arXiv:cs/0412028v1 [cs.LO] 8 Dec 2004

A feasible algorithm for typing in
Elementary Affine Logic

Patrick Baillot
Laboratoire d’Informatique de Paris-Nord /CNRS
Université Paris-Nord, France
pb@lipn.univ-paris13.fr

Kazushige Terui
National Institute of Informatics
Tokyo, Japan
terui@nii.ac.jp

Abstract

We give a new type inference algorithm for typing lambdariein Elementary
Affine Logic (EAL), which is motivated by applications to chaxity and optimal
reduction. Following previous references on this topie wariant of EAL type
system we consider (denoteff AL*) is a variant without sharing and without
polymorphism. Our algorithm improves over the ones alrelautywn in that it
offers a better complexity bound: if a simple type derivatior the termt is given
our algorithm performsE AL* type inference in polynomial time.

1 Introduction

Since [GSS92[_Gir98], Linear logic (LL) has been shown atfulilogical setting
in which computational complexity can be brought into thetynie of the proofs-as-
programs correspondence. In particular Light linear Iq§@r98]) and Soft linear
logic ([Laf04]) are variants of LL in which all numerical fations programmed are
polynomial time. Another system, Elementary linear lodit I(, see [Gir98| DJO3])
corresponds to Kalmar elementary complexity.

Hence one can consider specific term calculi designed thrtheyCurry-Howard
correspondence and program directly in these languagbsheitguaranteed complex-
ity bound ([Rov98| Ter01]). However this turns out in praetto be a difficult task, in
particular because these languages require managindispedcistructs corresponding
to the logical modalities. Considering taffinevariant (i.e. with unrestricted weaken-
ing) of these systems is an advanta@e (JA$p98]) but doesuppiress the difficulty.

An alternative point of view is to keep ordinary lambda-céls and use the logic
as a type system: then if a program is well-typed the logiwides a way to execute it

http://arxiv.org/abs/cs/0412028v1

with the guaranteed complexity bound. The difficulty is timeoved to the problem of
type inference.

This approach and the corresponding type inference prableave been studied
in [CMO1, [CRdROB] for Elementary affine logic (EAL) and [B&i0Bai04] for Light
affine logic (LAL). It was shown that type inference in the positional fragments
of these systems is decidable. Typing in EAL is actually aisativated by another
goal (seel[CM01l, ACMUOO0]): EAL terms can be evaluated with ¢ipgimal reduction
discipline much more easily than general terms, by usinghlis¢ract part of Lamping’s
algorithm. Thus EAL typing can be seen as an intermediapevskéch, if it succeeds,
allows to speed up optimal reduction.

However though these type inference problems have beemstiesidable the al-
gorithms provided, either for EAL or LAL, are not really eféat. They all run at least
in exponential time, even if one considers as input a simgded lambda-term. Our
goal is to improve this state-of-the-art by providing mofféiceent and possibly more
simple algorithms. Our motivation is typing in Dual lighfiak logic (DLAL, [BT04])
which is a simplification of LAL and corresponds to Ptime, bate as a first step we
propose a new procedure for EAL.

Contribution. Technically speaking the difficulty with EAL typing is to finolt
wherein the derivation to placérules andhow manyof them. This corresponds in
proof-nets terminology to placingoxes The algorithms in[CM01] and [CRdRD3] are
based on two tactics fdirst placing abstract boxes atidenworking out their number
using linear constraints. Our approach also uses lineati@nts but departs from this
point of view by determining the place of boxggnamically at the time of constraints
solving. This method was actually already proposed.in [EHi6r LAL typing but with
several conditions; in particular the term had to be in ndforan. In the present work
we show that in a system without sharing (like DLAL, but uelikAL) this approach
is considerably simplified. In particular it results that:

e One can use as intermediary syntax a very simple term cal¢uitroduced in
[ARO2]) instead of proof-nets like in [Bai02];

e the procedure can be run in polynomial time, if one considsrimput a simply
typed lambda-term (instead of an untyped lambda-term).

Outline. The paper will proceed as follows: in sectldn 2 we introdutetentary
affine logic and the type systemAL* we consider for lambda-calculus; in sectidn 3
we describe the term calculussgudo-termsor concrete syntgxwve will use to denote
E AL~ derivations and we prove a theorem (Theof@m 7JotL* typability; finally in
sectio® we give ai’ AL* decoration algorithm (based on Theorgm 7), prove it can
be run in polynomial time[{412) and derive from it ZM L* type inference algorithm
E3).

Notations. Given a lambda-termd/ we denote byFV (M) the set of its free
variables. Given a variable we denote byno(x, M) the number of occurrences
of x in M. We denote by M| the structural size of a term/. The notation—
will stand for 5-reduction on lambda-terms. We denote substitution (witleapture
of variable) by M[N/x]. When there is no ambiguity we will writé/[M; /x;] for
M[Ml/Il, .. ,Mn/xn]

Notations for listsie will denote the empty list and pushing elemertn list will
be denoted by :: [. The prefix relation on lists will be denoted ky.

2 Typing in Elementary Affine Logic

The formulas of Intuitionistic multiplicative Elementaagfine logic (Elementary affine
logic for short, EAL) are given by the following grammar:

AB:=a|A—B|!A]|Va.A

We restrict here to propositional EAL (without quantificat). A natural deduction
presentation for this system is given on Figlure 1.

T+ B
T van T AL B (weak)
IMFA—B Tot A T A+ B
T, T5F B (appl) TF 45 @S
Ty 1A Ty 14, Ay,...,A,FB
T,... .. T, B (prom)
Prid A, AAFB
T.AF B (contr)

Figure 1: Natural deduction for EAL.

We callerasureA™ of an EAL formulaA the simple type defined inductively by:
a =a, /A" =A", (A—oB)" =A" - B".

Conversely, given a simple ty@éwe say that an EAL formula is adecorationof T'
if we haveA— =T.

We will use EAL as a type system for lambda-terms, but in a wayenconstrained
than that allowed by this natural deduction presentation:

Definition 1 Let M be a lambda-term; we say! is typable inE AL* with typel’ -
M : Aifthere is a derivation of this judgment in the system froguie[3 where any
(contr) rule is either followed by an (abst) on the contrattermula, or is the last rule
of the derivation.

The main restriction of this definition is that it does notoall sharing for typing
lambda-terms. This comes in contrast with the computatistualy of ELL carried
out for instance in[[DJ03] but is motivated by several paints

¢ if we use sharing for typing, some important structure ofpih@of is lost when
we look at the term after forgetting the type derivation alnel tomputational
behaviour of the proof and the term will differ (see the disian in [BT04]);

x1: 1A, o, A TEM: B (cont)
x: VA THMx/z,...,2,): B

x:NATF M(x/xq,...,2,]: !B (prom)

U
r1 1A,y A THEM: B
xyNA, .z, WATHM: B
x:NATF Mx/xq,...,2,] : !B

Figure 2:

e this approach without sharing is enough to define Dual LigfihA Logic (DLAL)
typing ([BT04]) which is sufficient to capture polynomiatte computation;

e sharing-free derivations are necessary to be able to usef&Adptimal reduc-
tion with the abstract part of Lamping’s algorithm, as adjby Coppola and
Martini in [CMO1]];

o finally: using sharing would make type inference more difficu

Actually, the notion of EAL-typability for lambda-terms esidered by Coppola
and Martini in [CMOZ] even if it does not allow sharing is glity more liberal than
EAL*-typability. In their case one might follow a (contr) rule by(prom) rule pro-
vided all theM;s are variables (we can then keep only the main premise ofithg r
However it follows from [CRARO3] (with the notion of canoalabstract terms) that
if a judgmentl’ - M : A is derivable in Coppola-Martini’s type system, then it is
derivable inEAL*. The key point for this remark is the fact that one can perftren
commutation of FigurEl2. In proof-net word5 (IDJ03]) thisane pushing the contrac-
tion nodes which are premises of an auxiliary door of a bogidetthe box.

I'-M:B

viAre A (0 oAb B ek
MM :A—oB Tk My: A I'z:A-M:B
appl ’
oL onn) B @R Fraara—p @bsY
o - . .)
EM 1A Ty M, 1A, x i Ay, Ay E M0 B (prom)

x1: 1A,z VA AEM B
x:VAJAF Mlx/xq,...,2,] : B

(contr)

Figure 3: Typing rules forw AL*.

3 Concrete syntax and box reconstruction

3.1 Pseudo-terms

In order to describe the structure of type derivations wedree¢éerm calculus more
informative than lambda-calculus. We will use the languageduced in [AROP]
(calledconcrete syntain this paper), which is convenient because it has no explici
construct neither for boxes, nor for contractions. It wasssted in this reference that
this syntax is not faithful for LAL: several type derivati®(LAL proofs) correspond to
the same term. However it is faithful fd&f AL*, precisely because there is no sharing
and no ambiguity on the placement of contractions.

Let us introducgpseudo-terms

tun=x|Avt| (t)ul|lt |

The idea is that constructs correspond to main doors of boxeprivof-nets([[Gir87,
ARO0Z]) while ! constructs correspond to auxiliary doors of boxes. But tizdethere
is no information in the pseudo-terms to link occurrencesarid! corresponding to
the same box.

There is a natural erasure map~ from pseudo-terms to lambda-terms consisting
in removing all occurrences ofand!. Whent~ = M, t is called adecorationof M.

For typing pseudo-terms the rules are the same as in Defifiitand Figur&l3, but
for (prom):
'yt :14;,---T,, ¢, : 4, x_l cA,. .,z Ayt B (prom)

1—‘1, “ee ,Fn it ['tl/xz] ;1B

We want to give an algorithm to determine if a pseudo-termbeatyped inE AL*:
this can be seen as a kind of correctness criterion allovarggtablish if boxes can be
reconstructed in a suitable way; this issue will be examin@iZ.

Actually, when searching foE AL* type derivations for (ordinary) lambda-terms
it will be interesting to consider a certain subclass of\sions. A type derivation in
E AL~ is restrictedif in all applications of the rule (prom),

() the subjectM of the main premise:; : Ay,...,2, : A, B M : Bisnota
variable, and

(ii) the last rules to derive auxiliary premis€s - M; :!A; (1 < i < n) are either
(var) or (appl).
A pseudo-term isestrictedif it is obtained by the following grammar:
a == x| dxt| ()
n= 1Mq,
wherem is an arbitrary value itZ and!™q is defined by:
a = a if m>0;

= ..l a ifm<0.
—~—

We then have:
Proposition 1

1. (For lambda-terms) i = M : A has a type derivation, then it also has a
restricted type derivation.

2. (For pseudo-terms) Every restricted derivation yieldestricted pseudo-term.

Proof (Sketch)1. Notice that the typing rules in Figuk 3 satisfy the follog/substi-
tution property:

if 'y = My : A has a derivation of length andx : A,I'>s - M, : B
has a derivation of length, such that nqcntr) rule has been performed
onz : A, thenl'y, T’y = Ms[M; /] : B has a derivation of length shorter
thanly + [o.

Given a derivation of' - M : A that is not restricted and contains for instance

(var)

TN lA, g A by A (prom)

1—‘1 H N1 Z!Al

violating the condition (i), one can rewrite it into

Fl F Nl Z!Al,

strictly shortening the length of the derivation.
Given a derivation that is not restricted and contains

T FN:C y:CFM A (orom) :
FlFMl[N/y]hAl X1 ZAlFMZB

(prom)

violating the condition (ii), we havg : C' - M[M;/x1] : B by the substitution
property. Therefore, one can rewrite the derivation into

I I—:N:!C y:C}—M[:]Vh/:vl] : B

(prom)

strictly shortening the length of the derivation.

The proof is similar when\/ contains more than one free variables. The other
cases are immediate.

2. By induction on the length of the restricted derivation.

3.2 Box reconstruction

We will consider words over the language= {!,!}*.

If ¢ is a pseudo-term andis an occurrence of variable (either free or bound),in
we definet(z) as the word ofZ obtained by listing the occurrences!pf holdingz in
their scope. More formally:

x{x) = ¢

(t1)t2{x) = t;{x) wheret; is the subterm containing,
(Ay.t){(x) = t{x) (y might be equal ta),

() (z) L (8),

() (x) = T (t{x)).

We defineamaps : £L — Z by:
s(e) = 0,
s(P=l) = 1+4+s()

sPal) = —14s()

We calls(7) thesumassociated to.
Lett be a pseudo-term. We say thatatisfies thdracketing conditiorif;

e for any occurrence of variablein ¢,

VI < i(z), s(l) =0,

e moreover ifr is an occurrence of free variable:
s(t{x)) = 0.

That is to say: ifl is seen as an opening bracket ars a closing bracket, if{z) any
I matches d (we will say thatt(z) is weakly well-bracketedand if z is freet(z) is
well-bracketed.

We sayt satisfies thescope conditiorif: for any subterm\x.v of ¢, for any occur-
rencez; of z in v, v(z;) is well-bracketed:

o Vi <w(z;), s(l) >0,
e ands(v{x;)) = 0.
It is obvious that:

Lemma 2 If ¢ is a pseudo-term which satisfies the scope condition, thgrsabterm
of t also satisfies this condition.

Proposition 3 If ¢t is an EAL* typed term, then satisfies the bracketing and scope
conditions.

Proof. By induction on theZ AL* type derivations.
Now, we can observe the following property:

Lemma 4 (Boxing) If lu is a pseudo-term which satisfies the bracketing conditien th
there exist, uq, ..., u, unigue (up to renaming afs free variables) such that:

e FV(v) ={z1,...,x,}andforl <i < n,no(z;,v) =1,

o lu="llu/z1,..., un /7],
e for 1 <i < n, v(z;) is well-bracketed.

Proof. We denote by, the first occurrence dfin the term consideredyu. Denote
by!,..., 1, the occurrences dfmatchingl in the wordslu(x), wherez ranges over
the occurrences of variableslin. Letu;, with 1 < 7 < n, be the subterms df: such
that!,u; is a subterm ofu, for 1 < i < n. Then it is clear that na; is a subterm of
awuy, fori # j. Let noww be the pseudo-term obtained franby replacing eachu;
by a distinct variabler;. Then naturally we havi, = 'w[luy /21, ..., 'u, /z,], and by
definition of!; we know that forl < i < n, v(x;) is well-bracketed.

Finally let us assume is an occurrence of free variable indistinct fromz;, for
1 <7 < n. Thenz is an occurrence of free variablelin, and adw is well-bracketed
we have that(!u(z)) = 0, hencer is in the scope of & matchinglo. Then!, must be
one of the!;, for 1 < i < n, hencer is in u; and thus does not occur in which gives
a contradiction. Therefore we ha¥d/ (v) = {z1,...,x,} and the proof is over.

Given a pseudo-termwe call EAL type assignmerfior ¢ a mapI” from the vari-
ables oft (free or bound) tav AL formulas. EAL type assignments are simply called
assignments when there is no danger of confusion. ThisImaxtended to a partial
map from subterms ofto £ AL formulas by the following inductive definition:

(1) — 14, if D(u) = A,
I'("u = A, if I'(u) = !A, undefined otherwise

PAzw) = A—B, ifl'(z)=AT(u) =B,

((u1)u2) = B, if T'(ug) = AandI'(u;) = A — B, undefined otherwise

Given a pair(t,I") of a pseudo-term and an assignmeihit (we omitT" if it is natural
from the context) we say th#t, ') satisfies theéyping conditionif:

e T'(¢) is defined (so in particular each subternt of the form(u;)u, satisfies the
condition above),

e for any variabler of ¢ which has at least 2 occurrences we havee) is of the
form !B for some formulaB.

Given anE AL* type derivation for a pseudo-terfithere is a natural assignment
I" obtained from this derivation: the value Bfon free variables is obtained from the
environment of the final judgment and its value on bound Wemfrom the type of the
variable in the premise of the abstraction rule in the déiova

Proposition 5 If t is an EAL* typed pseudo-term ardis an associated assignment
then(t, T') satisfies the typing condition.

Moreover it is easy to observe that:

Lemma 6 If (¢,T") satisfies the typing condition andis a subterm of, then(u,T")
also satisfies the typing condition.

Now, the conditions on pseudo-terms we have listed up to mewguéficient to ensure
thatt is an FAL* typed pseudo-term:

Theorem 7 If ¢ is a pseudo-term anl an assignment such that:
¢ ¢ satisfies the bracketing and scope conditions,
e (t,T) satisfies the typing condition,

thent is typable in EAL* with a judgmentA - ¢ : A such that:I'(t) = AandA is
the restriction ofl” to the free variables of.

Proof. Let us use the following numeration for the conditions:
(i) bracketing, (ii) scope, (iii) typing.
We proceed by induction on the pseudo-térm

e t = zistrivial.

o { = A\z.u,

it is clear thatu satisfies the first part of the bracketing condition. The sdco
part of the bracketing condition (for free variables) isumesl by the fact that
satisfies the scope condition fer It is then trivial that. satisfies conditions (ii),
(i), thus by induction hypothesis we have IBRAL* : A,z : A+ u : B where
I'(x) = A, I'(u) = B and by an abstraction rule we get the expected property
for t.

o = (t1)ta,

the subterms;, t, then satisfy conditions (i) to (iii), hence by induction lotp-

esis we have:
Al F tl . A1
AQ = t2 . AQ.

wherel'(t;) = A; andA; is the restriction of” to the free variables of,. Ast
satisfies the typing condition (iv) we know that is of the formA; = A, —
B;. If t; andt, have a free variablg in common then as satisfies the typing
condition we have thdf (y) = !B. We rename irt1, ¢ the free variables that
they have in common, and from the previous judgments apglgm(appl) rule
and a (contr) rule we get the expected judgmentfor

o ¢t =lu,

thent does not satisfy the bracketing condition (i), so the ingdlan is valid.

o t=lu,

by the Boxing Lemm@l4: can be written ag = 'v[luy /x1, . . ., lu, /z,] where
FV(v) = {x1,...,z,} and each(z;) is well-bracketed.

Let us show that,; satisfies conditions (i)—(iii). Takg an occurrence of variable
in u;. We have:)

t{y) =" vla) ol uy),
thus asv(z;) is well bracketedy;(y) satisfies the bracketing condition angd
satisfies (i).
By Lemmad® anfll6 as satisfies (ii) and (iii),u; also satisfies (i) and (iii).
Therefore by induction hypothesis we get that there existéial L* derivation

of conclusion:
Ai F g - Ai,
whereA; = T'(u;), forl <i < n.
Let us now examine the conditions for As ¢ satisfies the bracketing condition
and by the Boxing Lemmnid 4, we get thasatisfies (i). By the Boxing Lemma

again we know that all free variableswhave exactly one occurrence. It is easy
to check that as satisfies the scope condition (ii), so daes

Consider now the typing condition. LEtbe defined af butT'(z;) = I'(Tu;) for
1 <17 < n. If y has several occurrencesirthen it has several occurrencegjn
hencel'(y) = !B, soIl'(y) = !B. If (v1)v is a subterm of then(v/)v}, where
v = willuy /a1, . .., Tun /2,), is @ subterm of andT(v}) = T'(v;). Therefore as
(t,T) satisfies the typing condition, then so dgesT).
As I'(u;) = A; andT(lu;) is defined we havel; = !B; and f‘(zi) = B,.
Finally asv satisfies conditions (i)—(iii), by i.h. there exists @AL* derivation
of conclusion:

Axy:By,...,z, : B, Fv:C,
whereC = T'(v).

If u; andw; for i # j have a free variablg in common then as satisfies the
typing condition we hav&'(y) = !B. We rename the free variables common to
several of they;s, apply a (prom) rule to the judgementsigrand the judgement
onw, then some (contr) rules and get a judgement:

AFt:lC.

Hence the i.h. is valid fot, which concludes the proof.

4 A decoration algorithm

4.1 Decorations and instantiations

We consider the followinglecoration problem

10

Problem 1 (decoration) letz; : Ay,...,z, : A, = M : B be a simply typed term;
does there exist EAL decoratiods of the A; for 1 < ¢ < n and B’ of B such that
1 Ay, .ooyen A F M B'isavalid EAL* judgement folM ?

For that we will need to find out the possible concrete termsesponding tal/. Actu-
ally following sectior 3L and Profl 1 it is sufficient to sefafor a suitable term in the
set of restricted pseudo-terms, instead of consideringtiade set of pseudo-terms. To
perform this search we will uggarameterized restricted pseudo-ter(parameterized
pseudo-terms, for short), defined by the following grammar:

a == z|Xxt]| ()

n
™a

wheren is a fresh parameter (meant to range d&ier

Given a parameterized pseudo-term we denotgdayt) the set of its parameters.
An instantiation¢ : par(t) — Z allows to define a restricted pseudo-tegift) ob-
tained by substituting each parameieby the integers(n).

We will also consideparameterized typedefined by:

Az=1"a| ™A — A

wheren is a fresh parameter.

We denote bypar(A) the set of parameters of. If ¢ is an instantiationp :
par(A) — Z, theng(A) is defined only when a nonnegative integer is substituted for
each parameter. We define the siz¢ of a parameterized formuld as the structural
size of its underlying simple type (so the sum of the numberotonnectives and
atomic subtypes).

Just as we have defined EAL type assignments for pseudo-teenasll consider
parameterized type assignmefis parameterized pseudo-terms with values parame-
terized types, andimple type assignmerf lambda-terms with values simple types.
Let X be a parameterized type assignment for a parameterized@s$eumt. We de-
note bypar(X) the set of parameters occurring in parameterized tyifes, for all
variablesr of t. Let¢ : par(X) — Z be an instantiation and suppose théh) > 0
holds for everyn € par(X). Then one can define the ma by: ¢X(z) = ¢(3(x)).
When it is defined, it is an EAL type assignment >). We define the siz&| of &
as the maximum of(z)| for all variables.

The erasure map)~ is defined for parameterized pseudo-terms and parameterize
types analogously to those for pseudo-terms and EAL typeis. dear that given a
lambda-termM there exists a unique parameterized pseudo-tefup to renaming
of its parameters) such that = M. We denotet by M and call it theparameter
decorationof M. Note that the size o/ is linear in the size of\/. Given a simple
typeT’, its parameter decoratioff’ is defined analogously. Finally, given a simple type
assignmen® for a lambda-term (with values simple types), ifgarameter decoration
O is defined pointwise, by taking(z) = ©(z), where all these decorations are taken
with disjoint parameters.

The following picture illustrates the relationship amorgigus notions introduced
so far:

11

pseudo-terms| antiati param. pseudo-terms erasure lambda-terms
EAL types | 'nstantation param. types P simple types
EAL typ. assign param. typ. assign| param. decoration simple typ. assigr.

Given a simple type derivation af, : T3, ..., 2, : T,, F M : T, one can naturally
obtain a simple type assignmedtfor A/. Furthermore, it is automatic to build param-
eter decorationd/ and©. Suppose now that there is an instantiaticior (17, ©) for
which ¢O is defined. Them©(x;) is a decoration of; for 1 < i < n and¢©(M)
is a decoration of". Conversely, any decorations 6f's andT" are obtained through
some instantiations fofM, ©). Therefore, the decoration problem boils down to the
following instantiation problem

Problem 2 Given a parameterized pseudo-tetnand a parameterized type assign-
mentX for it: does there exist an instantiatioh such that¢(t) has an EAL* type
derivation associated toX?

To solve this problem we will use Theordrh 7 to find suitablgansiations if
there exists any. For that we will need to be able to statedhditions of this theorem
on parameterized pseudo-terms; they will yield linear tamsts. We will speak of
linear inequationsmeaning in fact both linear equations and linear inequatio

We will consider lists over parametats Let us denote by’ the set of such lists.

As for pseudo-terms we define foa parameterized pseudo-term andn occur-
rence of variable i, a list¢(z) in £’ by:

x{x) = ¢
(t1)t2{x) = t;{x) wheret; is the subterm containing,
(Ay.t)(x) = t{x)(y might be equal ta),
("a)z) = m:(ala)).

The sums(l) of an element of £’ is a linear combination defined by:
se) = 0,
sm=l) = n+s().

Lett be a parameterized pseudo-term. We defindthéng constraintéor ¢ as the
set of linear inequationd®(¢) obtained fromt in the following way:

e bracketing: for any occurrence of variableén ¢ and any prefix of ¢(z), add
the inequations(l) > 0; moreover ifx is an occurrence of free variable add the
equations(t(z)) = 0.

e scope: for any subternz.v of ¢, for any occurrence; of x in v, add similarly
the inequations expressing the fact thét;) is well-bracketed.

It is then straightforward that:

Proposition 8 Given an instantiatiorp for ¢, we have:¢(t) satisfies the bracketing
and scope conditions iff is a solution oC®(¢).

12

Note that the number of inequationsGh(t) is polynomial in the size of (hence also
in the size oft ™).

In the sequel, we will need to unify parameterized types.tkat, given 2 parame-
terized typesd and B we define their unification constraintg A, B) by:

U(™a,™a) = {m=n}
U('m(Al—OAg),'n(Bl—OBg)) = {mZH}UU(Al,Bl)UU(AQ,Bg)

andU (A, B) = {false} (unsolvable constraint) in the other cases.

LetX be a parameterized type assignment for a parameterizedgs$eumt. Then
we extendY to a partial map from the subterms oto parameterized types in the
following way:

2("a) = ™A with m fresh if $(a) =14,
Y(Azu) = I"™(A— B)withmfresh if X(z)=A,%(u)=B,
S((u)ug) = B, if 3(uy) =!"(A — B), undefined otherwise

We define theéyping constraintsor (¢, 3) as the set of linear inequatio&? (¢, ¥°)
obtained front, 3 as follows:

e abstractions: for any subtermodf the formAz.u with ¥(Az.u) =I"(A — B),
addm = 0.

e applications: for any subterm ofof the form (u)us with X(u;) = "™ (A; —
By) andX(uz) = A add the constrainS (A, A2) U {m = 0}; if X(uy) is not
of this form thenC'¥? (¢, %) = { false}.

e bang: for any subterm afof the form!™u with £(1"u) = ™A andX(u) = ¥4,
add the constraintsy = k + n andm > 0.

e contractions: for any variableof ¢ which has at least 2 occurrences aihd) =
I"™ A, add the constrainia > 1.

e types: for any parameten in par(X), add the constrainh > 0.
We then have:

Proposition 9 Lett be a parameterized pseudo-term ande a parameterized type
assignment fot such that¥(¢) is defined. Given an instantiatiop for (¢, %), we
have: ¢X is defined and¢(t), ¢X) satisfies the typing condition iff is a solution of
CtrP(t,3).

Note that the number of inequationsaft? (¢,) is polynomial in(|¢| + |X]).
We defineC(t,X) = C(t) U C¥P(¢,). Using the two previous Propositions and
TheorenilV we get the following result, which solves the ins&iion problem:

Theorem 10 Let t be a parameterized pseudo-terbth,be a parameterized type as-
signment fort such thaty(t) is defined, and) be an instantiation fot, ¥. The two
following conditions are equivalent:

13

e ¢(t) is typable in EAL* with a judgmentA F ¢(t) : A such thatyX(t) = A
andA is the restriction ofpX to the free variables of,

e ¢ is a solution o (¢, X).
Moreover the number of inequationsdift,) is polynomial in(|¢| + |2|).

If £ andX come from a simply typed lambda-teti and its typing derivation, then
Y.(t) is always defined an@d™? (¢, 3) never gives rise tgalse. By noting this fact, we
obtain the following result, which solves the decoratioolpem:

Theorem 11 Letx; : Ay,...,z, : A, B M : B be a simply typed term and &t
be the associated simple type assignment. There existatenw A, of the 4, for
1<i<nandB’ of Bsuchthatr; : 4},...,2, : AL, b M : B'isavalid FAL*
judgement iff there is a solutiapto C(M, ©).

In this case each solutios gives a suitable FEAL* judgmentr; : Af, ..., 2, :
Al F M : B’. Moreover the number of inequations and the number of patamme
C(t,©) are polynomial in(|t| + |©]).

We give an example of execution of the algorithm in the Append

4.2 Solving the constraints

Now we turn our attention to the constraints and their sohgi Lett be a param-
eterized pseudo-term arld be an assignment. We consider instead of the previ-
ous instantiation maps with values #) maps with rational numbers as values::
par(t) Upar(X) — Q.

If ¢ is such a map and is a non-negative integer we defined the majp by:
(ap)(n) = a.xp(n), for any paramete.

Lemma 12 If ¢ is a solution ofC(¢,X) anda is a strictly positive integer theay is
also a solution o (¢,).

Proof. Itis enough to observe that for any inequatior€bft) andC®r(t, %) if ¢ is
a solution then so igy:

e all inequations fron€®(¢) and all those frong*¥?(¢, %) except the contractions
case are homogeneous (no constant element in combinatiodgs: > 0 the
inequalities are preserved when multiplying both membgrs; b

e the inequations coming from the contraction case&'#i(t,) are of the form
m > 1, so ase > 1 we have: ifyy(m) > 1 holds then so does)(m) > 1.

Recall that the problem of finding if a linear system of indiprasC admits a solution
in Q can be solved in polynomial time in the size ®fand its number of variables.
Hence we have:

Proposition 13 The problem of whether the syst€f? (¢,) admits a solution with
values inZ can be solved in time polynomial {ft| + |X]).

14

Proof. As the number of inequations and the number of parametet¥it, X) is
polynomial in(|¢| + |X|) and by the result we recalled above we have: one can decide
if Ct¥P(¢,%) admits a solution with values i@ in time polynomialin(|¢| + |X|).

Then, if there is no solution iQ there is no solution i. Otherwise ify is a solu-
tion in Q take fora the least multiple of the denominatorsifn), for all parameters
n. Then by Lemm&JI2;+ is a solution inZ. It then follows that:

Theorem 14 The decoration problem of Theor&m 11 can be solved in timepaiial
in (|2 +[T).

4.3 Type inference

The procedure fo? AL* decoration we have given can be extended to a type inference
procedure forE AL* in the way used in[CMU1]: given an ordinary terb,

e compute the principal assignmeatfor M (giving the principal simple type),

e use the procedure of Theordml 11 to find)if, © admits a suitable EAL*
decoration.

It follows from a result of [CRAR0O3] that:

Proposition 15 if M is EAL* typable and admits as principal simple type judgment
AF M : A, thenM admits an EAL* type judgment which is a decoration of this
judgment.

In order to have a self-contained presentation and to takerdage of the simplicity
of our framework we will give a proof of Prod_IL5 here. It foMle from it that the
algorithm for EAL* type inference we gave is complete.

First we define two function$x(.) and&(.) on pseudo-terms allowing to find for
a pseudo-termall its possible EAL* types:Tx(.) gives a typing scheme aidq.) the
associated set of equations. Note that the temight not be £ AL* typable anyway
as we are not considering here the boxing conditions. Thetifums are defined by
induction on pseudo-terms below:

o ift=u
thenTg(t) =<z : a;a >, E(z) = 0.

o if t = Ax.t;y andTg(t1) =< I'; B >:
thenTg(t) =< I"; A — B > with: A = I'(z) andI” =T if I'(z) is defined;
A = « (fresh variable) and” extendsl” with T"(xz) = « otherwise.&(t) =
E(tr).

o if t = (t1)te andTr(t;) =< T;; A; > fori =1,2:
let FV(t1) N FV (t2) = {z1,...,2,}, I be defined byI'(y) = T';(y) if y €
FV(t;) andy & {z1,...,zx}; T(x;) = 18; for 1 < j < k, where theg;s
are fresh type variables. L&%(t) =< I';a > (a fresh variable) and (t) =
g(tl) Ug(tg) U {Al = (AQ —o0 Oé);Fl(SCj) = !ﬂj,FQ(Ij) = !Bja 1 S j S k}

15

e ift = Ity andTg(t1) =< T'1; A1 > thenTg(t) =< T'y;14; > and&(t) =
E(ty).

o if t =1ty andTg(t1) =< I'1; A; >thenTg(t) =< T'y;a > (a fresh variable)
and&(t) = E(t1) U {41 = la}.

Call EAL substitutior(resp. simple type substitutigra mapo from type variables to
EAL formulas (resp. simple types). Given an EAL-substidntr and an EAL formula
A, o A is the formula obtained by substituting type variahléa A by o«. Given a set
of equations we say that is a solution of € if forany A; = A3 in &, 0A; = 0As
holds.

We have:

Proposition 16 Lett be a pseudo-term. The two following conditions are equinvtale
e (t,T) satisfies the typing condition arftt) = B;

o Tr(t) =< A, A > and there exists a solutian of £(¢) such that.I' = oA and
B =0A.

Now, we define similar functionss(.) andS(.) for typing terms in simple types:

o ift=u
thenTs(t) =<z : a;a >, S(z) = 0.

o if t = Ax.t; andTs(t1) =< T; B >:
thenTs(t) =< I'; A — B > with: A = I'(z) andI” = T if I'(z) is defined;
A = « (fresh variable) and” extendsl” with IV(z) = « otherwise.S(t) =
S(t1).

o if t = (t1)te andTs(t;) =< T3 A; > fori =1,2:
let FV (t1) N FV(t2) = {z1,...,z}, I be defined byT'(y) = T;(y) if y €
FV(t;) andy & {z1,...,2x}; T(x;) = B; for 1 < j < k, where theg;s
are fresh type variables. L&(t) =< I';a > (« fresh variable) and () =
S(tl) US(tQ) U {Al = (A2 —0 Oé);Fl(Ij) = ﬂj,FQ(Ij) = Bja 1 Sj S k}

o if t =1ty andTs(t1) =< T'y1; Ay >thenTg(t) =< T'1; Ap >andS(t) = S(ty).

o if t =1ty andTs(t,) =< I'1; Ay > thenTs(t) =< I'y;a > (« fresh variable)
andS(t) = S(t1) U{A; = a}.
We have:
Proposition 17 Let M be a lambda-term and a pseudo-term such that = M.
ThenM has a simple type ii§(¢) has a solution and in that case : 1if is the most

general unifier (m.g.u.) of(t) andTs(t) =< I'; A > thentI” - M : 7A is the
principal simple type o/ (whereIl" is the restriction of" to F'V (M)).

16

We need to relate equations in EAL and in simple types.fLbe a set of EAL equa-
tions and€~ denote the set of equations, = A, , for all equations4d; = A, in
E.

Let 0 be an EAL substitution and~ be the simple type substitution given by:
o~ (a) = o(a)”, for all . Observe that:

Fact. If o is a solution of thenos~ is a solution of€ .

Finally we have:

Proposition 18 Let £ be a set of EAL equations. & admits a solution ane is the
m.g.u. of€ ~ then there exists a solutianof £ such thatr~ = 7.

Proof. It can be adapted in a straightforward way from the proof af®sition 21
in [Bai04]. Moreover we have:

Proposition 19 Let¢ be a pseudo-term anfiz(t) =< I', A >, Ts(t) =< A, B >,
thenwe havé\ =T, B = A~ andS(t) = E(t) .

We can now prove Profp115:

Proof. [Prop.[I5] Assumelf is EAL* typable. Then there exists a pseudo-térm
such that™ = M and which isEAL* typable. By Propl 16 we know th&f(t) admits
a solutionoy. By Prop.[ID.L(t)~ = S(t), so by the Fact observed aba§ét) has a
solution, hence it has a m.g.a. By Prop.[IB we get that there exists a solutioof
E(t) suchthatr— = 7.

Let Tg(t) =< T'; A >; then by Prop.[lI6 and Theordth 7 we have &M L*
judgementT” |-t : o A, wherel” is the restriction of to F'V (¢). Finally by Prop[Il7
andI® we know that it is a decoration of the principal simgfgetof M, which ends
the proof.

It then follows from Theorerfi14 that ouE AL* type inference algorithm applied
to a termM can be executed in time bounded by a polynomidlih+ |©|) where®
is the principal (simple type) assignment/af.

Note that this does not mean that the algorithm is polynotiri# in |¢], as it is
known that the principal simple type assignmentf@an have a size exponential in
[t].

5 Conclusion

We have given a new type inference algorithm fBrA L* which is more efficient and

we think simpler than the previous ones. It generates a setraftraints which consists
of two parts: one which deals with placing suitable (po&hthoxes and the other one
with typing the boxed term obtained. We believe this secaard gould be adapted to
deal with other type systems like second-order EAL (assgraigystem F type given).
We are currently working on the adaptation to DLAL.

We have shown that the set of constraints needed in our #igoi$ polynomial in
the size of the term and its simple type assignment. Finadyhave also shown that
by using resolution of linear inequations over rationalsagorithm can be executed
in polynomial time with respect to the size of the initialrreand its principal simple
type assignment.

17

References

[ACMOO0] A. Asperti, P. Coppola, and S. Martini. (Optimal) plication is not ele-

[ARO2]

[Asp98]

[Bai02]

[Bai04]

[BTO04]

[CMO1]

mentary recursive. IRroceedings POPL2000.

A. Asperti and L. Roversi. Intuitionistic light affenlogic. ACM Transac-
tions on Computational Logi8(1):1-39, 2002.

Andrea Asperti. Light affine logic. IRroceedings LICS’98EEE Com-
puter Society, 1998.

P. Baillot. Checking polynomial time complexity thitypes. InProceed-
ings of IFIP TCS’02Montreal, 2002. Kluwer Academic Press.

P. Baillot. Type inference for light affine logic vieonstraints on words.
Theoretical Computer Scienc2004. to appear.

P. Baillot and K. Terui. Light types for polynomialntie computation in
lambda-calculus. IRroceedings of LICS’Q4EEE Computer Press, 2004.
long version on http://arXiv.0a ¢s.LO/0402059.

P. Coppola and S. Martini. Typing lambda-terms imedmtary logic with
linear constraints. IProceedings TLCA'0lvolume 2044 o£ NCS 2001.

[CRARO3] P. Coppola and S. Ronchi della Rocca. Principaihtyin Elementary

[DJO3]

[DJIS94]

[Gir87]
[Gir9g]

[GSS92]

[Lafo4]

[Rov98]

[Ter01]

Affine Logic. In Proceedings TLCA'OLNCS, 2003.

V. Danos and J.-B. Joinet. Linear logic and elemsantiane. Information
and Computation, 2003.

V. Danos, J.-B. Joinet, and H. Schellinx. On thedimgecoration of intu-
itionistic derivations Archive for Mathematical Logic33(6), 1994.

J.-Y. Girard. Linear logicTheoretical Computer Sciencg0:1-102, 1987.

J.-Y. Girard. Light linear logic.Information and Computatiqri43:175—
204, 1998.

J.-Y. Girard, A. Scedrov, and P. Scott. Boundedalifegic: A modular
approach to polynomial time computabilitfyheoretical Computer Science
97:1-66, 1992.

Y. Lafont. Soft linear logic and polynomial timeTheoretical Computer
Science318(1-2):163-180, 2004.

L. Roversi. A Polymorphic Language which is Typahled Poly-step.
In Proceedings of the Asian Computing Science ConferenceARS8),
volume 1538 oLNCS pages 43 — 60. Springer Verlag, December 1998.

K. Terui. Light Affine Lambda-calculus and polytins&rong normaliza-
tion. In Proceedings LICS’OQIEEE Computer Society, 2001. Full version
available al http://research.nii.ac4pterui.

18

http://arXiv.org
http://arxiv.org/abs/cs/0402059
http://research.nii.ac.jp/~

APPENDIX

A Anexample

Let us consider a small example to illustrate our methode fak = Ay.\z.(y)(y)z
(the Church integer 2). The decoratidhis given by:
M o= ™3\ 172)\ 18] (Mg,) IS (1M6,)1™7 2]]

(we have distinguished the 2 occurrenceg af y; andys,)
We get for the boxing constraints:

mj + msy Z 0 (2)

mj + msy + Mg Z 0 (3)

m; + mz + m3 + my > 0 (4
m; + mgy + mg3 + ms > 0 (5
m;+ms+mg+msg+mg > 0 (6)
m; +me+mg+ms+my; > 0 (7)
cb(M) = m, > 0 (8)
mso + ms > 0 (9)

mo + ms + my = 0 (10)

mo + ms + ms > 0 (11)

ms + mg + ms + g = 0 (12)
ms + ms + mry = 0 (15)

where (1)—(7) express bracketing, (8)—(12) scope\fpand (13)—(15) scope forz.
Now, note that (2)—(7), (9) and (11) are consequences fremesst. Thus¢® (M)
is equivalent to
my
ma2
mo + ms + my
mso + ms + ms + Ing
ms
ms + ms
ms + ms + mry

v Iv

SO oo oo

VIVl

0 (15
Now let us examine the typing constraints. We consider tivecjpal typing assign-
ment:I'(y) = o — «, I'(2) = «, which yieldsI'(M) = (a = a) — (o — «).

Thus we have:

T(y) =P (P2 — P3¢, T'(2) = IPqu.

We get for instance:

E(!mayz) — !ps(!pza —o !paa)
D((Mayy) o[(Mey)I™72]) = P%a
F(t) — !Pll(!Pl(!pza —0 !paa) —o !Plo(!P4a —o !Pga))

19

We obtain the following typing conditions (omitting somevidius constraints):

Ps = my+ps > 0 (16)
Ps = mg+p1 > 0 (17)
Pe = 0 (18)
P2 = Ps (19)
p7 = ms+ps > 0 (20)
Ps = my+p:1 > 0 (21)
CP(M) = Ps = 0 (22)
P2 = p7 (23)
P9 = m3+ps > 0 (24)
P1o = mp > 0 (25)
P11 = m; > 0 (26)
P1,---;Pa > 0 (27)
P1 > 1 (28)
that is equivalent to:
P1 = —mg > 1
P1 = —IMgy
P2 = pa+tmy > 0
P2 = Pp3+ms
Po = Pp3+mg
Pio = my > 0
P11 = m; > 0
P3,Pa = 0

PuttingC®(M) andC®P (M) together we get that(M) is equivalent to:
{m1, m2, m3 > 0;mz + m3 = p1 > I;m3 + m7 = 0;ms = 0;

my = Mg = —P1;P2 = P3; P4 = P9 = P2 + M3}

This finally give the following (inforamlly written) paranterized term and type
with constraints, which describe all solutions to this dation problem:

TS) [T) T2]

M = "3)y ™2 Nz 13 (]

!ml(!m2+m3(!P2a_o!P2a)_o!mz(!P2+m3a_o!P2+m3a))

constraints{m;, ms, mg, p2 > 0,mz + mg > 1}.

Observe that this representation corresponds to sevarahial forms (6 in this
particular example) in the approach of Coppola and Rondla Becca (se€ [CRARD3]).

20

	Introduction
	Typing in Elementary Affine Logic
	Concrete syntax and box reconstruction
	Pseudo-terms
	Box reconstruction

	A decoration algorithm
	Decorations and instantiations
	Solving the constraints
	Type inference

	Conclusion
	An example

