > (α fresh variable)
andS(t) = S(t1) ∪ {A1 ≡ α}.

We have:

Proposition 17 Let M be a lambda-term andt a pseudo-term such thatt− = M .
ThenM has a simple type iffS(t) has a solution and in that case : ifτ is the most
general unifier (m.g.u.) ofS(t) andTS(t) =< Γ;A > thenτΓ′ ⊢ M : τA is the
principal simple type ofM (whereΓ′ is the restriction ofΓ to FV (M)).

16

We need to relate equations in EAL and in simple types. LetE be a set of EAL equa-
tions andE− denote the set of equationsA−

1 ≡ A−

2 , for all equationsA1 ≡ A2 in
E .

Let σ be an EAL substitution andσ− be the simple type substitution given by:
σ−(α) = σ(α)

−, for all α. Observe that:
Fact. If σ is a solution ofE thenσ− is a solution ofE−.
Finally we have:

Proposition 18 Let E be a set of EAL equations. IfE admits a solution andτ is the
m.g.u. ofE− then there exists a solutionσ of E such thatσ− = τ .

Proof. It can be adapted in a straightforward way from the proof of Proposition 21
in [Bai04]. Moreover we have:

Proposition 19 Let t be a pseudo-term andTE(t) =< Γ, A >, TS(t) =< ∆, B >,
then we have∆ = Γ−,B = A− andS(t) = E(t)−.

We can now prove Prop. 15:
Proof. [Prop. 15] AssumeM is EAL⋆ typable. Then there exists a pseudo-termt
such thatt− =M and which isEAL⋆ typable. By Prop. 16 we know thatE(t) admits
a solutionσ0. By Prop. 19,E(t)− = S(t), so by the Fact observed aboveS(t) has a
solution, hence it has a m.g.u.τ . By Prop. 18 we get that there exists a solutionσ of
E(t) such thatσ− = τ .

Let TE(t) =< Γ;A >; then by Prop. 16 and Theorem 7 we have anEAL⋆

judgementσΓ′ ⊢ t : σA, whereΓ′ is the restriction ofΓ toFV (t). Finally by Prop. 17
and 19 we know that it is a decoration of the principal simple type ofM , which ends
the proof.

It then follows from Theorem 14 that ourEAL⋆ type inference algorithm applied
to a termM can be executed in time bounded by a polynomial in(|t| + |Θ|) whereΘ
is the principal (simple type) assignment ofM .

Note that this does not mean that the algorithm is polynomialtime in |t|, as it is
known that the principal simple type assignment fort can have a size exponential in
|t|.

5 Conclusion

We have given a new type inference algorithm forEAL⋆ which is more efficient and
we think simpler than the previous ones. It generates a set ofconstraints which consists
of two parts: one which deals with placing suitable (potential) boxes and the other one
with typing the boxed term obtained. We believe this second part could be adapted to
deal with other type systems like second-order EAL (assuming a system F type given).
We are currently working on the adaptation to DLAL.

We have shown that the set of constraints needed in our algorithm is polynomial in
the size of the term and its simple type assignment. Finally we have also shown that
by using resolution of linear inequations over rationals our algorithm can be executed
in polynomial time with respect to the size of the initial term and its principal simple
type assignment.

17

References

[ACM00] A. Asperti, P. Coppola, and S. Martini. (Optimal) duplication is not ele-
mentary recursive. InProceedings POPL, 2000.

[AR02] A. Asperti and L. Roversi. Intuitionistic light affine logic. ACM Transac-
tions on Computational Logic, 3(1):1–39, 2002.

[Asp98] Andrea Asperti. Light affine logic. InProceedings LICS’98. IEEE Com-
puter Society, 1998.

[Bai02] P. Baillot. Checking polynomial time complexity with types. InProceed-
ings of IFIP TCS’02, Montreal, 2002. Kluwer Academic Press.

[Bai04] P. Baillot. Type inference for light affine logic viaconstraints on words.
Theoretical Computer Science, 2004. to appear.

[BT04] P. Baillot and K. Terui. Light types for polynomial time computation in
lambda-calculus. InProceedings of LICS’04. IEEE Computer Press, 2004.
long version on http://arXiv.org cs.LO/0402059.

[CM01] P. Coppola and S. Martini. Typing lambda-terms in elementary logic with
linear constraints. InProceedings TLCA’01, volume 2044 ofLNCS, 2001.

[CRdR03] P. Coppola and S. Ronchi della Rocca. Principal typing in Elementary
Affine Logic. In Proceedings TLCA’03, LNCS, 2003.

[DJ03] V. Danos and J.-B. Joinet. Linear logic and elementary time. Information
and Computation, 2003.

[DJS94] V. Danos, J.-B. Joinet, and H. Schellinx. On the linear decoration of intu-
itionistic derivations.Archive for Mathematical Logic, 33(6), 1994.

[Gir87] J.-Y. Girard. Linear logic.Theoretical Computer Science, 50:1–102, 1987.

[Gir98] J.-Y. Girard. Light linear logic.Information and Computation, 143:175–
204, 1998.

[GSS92] J.-Y. Girard, A. Scedrov, and P. Scott. Bounded linear logic: A modular
approach to polynomial time computability.Theoretical Computer Science,
97:1–66, 1992.

[Laf04] Y. Lafont. Soft linear logic and polynomial time.Theoretical Computer
Science, 318(1–2):163–180, 2004.

[Rov98] L. Roversi. A Polymorphic Language which is Typableand Poly-step.
In Proceedings of the Asian Computing Science Conference (ASIAN’98),
volume 1538 ofLNCS, pages 43 – 60. Springer Verlag, December 1998.

[Ter01] K. Terui. Light Affine Lambda-calculus and polytimestrong normaliza-
tion. In Proceedings LICS’01. IEEE Computer Society, 2001. Full version
available at http://research.nii.ac.jp/∼ terui.

18

http://arXiv.org
http://arxiv.org/abs/cs/0402059
http://research.nii.ac.jp/~

APPENDIX

A An example

Let us consider a small example to illustrate our method: takeM = λy.λz.(y)(y)z
(the Church integer 2). The decorationM is given by:

M = !m1λy.!m2λz.!m3 [(!m4y1) !
m5 [(!m6y2)!

m7z]]

(we have distinguished the 2 occurrences ofy in y1 andy2)
We get for the boxing constraints:

Cb(M) =







m1 ≥ 0 (1)
m1 +m2 ≥ 0 (2)

m1 +m2 +m3 ≥ 0 (3)
m1 +m2 +m3 +m4 ≥ 0 (4)
m1 +m2 +m3 +m5 ≥ 0 (5)

m1 +m2 +m3 +m5 +m6 ≥ 0 (6)
m1 +m2 +m3 +m5 +m7 ≥ 0 (7)

m2 ≥ 0 (8)
m2 +m3 ≥ 0 (9)

m2 +m3 +m4 = 0 (10)
m2 +m3 +m5 ≥ 0 (11)

m2 +m3 +m5 +m6 = 0 (12)
m3 ≥ 0 (13)

m3 +m5 ≥ 0 (14)
m3 +m5 +m7 = 0 (15)

where (1)–(7) express bracketing, (8)–(12) scope forλy and (13)–(15) scope forλz.
Now, note that (2)–(7), (9) and (11) are consequences from the rest. Thus,Cb(M)

is equivalent to 





m1 ≥ 0 (1)
m2 ≥ 0 (8)

m2 +m3 +m4 = 0 (10)
m2 +m3 +m5 +m6 = 0 (12)

m3 ≥ 0 (13)
m3 +m5 ≥ 0 (14)

m3 +m5 +m7 = 0 (15)

Now let us examine the typing constraints. We consider the principal typing assign-
ment:Γ(y) = α→ α, Γ(z) = α, which yieldsΓ(M) = (α→ α)→ (α→ α).

Thus we have:
Γ(y) = !p1(!p2α⊸ !p3α), Γ(z) = !p4α.
We get for instance:

Γ(!m6y2) = !p6(!p2α ⊸ !p3α)

Γ((!m4y1) !
m5 [(!m6y2)!

m7z]) = !p3α
Γ(t) = !p11(!p1(!p2α⊸ !p3α) ⊸ !p10(!p4α⊸ !p9α))

19

We obtain the following typing conditions (omitting some obvious constraints):

Ctyp(M) =







p5 = m7 + p4 ≥ 0 (16)
p6 = m6 + p1 ≥ 0 (17)
p6 = 0 (18)
p2 = p5 (19)
p7 = m5 + p3 ≥ 0 (20)
p8 = m4 + p1 ≥ 0 (21)
p8 = 0 (22)
p2 = p7 (23)
p9 = m3 + p3 ≥ 0 (24)
p10 = m2 ≥ 0 (25)
p11 = m1 ≥ 0 (26)

p1, . . . ,p4 ≥ 0 (27)
p1 ≥ 1 (28)

that is equivalent to:






p1 = −m6 ≥ 1
p1 = −m4

p2 = p4 +m7 ≥ 0
p2 = p3 +m5

p9 = p3 +m3

p10 = m2 ≥ 0
p11 = m1 ≥ 0

p3,p4 ≥ 0

PuttingCb(M) andCtyp(M) together we get thatC(M) is equivalent to:

{m1,m2,m3 ≥ 0;m2 +m3 = p1 ≥ 1;m3 +m7 = 0;m5 = 0;

m4 = m6 = −p1;p2 = p3;p4 = p9 = p2 +m3}

This finally give the following (inforamlly written) parameterized term and type
with constraints, which describe all solutions to this decoration problem:







M = !m1λy.!m2λz.!m3 [(!
m2+m3

y1) [(!
m2+m3

y2)!
m3

z]]

!m1(!m2+m3(!p2α⊸ !p2α) ⊸ !m2(!p2+m3α ⊸ !p2+m3α))

constraints:{m1,m2,m3,p2 ≥ 0,m2 +m3 ≥ 1}.

Observe that this representation corresponds to several canonical forms (6 in this
particular example) in the approach of Coppola and Ronchi della Rocca (see [CRdR03]).

20

	Introduction
	Typing in Elementary Affine Logic
	Concrete syntax and box reconstruction
	Pseudo-terms
	Box reconstruction

	A decoration algorithm
	Decorations and instantiations
	Solving the constraints
	Type inference

	Conclusion
	An example

