
Learnable Classes of General Combinatory

Grammars

Erwan Moreau

LINA - FRE CNRS 2729 - Université de Nantes
2 rue de la Houssinière - BP 92208 - 44322 Nantes cedex 3

Erwan.Moreau@univ-nantes.fr

Abstract. Kanazawa has shown that k-valued classical categorial gram-
mars have the property of finite elasticity [1], which is a sufficient condi-
tion for learnability. He has also partially extended his result to general
combinatory grammars, but left open the question of whether some sub-
sets of general combinatory grammars have finite elasticity. We propose
a new sufficient condition which implies learnability of some classes of
k-valued general combinatory grammars, focusing on the way languages
are expressed through a grammatical formalism rather than the classes
of languages themselves.

1 Introduction

The problem of grammatical inference refers to the process of learning grammars
and/or languages from data. Applied to natural languages, this problem consists
in guessing, from a set of data corresponding to a (natural) language, “some-
thing which represents this language”: a grammar. But what kind of grammar ?
In this article we propose to study learnability of the formalisms used to repre-
sent languages rather than the languages themselves. This question is especially
important for natural languages, since a lot of formalisms exist to represent
them. As a consequence, the fact that a class of natural languages is learnable
is only interesting if there is a way to represent it in a usable and linguistically
appropriate way.

Gold’s model of identification in the limit is one of the most important for-
malizations of the learning process [2]. In this model, the learner must be able
to guess the right language after a finite number of examples, from an infi-
nite set of sentences belonging to this language. Several positive results have
been obtained in Gold’s model, in particular with categorial grammars: using
Buszkowski’s learning algorithm [3] for classical categorial grammars (also called
AB grammars), Kanazawa [1] has shown that k-valued AB grammars1 are learn-
able from strings. More precisely, Kanazawa has shown that the class of structure

1 A grammar is k-valued if each words is defined by at most k different types in the
lexicon. In the special case where k = 1, the grammar is said to be rigid. This latter
case is a strong restriction over the expressive power of the corresponding language:
Kanazawa has shown that the class of k-valued AB grammars languages is strictly
included in the class of (k + 1)-valued languages. Furthermore, there are words in

languages generated by rigid AB grammars has the property of finite elasticity
([4], [5]), which implies learnability and also that learnability can be extended
to k-valued grammars and to string languages. Kanazawa has also generalized
his learnability result to general combinatory grammars : in this framework it is
possible to consider any set of operators and any set of universal rules instead
of the usual AB grammars operators and rules. However Kanazawa shows only
that rigid structure languages are learnable, because finite elasticity does not
hold in this more general case. As a consequence, Kanazawa does not provide
any positive learnability result about k-valued general combinatory grammars,
which is a strong limitation to the usefulness of this result in the viewpoint of
natural languages.

The question of whether some subsets of general combinatory grammars have
finite elasticity was left open by Kanazawa. Costa Florêncio has given in [6] a
sufficient condition for finite elasticity in the form of restrictions over rules. Here
we propose another sufficient condition which does not include Costa Florêncio’s
one, but which relates more to grammatical formalisms than to technical con-
straints (a brief comparison between the two results is given in section 4.2).

The linguistic interest for general combinatory grammars lies in the fact that
it allows to express various formalisms through the set of universal rules: one can
see the set of rules (and operators) as a parameter of the class of languages which
is studied. This point is particularly interesting in the framework of grammatical
inference, because it permits to test rather easily whether a given grammatical
formalism enjoys some learnability properties: if the formalism can be expressed
using rules in the form of general combinatory grammars and if these rules
fulfill the conditions described in section 3.2, then learnability is proven. Several
examples of such formalisms which are (at least partially) learnable are given in
section 4.

2 General Combinatory Grammars

The name “general combinatory grammars” is used by Kanazawa to define any
class of grammars using a certain set of operators and universal rules (expressed
as the rewriting of a sequence of terms containing variables into another term).
It refers to combinatory categorial grammars, defined by Steedman [7], who pro-
posed to add several rules to AB grammars, in order to give a better syntactic
description of natural languages. This means that AB grammars, as well as com-
binatory categorial grammars, are instances of general combinatory grammars.

Definition 1 (Terms). Given a set S of operators and a set V of variables,
the set of S-terms over V is the smallest set such that

– any v ∈ V is an S-term over V,

natural languages that require several definitions: for example, the grammatical word
“to” should not have the same type when it is used with an infinitive or used as a
preposition.

– for any operator f ∈ S with arity(f) = n, if t1, . . . , tn are S-terms over V
then f(t1, . . . , tn) is an S-term over V.2

The size ‖t‖ and height h(t) of a term t are defined in the usual way: if t
is a variable then ‖t‖ = 1 and h(t) = 0. Otherwise if t = f(t1, . . . , tn) then
‖t‖ =

∑
1≤i≤n

‖ti‖ + 1 and h(t) = max({ h(ti) | 1 ≤ i ≤ n }) + 1.

#u(t) denotes the number of occurrences of a term u in a term t:
– if u = t then #u(t) = 1
– otherwise u 6= t :

• if t is a variable, then #u(t) = 0
• if t = f(t1, . . . , tn) then #u(t) =

∑
1≤i≤n

#u(ti)

Definition 2 (Universal rule). Let S be a set of operators. Given a set of
variables V ar(R), a universal rule R over S is any expression of the form
A1, . . . , An → A0, where each Ai is an S-type over V ar(R).

Definition 3 (R-grammar). Let S be a set of operators and R a set of uni-
versal rules over S. An R-grammar is a system G = 〈Σ, Pr, s, .〉 where

– Σ is the vocabulary,
– Pr is a finite set of variables, called primitive types. The set of types Tp is

then defined as the set of S-terms over Pr.
– s is an S-term over ∅: this is the special type for valid sentences (see defini-

tion 8).3

– . is a binary relation assigning one or several types to each word in the
vocabulary: . ⊆ Σ ×Tp. Each couple w . t in this relation is called a lexical
rule.

Remark: In the framework of categorial grammars, the special type s is tra-
ditionally defined as one of the primitive types. On the contrary, we can benefit
here of a more general definition of the set of operators S, which permits to
define s as a type using only these operators. This way it is really considered
different from the other types, which is particularly relevant in the framework of
grammatical inference. Furthermore, this definition permits to take into account
new interesting formalisms (see example in 4.3).

Lex(G) is defined as the set of types used in the lexicon: Lex(G) = { t ∈
Tp | there exists w such that w . t }.

Definition 4 (One-step derivation). Let S be a set of operators, R a set of
rules over S and G an R-grammar. For every rule R ∈ R, R = A1, . . . , An →
A0, the relation →R ⊆ Tp+ × Tp is defined as: t1, . . . , tn →R t0 if and only if
there exists a substitution σ : V ar(R) 7→ Tp such that σ(Ai) = ti for all i.

The relation → is defined as t1, . . . , tn → t0 if there exists a rule R ∈ R such
that t1, . . . , tn →R t0.

2 The special case where arity(f) = 0 is included in this definition: if f is such an
operator, then it is an S-term over V.

3 Remark: s is an S-term over the empty set, which implies that there is at least one
operator f in S such that arity(f) = 0.

From this definition it is possible to define the string derivation relation in
the usual following way: let ⇒ be the relation defined as α β γ ⇒ α t0 γ if and
only if β → t0, with α, γ ∈ Tp∗ and β ∈ Tp+. The relation ⇒∗ is defined as
the reflexive and transitive closure of ⇒. A string w1, . . . , wn is valid for the
R-grammar G if there exists a sequence of types t1, . . . , tn such that for all i
wi . ti and t1, . . . , tn ⇒∗ s.

Nevertheless, we will rather use the below definition that links derivation
to the existence of a “structure”, because we are also interested in structure
languages.

Definition 5 (R-structure). Let S be a set of operators and R a set of rules
over S, R = {R1, . . . , Rm}. Given a vocabulary Σ, the set of R-structures SLR

is the smallest set such that

– any word w ∈ Σ belongs to SLR,
– for any rule Ri = A1, . . . , An → A0,

if T1, . . . , Tn ∈ SLR then [Ri](T1, . . . , Tn) ∈ SLR.

Definition 6 (Yield of an R-structure). Let S be a set of operators and R
a set of rules over S. The yield of an R-structure T , denoted yield(T), is the
sequence of words occurring at it leaves. Formally:

– if T = w with w ∈ Σ, then yield(T) = w
– if T = [Ri](T1, . . . , Tn), then yield(T) = yield(T1), . . . , yield(Tn).

Definition 7 (Instance of an R-structure). Let S be a set of operators and
R a set of rules over S and G an R-grammar. Given an R-structure T , a couple
〈α, t0〉, where α ∈ Tp+ and t0 ∈ Tp, is an instance of T for G if the following
condition holds:

– if T = w with w ∈ Σ, then α = t0 and w . t0.
– if T = [Ri](T1, . . . , Tn), then there exist n couples 〈α1, t1〉, . . . , 〈αn, tn〉 such

that 〈αi, ti〉 is an instance of Ti for all i, α = α1 • . . .•αn and t1, . . . , tn →Ri

t0.

Definition 8 (Languages of a grammar). Let S be a set of operators, R a
set of rules over S and G = 〈Σ, Pr, s, .〉 an R-grammar.

– An R-structure T belongs to the structure language defined by G, denoted
T ∈ SL(G), if there exists an instance 〈α, s〉 of T for G.

– A string (sequence of words) w1 . . . wn belongs to the string language defined
by G, denoted w1 . . . wn ∈ L(G) if there exists an R-structure T ∈ SL(G)
such that w1 . . . wn ∈ yield(T).

Example 1 (AB grammars).
Let define the set of operators SAB as SAB = {/(2), \(2), s(0)} and the set

of rules RAB as the set containing only the two following rules:

FA : A/B B → A V ar(FA) = {A, B}
BA : B B\A → A V ar(BA) = {A, B}

The class of RAB-grammars corresponds exactly to the class of AB gram-
mars.

Let G be the RAB-grammar defined with the lexicon { Peter . n ; Mary .
n ; loves . (n\s)/n }. the RAB-structure T = BA(Peter, FA(loves, Mary))
belongs to SL(G), because 〈 (n, (n\s)/n, n) , s 〉 is an instance of T for G. Since
yield(T) = { (Peter loves Mary) }, the sentence “Peter loves Mary” belongs
to L(G).

Definition 9 (#G).
We denote the number of elements in a set E by #E. Applied to a grammar

G = 〈Σ, Pr, s, .〉, the set considered is the set of the lexical rules in G:

#G = #{ (w, t) with w ∈ Σ and t ∈ Tp | w . t}

As a consequence of this definition, a grammar G is included in a grammar
G′, denoted G ⊆ G′, if all lexical rules in G are also defined in G′.

Proposition 1. Let G and G′ be two R-grammars. If G ⊆ G′ then SL(G) ⊆
SL(G′).

Proof. Let T ∈ SL(G): there exists an instance 〈t1 . . . tn, s〉 of T for G. G ⊆ G′

implies that if wi .G ti then wi .G′ ti, so 〈t1 . . . tn, s〉 is also an instance of T for
G′, thus T ∈ SL(G′). ut

Definition 10 (k-valued grammar). G = 〈Σ, Pr, s, .〉 is k-valued if for any
word w ∈ Σ: #{ t ∈ Tp | w . t } ≤ k.

Proposition 2. For any k ≥ 0 there exists k′ ≥ 0 such that

{ G | G is k−valued } ⊆ { G | #G ≤ k′ }

Proof. Clearly any k-valued grammar can not have more than k′ = k × #Σ
rules. ut

Definition 11 (Equivalent grammars). Two R-grammars G and G′ are said
to be equivalent if they differ only by a renaming of their primitive types.

Proposition 3. If G and G′ are equivalent, then SL(G) = SL(G′) (and as a
consequence L(G) = L(G′)).

3 k-valued Flat Grammars Are Learnable from

Structures

The distinction between functors and arguments is important in the first learning
algorithm for AB grammars defined by Buszkowski [3], and also in the extensions
given by Kanazawa [1]. However it is not the main point used by Kanazawa to
show finite elasticity of k-valued AB grammars. Here we propose to focus on this
distinction and its consequences in the learnability viewpoint, and see how this

particular property of AB grammars can be generalized. Thus we obtain a suffi-
cient condition for learnability of grammars through the criterion of “flatness”.

To show that such languages are learnable we will use Shinohara’s criterion
of bounded finite thickness. The general framework proposed by Shinohara has
the advantage to take into account the way languages are represented in the
formalization of learning. Actually this is not the case in the basic definition
of Gold’s identification in the limit, nor in Wright’s criterion of finite elastic-
ity, where the fact that languages must have a grammatical representation is
only implicit. But in the natural languages viewpoint this point is essential. In
particular, it is probably more interesting to be able to test whether a given
grammatical formalism has some learnability properties (due to the formalism
itself) than to know if it contains a learnable subclass of languages.

3.1 Gold’s Model of Identification in the Limit

In the following we use the abstract word objects to refer to the elements of a
language. These objects may be strings (that is simple sequences of words), but
also structures which may be more or less complex.

Gold’s model of identification in the limit is a formal model of learning [2]. In
this model, the learner has to guess the right language from an infinite sequence
of objects belonging to this language (positive examples). Formally, let φ be
a learning function, and L a language. Let 〈ai〉i∈N be any infinite sequence of
objects such that a ∈ 〈ai〉i∈N if and only if a ∈ L. φ converges to L if there exists
n ∈ N such that φ(〈a1, a2, . . . , an〉) = L, and for all i > n φ(〈a1, a2, . . . , ai〉) = L.
A class of languages L is learnable if there exists a learning function φ such that
for all L ∈ L, φ converges to L for any enumeration of L.

Wright has proposed in [4], [5] a sufficient condition for learnability, called
finite elasticity. A class L has infinite elasticity if there exist two infinite se-
quences a0, a1, . . . of objects and L1, L2, . . . of languages such that for any k ≥ 1
{a0, a1, . . . , ak−1} ⊆ Lk but ak /∈ Lk. A class L has finite elasticity if L does not
have infinite elasticity. Kanazawa has shown an important theorem about finite
elasticity in [1]: if a class L1 has finite elasticity and there exists a finite-valued 4

relation between L1 and L2, then L2 has also finite elasticity.
Shinohara proposed in [8] a framework in which languages are defined through

a set of expressions, called a formal system. His definition of formal systems cor-
responds to a general definition of grammars, except that these grammars must
consist of a set of elements (called expressions), that correspond usually to rules:
a concept defining framework is a triple 〈U , E ,M〉 of a universe U of objects, a
set E of expressions and a semantic mapping M that maps finite subsets of E
(grammars) to subsets of U (languages). A semantic mapping M is monotonic
if G ⊆ G′ implies M(G) ⊆ M(G′).

Example 2. Let SAB and RAB be the sets of AB grammars operators and rules,
as defined in example 1. Given a vocabulary Σ, let ER be the set of all possible

4 A relation R ⊆ U1 ×U2 is finite-valued iff for every a ∈ U1 there are at most finitely
many b ∈ U2 such that Rab.

lexical rules w . t, with w ∈ Σ and t an SAB-term. Then the concept defining
framework 〈SLR, ER, SL〉 describes the grammatical system of the structure lan-
guage of AB grammars, and the concept defining framework 〈Σ, ER, L〉 describes
the grammatical system of the string language of AB grammars.

Given a concept defining framework 〈U , E ,M〉, a grammar G ⊆ E is reduced
with respect to a finite set of objects D ⊆ U if D ⊆ M(G) but D * M(G′) for
any grammar G′ ⊂ G.

Definition 12 (Bounded finite thickness). A concept defining framework
〈U , E ,M〉 has bounded finite thickness if M is monotonic and the set

{ M(G) | G is reduced with respect to D and #G ≤ n }

is finite for any D ⊆ U and any n ≥ 0.

Shinohara has shown that if a concept defining framework 〈U , E ,M〉 has
bounded finite thickness, then for any n ≥ 0 the class Ln = { M(G) | G ⊆
E and #G ≤ n } has finite elasticity (and then is learnable).

General combinatory grammars do not enjoy (in the general case) the same
learnability properties as AB grammars. This point is shown for example in [9],
where Costa-Florêncio gives an example of a class of rigid general combinatory
grammars which is not learnable.

3.2 Flat Grammars

The sufficient condition for learnability of general combinatory grammars that we
propose below lies in the restriction to flat grammars. Informally, this restriction
is based on the distinction between principal and argument types of a complex
type: each position in an operator is defined as principal or argument position,
and in the latter case any type built with this operator must verify that only
an atomic (or primitive) type is allowed in this position. This way the height
of any type in argument position is bounded, without bounding the height (nor
the size) of a type in general. We will show that this condition together with
suitable restrictions on the form of the rules (see definition 14) allow that the
class of languages has finite elasticity.

Definition 13 (Flat types). Let S be a set of operators, and for each operator
f in S let argf be a function from {1, . . . , arity(f)} to {0, 1}. Given a set of
variables V, the set of flat S-types over V, denoted FT (V), is defined as the
smallest set such that

– V ⊆ FT (V),

– for any f ∈ S with arity(f) = n, if t1, . . . , tn are flat S − types over V then
f(t1, . . . , tn) ∈ FT (V) if ti ∈ V for any i such that argf (i) = 1.

A subtype u in a type t is said to be in argument position in t if there is a
subtype w in t such that w = f(t1, .., ti, .., tn), ti = u and argf (i) = 1.5 Clearly,
if t is a flat S-type over V then any subtype u which is in argument position in
t must be in V .

Definition 14 (Flat universal rule). Let R = A1, . . . , An → A0 be a uni-
versal rule over a set S of operators. R is a flat rule if the following conditions
hold:

– for any v ∈ V ar(R), if v is a subtype of A0 then there exists Ai with i ≥ 1
such that v is also a subtype of Ai.

– For each i, Ai ∈ FT (V ar(R)).
– For each variable v ∈ V ar(R) such that v is not in argument position in

the left hand side of R (that is there is no Ai with i ≥ 1 in which v is in
argument position):

• v is not in argument position in A0,
• and for each i ≥ 1: #v(Ai) ≤ #v(A0).

Given a set R of flat universal rules, G = 〈Σ, Pr, s, .〉 is a flat R-grammar if
every type t ∈ Lex(G) is flat.

Example 3. the argument positions of AB grammars operators are defined in
the following way:

– arg/(1) = arg\(2) = 0
– arg/(2) = arg\(1) = 1

This means that in A/B (as well as in B\A) B is the only argument type. One
can see that AB grammars rules (defined in example 1) verify the conditions of
flat universal rules: In particular there is only one variable in each rule (namely
A) which does not occur in argument position in the left hand side, and the
condition that A must not occur in argument position in the right hand side is
fulfilled.

It is important to notice that all AB grammars types are not flat: for example,
(a/b)/c is flat whereas a/(b/c) is not. The relationship between flat AB grammars
and unrestricted AB grammars is discussed in section 4.1.

The following proposition shows that “flatness” of types is closed under
derivation with flat rules. This means that it is not necessary to add a restric-
tion to each derivation step so that it outputs only flat types, which would be
counter-intuitive: if all types are flat at the beginning and only flat rules are
used, then only flat types can appear.

Proposition 4. Let R be a flat rule, Pr a finite set of variables and t1, . . . , tn
flat S-types over Pr. If t1, . . . tn →R t0, then t0 is also a flat S-type.

5 Remark: in the case where there are several occurrences of u in t, it is sufficient that
one occurrence verifies the condition.

Proof. Let R = A1, . . . , An → A0. t1, . . . , tn →R t0 implies that there is a
substitution σ such that σ(Ai) = ti for all i.

Suppose t0 = σ(A0) is not a flat type. Then there must be a subtype u in
σ(A0) such that u = f(u1, . . . , um), and there is a k, 1 ≤ k ≤ m, such that
argf (k) = 1 and uk /∈ Pr. For any variable vj ∈ V ar(R) (used in any ti) we
have σ(vj) ∈ FT (Pr), because σ(vj) is a subtype of at least one ti, i ≥ 1, and
ti ∈ FT (Pr). Therefore there is no vj such that u is a subtype of σ(vj). As
a consequence, A0 contains f(a1, . . . , am) as a subtype, with σ(ak) /∈ Pr. But
A0 ∈ FT (V ar(R)) and argf (k) = 1, so ak ∈ V ar(R). Since R is a flat rule and
ak is in argument position in A0, ak must appear in argument position in some
Ai, i ≥ 1. Thus σ(Ai) contains σ(ak) in argument position whereas σ(ak) /∈ Pr:
this contradicts the hypothesis that σ(Ai) = ti is a flat type. ut

The following propositions are used to show that flat general combinatory
grammars have bounded finite thickness. The proof, which is similar to Shino-
hara’s one in [8], consists in bounding the size of the possible reduced grammars.

Proposition 5. Let R be a flat rule, Pr a finite set of variables and t1, . . . , tn
flat S-types over Pr. If t1, . . . , tn →R t0, then for all i ≥ 1

‖ti‖ ≤ ‖t0‖+ MR, where MR = max({ ‖Ai‖ | 1 ≤ i ≤ n }) − ‖A0‖

Proof. Let R = A1, . . . , An → A0 and V ar(R) = {v1, . . . , vm}. t1, . . . , tn →R t0
implies that there is a substitution σ such that σ(Ai) = ti for all i.

For any 0 ≤ i ≤ n we have

‖ti‖ = ‖σ(Ai)‖ = ‖Ai‖ +

m∑

j=1

(#vj
(Ai) × (‖σ(vj)‖ − 1)),

V ar(R) is partitioned into two subsets Varg and Vpr:

Varg = { v ∈ V ar(R) | v is in argument position in the left hand side of R },

and Vpr = V ar(R) − Varg. Let Varg = {v′1, . . . , v
′
a} and Vpr = {v′′1 , . . . , v′′p}. For

any 0 ≤ i ≤ n

‖ti‖ = ‖Ai‖ +

a∑

j=1

(#v′

j
(Ai) × (‖σ(v′

j)‖ − 1)) +

p∑

j=1

(#v′′

j
(Ai) × (‖σ(v′′

j)‖ − 1))

Since ti = σ(Ai) is a flat type, for all j, 1 ≤ j ≤ a, σ(v′
j) ∈ Pr. Therefore

‖σ(v′j)‖ = 1, which gives

a∑
j=1

(#v′

j
(Ai) × (‖σ(v′

j)‖ − 1)) = 0,

then ‖ti‖ = ‖Ai‖ +
p∑

j=1

(#v′′

j
(Ai) × (‖σ(v′′

j)‖ − 1))

Since any v′′
j ∈ Vpr is not in argument position in the left hand side of R and

R is a flat rule, v′′
j verifies the condition #v′′

j
(Ai) ≤ #v′′

j
(A0) for all 1 ≤ i ≤ n.

Thus for all i ≥ 1:

‖ti‖ = ‖Ai‖ +
p∑

j=1

(#v′′

j
(Ai) × (‖σ(v′′

j)‖ − 1))

≤ ‖Ai‖ +
p∑

j=1

(#v′′

j
(A0) × (‖σ(v′′

j)‖ − 1))

≤ MR + ‖A0‖ +
p∑

j=1

(#v′′

j
(A0) × (‖σ(v′′

j)‖ − 1))

≤ MR + ‖t0‖

ut

Proposition 6. Let G be a flat R-grammar and T an R-structure. If 〈t1 . . . tn, t0〉
is an instance of T for G, then for all i, 1 ≤ i ≤ n:

‖ti‖ ≤ h(T)× MR + ‖t0‖, where MR = max({ MR | R ∈ R }).

Proof. We show by induction on h = h(T) that t0 ∈ FT (Pr) and ‖ti‖ ≤ h ×
MR + ‖t0‖:

– h = 0. T = w ∈ Σ, therefore n = 1 and t0 = t1 ∈ FT (Pr) because w . t1
and G is a flat grammar.

– h > 0. Suppose the property holds for any h′ < h. Let T = [R](T1, . . . , Tm),
and let 〈α1, u1〉, . . . , 〈αm, um〉 be instances of T1, . . . , Tm such that t1 . . . tn =
α1 • . . . • αm and u1, . . . , um →R t0. By induction hypothesis, the property
holds for any Ti: ui ∈ FT (Pr) and for all ti ∈ αj we have ‖ti‖ ≤ hj ×MR +
‖uj‖, with hj ≤ h′. From proposition 4 t0 ∈ FT (Pr), and from proposition
5 ‖uj‖ ≤ ‖t0‖ + MR, then ‖ti‖ ≤ hj × MR + ‖t0‖ + MR. Since hj ≤ h − 1
and MR ≤ MR, we obtain ‖ti‖ ≤ (h − 1) × MR + ‖t0‖ + MR, that is
‖ti‖ ≤ h × MR + ‖t0‖.

ut

Corollary 1. Let D be a finite set of R-structures and G a flat R-grammar.
If G is reduced with respect to D then every type t ∈ Lex(G) verifies ‖t‖ ≤
HD × MR + ‖s‖, where HD = max({ h(T) | T ∈ D }).

Proof. w .G t and G is reduced with respect to D, so there exists an R-structure
T ∈ D and an instance 〈α, s〉 of T for G such that t ∈ α (otherwise it would be
possible to remove the rule w .G t from G, and G would not be reduced). By
proposition 6, ‖t‖ ≤ h(T)× MR + ‖s‖ ≤ HD × MR + ‖s‖. ut

Proposition 7. Let R be a finite set of flat rules, and ER the set of all flat
R-grammars lexical rules. The concept defining framework 〈SLR, ER, SL〉 has
bounded finite thickness.

Proof. G ⊆ G′ implies that SL(G) ⊆ SL(G′) from proposition 1. Let G ⊆ ER
be a grammar reduced with respect to a finite set D ⊆ SLR, with #G ≤ n.
Corollary 1 shows that the size of each type in Lex(G) is bounded by a constant
HD × MR + ‖s‖. There must be only finitely many pairwise inequivalent such
grammars, because the number of rules in G is also bounded. Since two equivalent
grammars have the same language (from proposition 3), we obtain that the set
{ SL(G) | G ⊆ ER is reduced with respect to D and #G ≤ n } is finite for any
set D and any n ≥ 0. ut

Remark: contrary to the case of simple AB grammars, where any functor-
argument structure is compatible with at least one grammar, there may be no
R-grammar corresponding to a given R-structure in SLR. Thus given a set D
of R-structures it is possible that there is no grammar reduced with respect to
D. Of course this does not contradict the previous result, since an empty set is
clearly finite.

Since Shinohara has shown that bounded finite thickness implies that the
class of languages definable by grammars with at most k rules has finite elasticity,
the following corollaries are obtained easily with proposition 2:

Corollary 2. Given any set R of flat rules and any k ≥ 0, the class of R-
structure languages definable by k-valued flat R-grammars is learnable.

Corollary 3. Let R be a set of flat rules such that any rule R = A1, . . . , An →
A0 in R verifies n ≥ 2. For any k ≥ 0, the class of string languages definable by
k-valued flat R-grammars is learnable.

Proof. Suppose every rule A1, . . . , An → A0 in R verify n ≥ 2. We show that
there is a finite-valued relation between the classes of R-structure languages and
of string languages definable by k-valued flat R-grammars. Let G be a k-valued
flat grammar. For every w ∈ L(G) the height h of the corresponding R-structure
must verify h < |w|, because n ≥ 2 for every rule in R. So there is only a finite
number of R-structures corresponding to a string w. Using the property (shown
by Kanazawa in [1]) that finite elasticity can be extended through a finite-valued
relation, the class of string languages definable by k-valued flat grammars has
also finite elasticity. ut

4 Application to some Classes of R-grammars

In this section we propose to apply these learnability results to several for-
malisms, which are more or less close to the general framework of categorial
grammars. Some of these positive results have already been proved separately.
Even so, the fact that they can be deduced directly in our framework is interest-
ing because it emphasizes the fact that their learnability is due to some common
properties. Thus learnability of flat general combinatory grammars is also to
some extent a generalization of different ways to prove learnability.

4.1 Flat Classical Categorial Grammars and Extensions

Kanazawa has explored learnability of classical categorial grammars in [1]. In
particular, he has shown that k-valued AB grammars have finite elasticity, thus
are learnable from strings. We have seen in example 3 that AB grammars rules
verify the conditions of flat universal rules, therefore it is possible to show learn-
ability of k-valued flat AB grammars using corollaries 2 and 3 (from structures
as well as for strings).

Since all AB grammars are not flat, this result is included in the learnability
result obtained by Kanazawa (in which the definition of types is the usual one,
which does not require that types be flat). Nevertheless, any AB grammar can
be transformed into a flat AB grammar as it is shown in [10]. In this article,
the authors obtained a slightly different learnability result concerning also AB
grammars, by using also flat types (called compact types in their article). They
show that there exists a flat AB grammar for each AB grammar, thus proving
that the classes of languages are equivalent.6

Extensions. The interest in the framework of general combinatory grammars
is that it becomes possible to add specific rules to the usual AB grammars
system. For example, it is interesting in the dependency grammars viewpoint (see
for example [12]) to add the new operators /∗ (iterative types), /+ (repetitive
types), /? (optional types). The argument positions are defined in the same
way as for AB grammars rules, that is arg/∗(1) = arg/+(1) = arg/?(1) = 0 and
arg/∗(2) = arg/+(2) = arg/?(2) = 1. These operators are used with the following
rules:

R∗
1 : A/∗B B → A/∗B V ar(R∗

1) = {A, B}
R∗

2 : A/∗B → A V ar(R∗
2) = {A, B}

R+
1 : A/+B B → A/+B V ar(R+

1) = {A, B}
R+

2 : A/+B B → A V ar(R+
2) = {A, B}

R?
1 : A/?B B → A V ar(R?

1) = {A, B}
R?

2 : A/?B → A V ar(R?
2) = {A, B}

Remark: Symmetrical rules have to be defined for symmetrical operators on
the left: \∗, \+, \?.

Like AB grammars rules these rules are flat (the conditions of definition
14 are verified), therefore k-valued flat AB grammars with all these rules are
also learnable from structures. However this class is not necessarily learnable
from strings, because the rules R∗

2 and R?
2 do not fulfill the condition defined in

corollary 3: there must be at least two types in the left hand side. Actually, among
these operators the only one that can be added to AB grammars languages
without losing learnability from strings is the repetitive operator /+ (see [12] for
details about this point).

6 Such a proof can also be achieved using the classical transformation between AB
grammars and context-free grammars given in [11]: if the AB grammar is converted
into a CFG grammar and re-converted into an AB grammar, then the latter is flat.

4.2 Steedman’s Combinatory Categorial Grammars

Costa Florêncio has shown in [6] a sufficient condition for finite elasticity of
any class of k-valued R-grammars. The condition that he provides is based on
the reduction of the class of languages to the class of k-valued AB grammars
languages (which has finite elasticity: shown in [1]), using the fact that a finite-
valued relation exists between the two classes. His criterion differs from ours: the
method used implies that it must be possible to transform the set of universal
rules into a set of rules which are very similar to AB grammars rules. But his
criterion also has the advantage that it does not put any restriction on the form
of the types, contrary to our condition (types must be flat). Actually the two
methods lead to two different learnability results, each result allowing to learn
classes that the other does not allow.

Costa Florêncio illustrates his learnability result with Steedman’s Combina-
tory Categorial Grammars rules (see for example [7] about CCG): he shows that
that the language generated by a subset of CCG rules is learnable. However one
of the usual CCG rules, namely the composition rule, can not be included in
this subset, whereas it can be used in our framework:7

>B (Forward Composition) A/B B/C → A/C V ar(>B) = {A, B, C}
<B (Backward Composition) C\B B\A → C\A V ar(<B) = {A, B, C}
>S (Forward Substitution) (A/B)/C B/C → A/C V ar(>S) = {A, B, C}
<S (Backward Substitution) C\B C\(B\A) → C\A V ar(<S) = {A, B, C}

One can see that these rules verify the conditions of flat universal rules.
In particular, it is worth noting that type B in the composition rule > B is
in argument position in the left hand side (in A/B), even if there is also an
occurence of B in B/C. Nevertheless, the fact that this rule can be used in a
learnable class of grammars within our framework should not hide the fact that
it is usable only with flat types.

To provide a complete view of learnability of CCG rules, a word must be said
about the type raising rules:

>T : A → B/(A\B) V ar(>T) = {A, B}
<T : A → (B/A)\B V ar(<T) = {A, B}

These rules do not fulfill the conditions of “learnable rules” neither in Costa
Florêncio’s framework nor in ours (these rules are not flat because B does not
appear in the left hand side). However types that can be used in these rules are
restricted to a finite set of categories, so it is possible to “simulate” these rules
directly in the lexicon [7]. This solution permits that such class of languages also
have finite elasticity.

In a totally different approach, Hockenmaier has explored the acquisition of
a combinatory categorial grammars lexicon in a practical viewpoint, in order to
build a wide-coverage parser for English [13].

7 Remark: traditionally, types using the \ operator in CCG are written Functor \
Argument, whereas the notation Argument\Functor is used in classical AB gram-
mars. We keep this latter notation here for consistency.

4.3 Categorial Link Grammars

Link grammars are defined by Sleator and Temperley in [14]. This is a rather
simple formalism which is able to represent in a reliable way natural languages.
This can be seen in the modelization that the authors provided for English in this
system: their grammar deals with most of the linguistic phenomena in English,
as it can be verified using their link grammar parser [15].

Béchet has shown in [16] that k-valued link grammars are learnable from
strings, using also Shinohara’s property of bounded finite thickness. It is shown
in [17] that basic link grammars rules are equivalent to the following set of
R-grammars rules:

Rl : d(L, cons(c, R)) d(cons(c, nil), nil) → d(L, R) V ar(Rl) = {c, L, R}
Rr : d(nil, cons(c, nil)) d(cons(c, L), R) → d(L, R) V ar(Rr) = {c, L, R}

With these rules, a sequence of words is a correct sentence for the grammar
if there is a type for each word such that the sequence of types can be reduced
into the special type d(nil, nil).

Example 4. Let define a categorial link grammar G with the following lexicon:8

a,the . d([],[D])

cat, snake . d([D],[S]), d([O,D],[])
chased . d([S],[O])

The following derivation shows that the sentence “the cat chased a snake” is
correct for G:

the cat chased a snake
d([],[D]), d([D],[S]), d([S],[O]), d([],[D]), d([D,O],[])

⇒ d([],[S]), d([S],[O]), d([],[D]), d([D,O],[])
⇒ d([],[S]), d([S],[O]), d([O],[])

⇒ d([],[S]), d([S],[])

⇒ d([],[])

This system is called Categorial Link Grammars (CLG) (see [17] for more
details). Since the formalism of link grammars is (at first sight) very different
from categorial grammars, this equivalence permits to include the learnability
result for link grammars obtained by Béchet in the more general framework of
general combinatory grammars.

Let consider that the set of operators is {d(2), cons(2), nil(0)}, with argd(1) =
argd(2) = 0, argcons(1) = 1 and argcons(2) = 0. Clearly rules Rl and Rr are flat,
because L and R, which are the only variables that are not in argument position
in the left hand side, do not appear in argument position in the right hand side.
Thus it is possible to apply corollaries 2 and 3 to conclude that k-valued flat
categorial link grammars are learnable from structures and from strings. Since
the original definition of link grammars includes only flat types, we obtain here
the same result as Béchet in [16].

8 For a better readability, the notation [c1,c2,..,cn] for connectors lists is used here
instead of cons(c1,cons(c2,..cons(cn,nil)..)).

5 Conclusion

In this study, we did not show that a new class of languages is learnable. But
we have shown that our result includes (partially or totally) several previous
learnability results. Actually, the main interest in this result is that it is fo-
cused on the way languages are expressed with a grammatical formalism: the
examples show that the framework of general combinatory grammars permits
to express very different formalisms through the set of universal rules, and that
the condition of flat grammars is not so restrictive. In particular the example of
link grammars shows that using other operators than the standard binary AB
grammars operators is possible and useful.

It should also be emphasized that the criterion of flat grammars, which is
a sufficient condition for learnability of k-valued grammars, is not an ad hoc
“technical” condition deduced from the constraints of the learning framework:
this criterion is suitable for learning from structures, and it can be easily tested
with any class of R-grammars. As a future work, it remains to see if this criterion
can be extended to more complex types. In particular, flat types means that
all types in argument positions must be atoms, and the consequence (which is
the main point of the proof) is that is possible to bound the size of all types.
Therefore an interesting question would be to know if it is possible to relax this
constraint (for example by bounding the order of the types) without losing this
consequence.

References

1. Kanazawa, M.: Learnable classes of categorial grammars. Cambridge University
Press (1998)

2. Gold, E.: Language identification in the limit. Information and control 10 (1967)
447–474

3. Buszkowski, W., Penn, G.: Categorial grammars determined from linguistic data
by unification. Technical Report TR-89-05, Department of Computer Science,
University of Chicago (1989)

4. Wright, K.: Identification of unions of languages drawn from an identifiable class.
In: Proceedings of the Second Annual Workshop on Computational Learning The-
ory, Morgan Kaufmann (1989) 328–333

5. Motoki, T., Shinohara, T., Wright, K.: The correct definition of finite elasticity:
corrigendum to Identification of unions. In: Proceedings of the Fourth Annual
Workshop on Computational Learning Theory, San Mateo, CA, Morgan Kaufmann
(1991) 375

6. Costa Florêncio, C.: Combinatory categorial grammars and finite elasticity. In
Hoste, V., Pauw, G.D., eds.: Proceedings of the Eleventh Belgian-Dutch Conference
on Machine Learning, University of Antwerp (2001) 13–18

7. Steedman, M.: The Syntactic Process. The MIT Press, Cambridge, Massachusetts
(2000)

8. Shinohara, T.: Inductive inference of monotonic formal systems from positive data.
New Generation Computing 8 (1991) 371–384

9. Costa Florêncio, C.: Learning categorial grammars. PhD thesis, Utrecht University
(2003)

10. Besombes, J., Marion, J.Y.: Learning reversible categorial grammars from struc-
tures. In: Proceedings of Categorial Grammars 2004, Montpellier, France. (2004)
148–163

11. Bar-Hillel, Y., Gaifman, C., Shamir, E.: On categorial and phrase structure gram-
mars (1960)

12. Béchet, D., Dikovsky, A., Foret, A., Moreau, E.: On learning discontinuous de-
pendencies from positive data. In: Proceedings of the 9th conference on Formal
Grammar. (2004)

13. Hockenmaier, J.: Data and models for statistical parsing with Combinatory Cate-
gorial Grammar. PhD thesis, School of Informatics, The University of Edinburgh
(2003)

14. Sleator, D.D.K., Temperley, D.: Parsing english with a link grammar. Technical
Report CMU-CS-TR-91-126, Carnegie Mellon University, Pittsburgh, PA (1991)

15. Temperley, D., Sleator, D., Lafferty, J.: Link grammar.
http://hyper.link.cs.cmu.edu/link/ (1991)

16. Béchet, D.: k-valued link grammars are learnable from strings. In: Proceedings
Formal Grammars 2003. (2003) 9–18

17. Moreau, E.: From link grammars to categorial grammars. In: Proceedings of
Categorial Grammars 2004, Montpellier, France. (2004) 31–45

