
http://wrap.warwick.ac.uk/

Original citation:
Lazic, Ranko, Newcomb, T. and Roscoe, A. W. (2004) On model checking data-
independent systems with arrays with whole-array operations. University of Warwick.
Department of Computer Science. (Department of Computer Science Research Report).
CS-RR-395

Permanent WRAP url:
http://wrap.warwick.ac.uk/61312

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions. Copyright ©
and all moral rights to the version of the paper presented here belong to the individual
author(s) and/or other copyright owners. To the extent reasonable and practicable the
material made available in WRAP has been checked for eligibility before being made
available.

Copies of full items can be used for personal research or study, educational, or not-for-
profit purposes without prior permission or charge. Provided that the authors, title and
full bibliographic details are credited, a hyperlink and/or URL is given for the original
metadata page and the content is not changed in any way.

A note on versions:
The version presented in WRAP is the published version or, version of record, and may
be cited as it appears here.For more information, please contact the WRAP Team at:
publications@warwick.ac.uk

http://wrap.warwick.ac.uk/
http://wrap.warwick.ac.uk/61312
mailto:publications@warwick.ac.uk

On model
he
king data-independent systemswith arrays with whole-array operations?Ranko Lazi�
1??, Tom New
omb2, and Bill Ros
oe21 Department of Computer S
ien
e, University of Warwi
k, UK2 Computing Laboratory, University of Oxford, UKAbstra
t. We
onsider programs whi
h are data independent with re-spe
t to two type variables X and Y , and
an in addition use arraysindexed by X and storing values from Y . We are interested in whethera program satis�es its
ontrol-state unrea
hability spe
i�
ation for allnon-empty �nite instan
es of X and Y . The de
idability of this problemwithout whole-array operations is a
orollary to earlier results.We address the possible addition of two whole-array operations: an arrayreset instru
tion, whi
h sets every element of an array to a parti
ularvalue, and an array assignment or
opy instru
tion. For programs withreset, we obtain de
idability if there is only one array or if Y is �xedto be the boolean type, and we obtain unde
idability otherwise. Forprograms with array assignment, we show that they are more expressivethan programs with reset, whi
h yields unde
idability if there are at leastthree arrays. We also obtain unde
idability for two arrays dire
tly.Keywords: model
he
king, in�nite-state systems, data independen
e,arrays1 Introdu
tionA system is data independent (DI) [1, 2℄ with respe
t to a type if it
an onlyinput, output, move values of that type around within its store, and test whetherpairs of su
h values are equal. This has been exploited for the veri�
ation of
ommuni
ation networks [3℄, pro
essors [4℄, and se
urity proto
ols [5℄.We
onsider programs DI with respe
t to two distin
t types X and Y , whi
h
an in addition use arrays (or memories), indexed by X and storing values fromY . We have already shown that a parti
ular
lass of programs that do not usewhole-array operations (i.e. ones that
an only read and write to individuallo
ations in the array) are amenable to model
he
king [6℄. In this paper, westudy what happens to these de
idability results on the addition of whole-arrayoperations.? We a
knowledge support from the EPSRC Standard Resear
h Grant `ExploitingData Independen
e', GR/M32900. The �rst author was also supported by a resear
hgrant from the Intel Corporation, the se
ond author by QinetiQ Malvern, and thethird author by the US ONR.?? Also aÆliated to the Mathemati
al Institute, Serbian A
ademy of S
ien
es and Arts,Belgrade.

One motivation for
onsidering DI programs with arrays is
a
he and
a
he-
oheren
e proto
ols [7℄. Su
h proto
ols are DI with respe
t to the types of mem-ory addresses and data values. Another appli
ation area is parameterised veri�-
ation of network proto
ols by indu
tion, where ea
h node of the network is DIwith respe
t to the type of node identities [3℄. Arrays arise when ea
h node isDI with respe
t to another type, and it stores values of that type.The te
hniques whi
h we used to establish de
idability of parameterisedmodel
he
king for DI programs with arrays
annot be used when whole-arrayoperations are introdu
ed. The partial-fun
tions semanti
s used there relied onthe fa
t that there
ould always be parts of the array that were `untou
hed' bythe program, and
an therefore be assumed to hold any required value.In order to investigate data independen
e with arrays, we introdu
e a pro-gramming framework inspired by UNITY [8℄, where programs have state andexe
ute in dis
rete steps depending only on the
urrent state. Although dataindependen
e has been
hara
terised in many other languages, e.g. [1, 9, 10℄, ourlanguage is designed to be a simple framework for the study of data independen
ewithout the
lutter of distra
ting language features.Given a DI program with arrays and a spe
i�
ation for the program, themain question of interest is whether the program satis�es the spe
i�
ation forall non-empty �nite instan
es of X and Y . The
lass of spe
i�
ations we willbe
onsidering here is
ontrol-state unrea
hability, whi
h
an express any safetyproperty. For su
h spe
i�
ations, we observe that the answer to the above pa-rameterised model-
he
king problem for �nite instan
es redu
es to a single
he
kwith X and Y instantiated to in�nite sets.We
onsider the reset (or initialiser) instru
tion, whi
h sets every lo
ation inan array to a given value. This is useful for modelling distributed databases andproto
ols with broad
asts. We prove that su
h systems with exa
tly one array arewell-stru
tured [11℄, showing that unrea
hability model
he
king is de
idable forthem. However, we also show that for programs with just two arrays with reset,unrea
hability is not de
idable: this result is a
quired using an emulation by su
hsystems of universal register ma
hines3. We further show that unrea
hability isde
idable for programs with arbitrarily many arrays with reset when Y is not atype variable, but is �xed to be the boolean type. In su
h programs, any booleanoperation
an be used, sin
e it
an be expressed in terms of equality tests.The study of
a
he proto
ols motivates an array assignment (or array
opy)instru
tion, for moving blo
ks of data between memory and
a
he or settingup the initial
ondition that the
ontents of the
a
he a

urately re
e
ts the
ontents of the memory. For programs with array assignment, we show thatthey are more expressive than programs with reset, whi
h yields unde
idabilityif there are at least three arrays. We also obtain unde
idability for two arraysby dire
t emulation of universal register ma
hines.Programs with arrays with reset are
omparable to broad
ast proto
ols [12℄.The arrays
an be used to map pro
ess identi�ers to
ontrol states or data values,3 By universal, we mean a register ma
hine that
an
ompute anything that is
om-putable.

and the broad
asting of a message, whi
h may put all pro
esses into a parti
ularstate, might be mimi
ked by a reset instru
tion. In [12℄, it is shown that themodel
he
king of safety properties is de
idable for broad
ast proto
ols. Thisresult has te
hni
al similarities to the de
idability results in this paper. However,arrays
an
ontain data whose type is a parameter (i.e. an unboundedly largeset), whereas the set of states of a pro
ess in a broad
ast proto
ol is �xed.Our de
idability results are also related to de
idability results for Petri Nets.The result for arrays storing booleans is related to the de
idability of the Cover-ing Problem for Petri Nets with transfer ar
s [11℄: the di�eren
es in formalisms,espe
ially that we have state variables whi
h
an index the arrays, make our re-sult interesting. Programs with an array storing data whose type is a parameterare related to Nested Petri Nets [13℄ with transfer ar
s: in addition to formal-ism di�eren
es, de
idability of the Covering Problem for Nested Petri Nets withtransfer ar
s has not been studied.Another related te
hnique is symboli
 indexing [14℄, whi
h is appli
able to
ir
uit designs with large memories. However, the pro
edure relies on a
ase splitwhi
h must be spe
i�ed manually, and only �xed (although large) sizes of arrays
an be
onsidered.Some of the results in this paper were announ
ed by the authors at the VCL2001 workshop, whose pro
eedings were not formally published. This paper
anbe
onsidered an abridged version of Chapters 3, 8 and 9 of [15℄, and readers areadvised to
onsult this referen
e for further details and full proofs.2 PreliminariesA well-quasi-ordering � is a re
exive and transitive relation whi
h has the prop-erty that for any in�nite sequen
e of states s0; s1; : : :, there exist i < j su
h thatsi � sj .A transition system is a stru
ture (Q;Q0;!; P; p�q) where:{ Q is the state spa
e,{ Q0 � Q is the set of initial states,{ ! � Q�Q is the su

essor relation, relating states with their possible nextstates,{ P is a �nite set of observables,{ p�q : P ! 2Q is the extensions fun
tion, su
h that Sfppq j p 2 Pg = Q (i.e.every state has at least one observable). Thus ppq is the set of states in Qthat have some observable property p.Given two transition systems S1 = (Q1; Q01;!1; P; p�q1) and S2 = (Q2; Q02;!2; P; p�q2) over the same observables P , a relation � � Q1 �Q2 is a bisimulationbetween S1 and S2 when the following �ve
onditions hold:1. If s � t, then for every p 2 P , we have that s 2 ppq1 i� t 2 ppq2.2. For all s 2 Q01, there exists t 2 Q02 su
h that s � t.3. If s � t and s!1 s0 then there exists t0 2 Q2 su
h that s0 � t0 and t!2 t0.

4. For all t 2 Q02, there exists s 2 Q01 su
h that s � t.5. If s � t and t!2 t0 then there exists s0 2 Q1 su
h that s0 � t0 and s!1 s0.In this
ase, we
an say that the transition systems S1 and S2 are bisimilar.A state s is rea
hable in a transition system S = (Q;Q0;!; P; p�q) if thereexists a sequen
e of states s0 ! s1 ! � � � ! sn su
h that s0 2 Q0 and sn = s.3 LanguageA type is one of the following: the booleans Bool, the natural numbers Nat,either of the type variables X or Y , and the array types T2[T1℄ where T1 and T2are non-array types.A type
ontext is a mapping from variables (whi
h are just mathemati
alsymbols) to types. For a type
ontext � we will write � ` x : T if � maps thevariable x to the type T , and say that x has type or is of type T in � . We mayomit � in these notations if the type
ontext we are referring to is obvious orunambiguous.A type instan
e for a type
ontext � (or for a program with type
ontext �)gives two
ountable non-empty sets as instan
es for X and Y . We may also talkof (in)�nite type instan
es, whi
h map only to (in)�nite sets.A state s of a type
ontext � (or of a program with type
ontext �) togetherwith a type instan
e I for � is a fun
tion mapping ea
h variable used in � to a
on
rete value in its type. The set of all states of a type
ontext (or of a program)is
alled the state spa
e. We may write s(a[x℄) as a shorthand for s(a)(s(x)).The instru
tions asso
iated with a type
ontext � are as displayed in Table1, where T1 and T2 range over the non-array types.Instru
tion Type
onstraints on �Boolean ?b; b; b b : BoolData ?x; x = x0; x 6= x0 x; x0 : X or YArray ?a[x℄; a[x℄ = yreset(a; y); a[℄ := a0[℄ a; a0 : T2[T1℄;x : T1; y : T2Counter in
(r);de
(r); isZero(r) r : NatTable 1. Instru
tionsThe ? operator represents the sele
tion (or input) of a value into a variableor lo
ation. There are also guarding (or blo
king) instru
tions su
h as equalitytesting x = x0, that do not update the state but whi
h
an only pro
eed if true.The instru
tions b and b
an pro
eed only if b is respe
tively true or false.The instru
tion reset(a; y) will implement an array reset or initialiser oper-ation, setting every lo
ation in an array a to a parti
ular value y. There is alsoan array
opy or assignment operation a[℄ := a0[℄.

Variables of type Nat
an be in
reased by one, de
reased if not zero, and
ompared to zero.The operations of a type
ontext � are generated by the grammar:Op ::= Op;Op j Op +Op j Op� j Iwhere I is any � -permitted instru
tion. The operator
ombinators are sequential
omposition (;),
hoi
e or sele
tion (+), and �nite repetition (�).We may use synta
ti
 abbreviations su
h as x := x0 for ?x;x = x0 orwhile Op1 do Op2 od for (Op1;Op2)�;:Op1. We may use bra
kets (� � �) orindentations in programs to show pre
eden
e.A program with type
ontext � is syntax of the form init OpI repeat OpT ;where the initial operation OpI and the transitional operation OpT are both� -operations.Given a program P = init OpI repeat OpT and a type instan
e I forthe program, the semanti
s of the program under I is the transition systemhhPiiI = (Q;Q0;!; P; p�q); where{ Q (states) is the state spa
e of the program P with the type instan
e I,{ Q0 (initial states) is the set of all states that
an result from the exe
utionof OpI from any state in Q (i.e. the variables and all lo
ations in the arrays
an be
onsidered arbitrarily initialised before the exe
ution of OpI),{ ! is the relation indu
ed by the operation OpT ,{ P (observables) is the set of boolean variables used in P .{ p�q is a mapping from P to sets in Q su
h that pbq = fs j s(b) = trueg.P
an be thought of as exe
uting OpI on
e from any state to form the setof initial states of the transition system. From these, repeating the transitionaloperation OpT forever (or for as long as it yields next states) generates su

es-sive sets of next states. Note that ea
h iteration of the transitional operationgenerates any number of transitions (ea
h of length one) in the �nal transitionsystem.Note 1. A UNITY program over a set of variables
onsists of an initial
ondition,followed by a set of guarded multiple assignments [8℄. A UNITY program
an beexpressed in our language quite naturally, although extra temporary variablesmay be needed to reprodu
e multiple simultaneous assignment. Conversely, anyprogram in our language
an be
onverted to a UNITY program whi
h wouldhave equivalent observational behaviour whenever a boolean signal is true.Further dis
ussion of motivation and appli
ation of the language, and exam-ple programs,
an be found in [15℄. ut4 Model-
he
king problemsThe
ontrol-state unrea
hability problem CU for a
lass of programs C is: `Givenany program P from the
lass C, any boolean b from the program P , and anyparti
ular type instan
e I for P , are all states whi
h map b to true unrea
hable

in hhPiiI?' We will write FinCU and InfCU to restri
t the problem to just�nite and in�nite type instan
es respe
tively.The parameterised
ontrol-state unrea
hability problem PCU for a
lass ofprograms C is: `Given any program P from the
lass C and any boolean b fromthe program P , are all states whi
h map b to true unrea
hable in hhPiiI for allpossible type instan
es I for P?' We will write FinPCU to restri
t the problemto just �nite type instan
es.The data independen
e of the data types means that systems with equinu-merous type instan
es are isomorphi
. Therefore, InfPCU is in fa
t the sameproblem as PCU.We
an use the following theorem to dedu
e results about the parameterisedmodel-
he
king problem for all �nite types from
he
ks using just one parti
ularin�nite type instan
e.Theorem 1. Suppose we have a program P without variables of type Nat, aboolean variable b of P, and an in�nite type instan
e I� for P. Then,b rea
hable in hhPii?I� () 9I � b rea
hable in hhPiiI :where 9I existentially quanti�es only over �nite type instan
es for P. utCorollary 1. For a parti
ular
lass of programs, InfCU is de
idable if and onlyif FinPCU is de
idable. utA DI system with arrays with reset is a program with no variables of typeNat whi
h may not use array assignment, and of the forminit (;a?y; reset(a; y));OpIrepeat OpT ;where y is any variable with type Y . It is sensible to assume that the program hassu
h a variable, otherwise it would be unable to read from or write to its arrays.The notation (;a � � �) means repetition of syntax, repla
ing a with a di�erentarray ea
h time, in any order.In the above de�nition of DI systems with arrays with reset, the pre�x ofinstru
tions ensures that all arrays are initialised (i.e. reset) to arbitrary values.This simpli�es proofs a little.A universal register ma
hine (URM) is a program that may only use variablesof type Bool or Nat. The program must be of the forminit (;risZero(r));OpIrepeat OpT :where the operation before OpI repeats isZero(r); for some
omplete enumera-tion of the variables of type Nat.

5 Reset5.1 One array storing data from a variable typeIn this se
tion we will prove that parameterised model
he
king of
ontrol-stateunrea
hability properties for systems with one array of type Y [X ℄ with reset isde
idable. We begin with the following
ru
ial observation.Note 2. Arrays are initialised at the beginning of the program, and at any statethere is only ever a �nite number of instru
tions sin
e the last reset on a parti
u-lar array. Therefore every possible rea
hable state will have only a �nite numberof lo
ations in ea
h array that are di�erent from the last reset value. utLet P be a DI program with only one (resettable) array, and let I� be anin�nite type instan
e for P . Let hhPiiI� = (Q;Q0;!; P; p�q). To aid the followingproof, we restri
t Q (and Q0 also) to
ontain only states that
onform to theobservation made in Note 2 | that there are only �nitely many di�erent valuesin the array at any time and only one of them o

urs in�nitely often | as otherstates
an never be rea
hable. This simpli�es the presentation, although it wouldbe possible not to restri
t Q and to just mention this at the required pla
es inthe proof.We de�ne some notation before giving the well-quasi-ordering on the states.De�nition 1. For a state s, a subset V of I�(X), and a value w 2 I�(Y), wewill denote the number of o

urren
es of w in lo
ations V in the array s(a) asCs(V;w), whi
h
an be formally de�ned as follows:Cs(V;w) = jfv 2 V j s(a)(v) = wgj:Note that the answer will be 1 if V is an in�nite set and w is the value of thelast reset, else it will be a natural number. utWe write y :: Y to mean y is a term of type Y | that is, y is either a variabley : Y or y is syntax of the form a[x℄ where x : X . We will also use:s(: X) = fs(x) j x : Xg and s(:: Y) = fs(y) j y :: Y g:For ease of presentation, we may also write X and Y to mean I�(X) and I�(Y)when it is
lear that a set is required rather than a type symbol.De�nition 2. The relation � � Q�Q is de�ned as s � t i� there exist bije
-tions: � : s(:X) =�! t(:X) and � : s(::Y) =�! t(::Y)su
h that all of the following:1. s(b) = t(b) for all b : Bool.2. �(s(x)) = t(x) for all x : X.3. �(s(y)) = t(y) for all y :: Y .

4. For all w 2 s(:: Y), there are at least the same number of �(w)'s in thearray t(a) as there are w's in s(a), ex
luding lo
ations whi
h are the terms.Formally: Cs(X n s(:X); w) � Ct(X n t(:X); �(w)):5. There exists an inje
tion
 : Y n s(:: Y) ��! Y n t(:: Y) su
h that all othervalues from the type Y not dealt with above
an be mat
hed up from s(a) tot(a) in the manner of Condition 4 above, but with the inje
tion
 instead ofthe bije
tion �. Formally: for all w 2 Y n s(::Y),Cs(X n s(:X); w) � Ct(X n t(:X);
(w)): utExample 1. We illustrate the de�nition of � on an example pair of states s andt. The �rst three
onditions say that boolean variables must be equal and theterms must have the same equality relationship on them. We will fo
us of the�nal two
onditions, whi
h are used to
ompare the parts of the array that arenot referen
ed by the
urrent values of X-variables (i.e. lo
ations that are notimmediately a

essible in the
urrent state before doing a ?x instru
tion).Condition 4 says that, for ea
h term y :: Y , there must be at least as manyt(y)'s in the rest of the array t(a) (i.e. lo
ations not referen
ed by X-variables)than there are s(y)'s in the rest of the array s(a).Suppose s has no other lo
ation in the array holding a value equal to thevalue of term y0; similarly, suppose there are four, one, and three other lo
ations
ontaining the values s(y1); s(y2) and s(y3) respe
tively. This is represented pi
-torially as a histogram: see Figure 1 (a). Condition 4 of s �0 t holds for any twhose
orresponding histogram `
overs' the histogram of s.
0

1

2

3

4

y y y0 1 2 3y

(a) (b)

0

1

2

3

4

5

Fig. 1. Histogram representation of array with resetCondition 5 says that the same relationship holds for all the other Y -values(i.e. values not held in terms), ex
ept that we are allowed to arrange the
olumnsof the histogram in any way we wish. In this example we use the fa
t that it

is suÆ
ient to
onsider the arrangement where they are sorted in reverse order,instead of having to
onsider every possible permutation.Suppose the state s was last reset to a value v0 whi
h is not equal to avalue held in any term: the array will therefore hold an in�nite number of thesevalues. The array may also hold a �nite number of other values: suppose s(a)also holds distin
t values v1; : : : ; v5 (whi
h are di�erent from v0 and the valuesof any terms) in
ardinalities �ve, four, four, two, and one respe
tively. This
anbe represented as a histogram: see Figure 1 (b). Condition 5 requires that t's
orresponding histogram
overs that of s. utThe following two propositions tell us that hhPiiI� is a well-stru
tured tran-sition system [11℄.Proposition 1. The relation � is a well-quasi-ordering on the state set Q. utProposition 2. The relation � is strongly upward
ompatible with !, i.e. forall s � t and s! s0 there exists t0 2 Q su
h that t! t0 and s0 � t0. utAny state s
an be represented �nitely by a tuple with the following
ompo-nents:{ the values of the boolean variables;{ the equivalen
e relations on the variables of type X and on terms of type Yindu
ed by the equality of values stored in them;{ for ea
h y :: Y , the value Cs(X n s(:X); s(y));{ a bag (i.e. multiset)
onsisting of, for ea
h w 2 Y n s(::Y), the valueCs(X n s(:X); w)if it is non-zero.4This representation yields a quotient \hhPiiI� of the transition system hhPiiI� ,whi
h is a well-stru
tured transition system with respe
t to the quotient �̂ ofthe quasi ordering �. Moreover, for any state representation ŝ, a �nite set ofstate representations whose upward
losure is " Pred(" ŝ) is
omputable, and�̂ is de
idable. Therefore,
ontrol-state unrea
hability
an be de
ided by theba
kward set-saturation algorithm in [11℄.Theorem 2. The problems InfCU and FinPCU are de
idable for the
lass ofDI programs with reset with just one array of type Y [X ℄. ut5.2 Multiple arrays storing boolean dataHere we
onsider DI programs that use multiple arrays all indexed by a type vari-able X and storing boolean values. De
idability of parameterised model
he
kingof
ontrol-state unrea
hability properties for these systems follows similarly asfor systems in Se
tion 5.1.The following are the main di�eren
es in de�ning the quasi ordering:4 There are only �nitely many w's for whi
h this value is non-zero | see Note 2.

{ As the type Y used there is now the booleans, the program is no longer DIwith respe
t to it. Therefore, the fun
tion � must be removed (i.e. repla
edwith the identity relation) from De�nition 2.{ In De�nition 1, rede�ne the Cs operator to take a ve
tor of boolean valuesw = (w1; : : : ; wn) rather than a single value:Cs(V; (w1; : : : ; wn)) = jfv 2 V j 8i � s(ai)(v) = wigj:The �nite representation of states is now as follows:{ the values of the boolean variables;{ the equivalen
e relation on the variables of type X indu
ed by the equalityof values stored in them;{ for ea
h w 2 Bn , the value Cs(X n s(:X);w).Theorem 3. The problems InfCU and FinPCU are de
idable for the
lass ofDI programs with arbitrarily many arrays only of type Bool[X ℄ with reset. ut5.3 Multiple arrays storing data from a variable typeWe now show that unrea
hability model
he
king is unde
idable with more thanone array of type Y [X ℄. We demonstrate that for any URM P there is a DIprogram P℄ with just two type variables X and Y and only two arrays withreset whi
h has the same observable behaviour as P . We
an en
ode the valuesof the variables r : Nat as the length of a linked list in the arrays in P℄.De�nition 3. The type
ontext � ℄ of P℄ is de�ned as follows, where P has type
ontext � . � ℄ has the same variables of type Bool as � and has two arrays� ℄ ` S; I : Y [X ℄ to hold the linked lists. It also has variables � ℄ ` hr : X for theheads of the linked lists representing ea
h � ` r : Nat, and a variable � ℄ ` e : Xwhi
h marks the end of all the lists. A variable � ℄ ` y0 : Y is used to holda spe
ial value whi
h marks a lo
ation in I as being unused. The program alsomakes use of temporary variables � ℄ ` x : X and � ℄ ` y; n : Y . utExample 2. Figure 2 shows an example state of the arrays S and I , representinga state in the URM where its
ounter variables are set as follows: r0 = 0, r1 = 2and r2 = 3.The array I is used to give unique identi�ers in Y to all of the �nitely manylo
ations in X that are
urrently being used to model the linked lists. It is set toy0 (whi
h happens to be the value 0 in this example) at all the unused lo
ations.Where I is non-zero, the array S gives the identi�er of that lo
ation's su

essor.Che
king a register r is zero be
omes a simple matter of
he
king whetherhr = e. We
an de
rease a register r by updating hr to the value x, where I [x℄is equal to S[hr℄, remembering to mark the old lo
ation as being now unused bydoing I [hr℄ := y0.To in
rease r by one, we must �nd a brand new identi�er as well as anunused lo
ation for hr and make it link to the old lo
ation. To ensure that a

0 4 4 5 2793

003800405

8

1h
0

hh
2

36

000

S

I

9 7 5 5

019

e

Fig. 2. Building a linked list using arrays with reset
hosen identi�er is new we must go through all the lists and
he
k that it is notbeing used already. We
an
he
k whether a lo
ation is being used by testing ifit is zero in I .Noti
e that there are important invariants our emulator must maintain inaddition to the requirement that the linked lists must have length equal to theappropriate URM register.{ The identi�ers should be unique so that ea
h head has exa
tly one list fromit.{ Aside from the end marker e, the lo
ations in any pair of lists are disjoint.{ I must have unused lo
ations set to y0, of whi
h there must always be in-�nitely many. utDe�nition 4. An instru
tion translator ℄ from instru
tions used in P to in-stru
tions used in P℄ is shown in Table 2. The syntax (;r0 � � �) means the repe-tition of syntax, repla
ing r0 with a di�erent variable of type Nat ea
h time, all
onjoined with the ; operator. utDe�nition 5. Given a URM P = init oI repeat oT , the
orresponding DIprogram with arrays isP℄ = init reset(I; y0); y 6= y0; I [e℄ := y; o℄Irepeat o℄T :utLet hhPii = (Q;Q0;!; P; p�q) and hhP℄ii = (Q℄; Q0℄;!℄; P; p�q℄): We willshow there exists a bisimulation between hhPii and hhP℄iiI� for any in�nite typeinstan
e I� for P℄.First, some shorthands. Given a state t, we will say that the inverse fun
tiont(I)�1 : I�(Y) ! I�(X) is de�ned at a value w 2 I�(Y) and is equal to thevalue v when there is exa
tly one value v in I�(X) su
h that t(I)(v) = w. Wewill use notation to
ompose arrays as follows: t(I)�1(t(S)(v)) may be writtent(I�1 Æ S)(v).We now de�ne our
orresponden
e relationship between the two transitionsystems.

I I℄isZero(r) hr = ede
(r) hr 6= e; I[hr℄ := y0; y := S[hr℄;?hr; I[hr℄ = yin
(r) ?n; n 6= y0;n 6= I[e℄;(;r0 x := hr0 ;while x 6= e don 6= I[x℄; y := S[x℄;?x; I[x℄ = yod);?x; I[x℄ = y0;I[x℄ := n; y := I[hr℄;S[x℄ := y;hr := xother no
hangeTable 2. Translating URM instru
tions to instru
tions on arrays with resetDe�nition 6. De�ne a relation � � Q�Q℄ as s � t i�{ s(b) = t(b) for b : Bool.{ For every r : Nat there exists a �nite sequen
e vr0 � � � vrs(r) su
h that:� For ea
h r : Nat:� vrs(r) = t(hr),� vri�1 = t(I�1 Æ S)(vri) for i = 1; : : : ; s(r),� vr0 = t(e).� The values of ea
h t(I)(vri) for r : Nat and i = 1; : : : ; s(r) together witht(e) are pairwise unequal. (`Uniqueness Invariant.')� For all v 2 I�(X), we have that vri 6= v for every r : Nat and i =0; : : : ; s(r) if and only if t(I)(v) = t(y0). (`Unused Invariant.') utProposition 3. There relation � is a bisimulation between hhPii and hhP℄iiI�for any in�nite type instan
e I� for P℄. utThe following
an be dedu
ed from the unde
idability of the Halting Problemfor URM's and Corollary 1.Theorem 4. The problems InfCU and FinPCU for the
lass of DI programswith two arrays of type Y [X ℄ with reset are unde
idable. ut6 Array assignment6.1 Simulation of arrays with resetWe show that for any program P using arrays with reset, there exists a programP℄ using arrays with assignment whi
h has bisimilar semanti
s. This shows that,in some sense, array assignment is at least as expressive as array reset.

De�nition 7. The type
ontext � ℄ of the program P℄ is de�ned as follows. If weassume the arrays used in P are r0; : : : ; rn�1, we have arrays � ℄ ` a0; : : : ; an�1 :Y [X ℄ in P℄. We also have another array � ℄ ` A : Y [X ℄ whi
h we will use to
he
k whether lo
ations have
hanged sin
e the last reset of that array. The type
ontext � ℄ has all the same non-array variables as � ex
ept that it also has extravariables � ℄ ` Y0; : : : ; Yn�1 : Y to store the last reset value to the
orrespondingarray. There are also temporary variables � ℄ ` ya; yA; n : Y . utExample 3. Here is an example state of a system using arrays with reset, togetherwith an emulating state from the system using array assignment.
with assignment

1Y0Y

A1aa
0

05

6

5

9

0

11

6

5

3

Simulation by arraysArrays with
reset

1r0r

0

0

0

3

5

0

0

9

4

5

5

5

5

1

9

7

0

0

4

9

0

Fig. 3. Emulating array reset with array assignmentOn the left of the �gure, the arrays r0 and r1 from the system with the resetoperation available are shown. It
an be seen that r0 was last reset to 5 and r1was last reset to 0. The lo
ations where these arrays have been
hanged sin
etheir last update are emphasised with verti
al bars.On the right, the arrays a0 and a1 from the system with array assignment areshown to be identi
al to r0 and r1 respe
tively at these lo
ations that have been
hanged (also shown within verti
al bars). Pla
es whi
h have not been
hangedsin
e the last reset of the array are instead equal to whatever is in the array Aat those lo
ations | the variables Y0 and Y1
an be used to �nd the value ofthe last resets. Now the instru
tions translate as follows:{ When we wish to read a lo
ation ri[x℄ in the abstra
t program P , we returnai[x℄ when ai[x℄ 6= A[x℄, and Yi when ai[x℄ = A[x℄.{ Resetting an array
an be emulated by the array assignment ai[℄ := A[℄,while setting Yi to the value of the reset.{ When writing to an abstra
t lo
ation ri[x℄, we write instead to ai[x℄. Fur-thermore we should make sure that A[x℄ is not equal to ai[x℄; if it is not,we must
hange A[x℄ and any other aj [x℄ whi
h is marked as un
hanged bybeing equal to A[x℄. ut

De�nition 8. An instru
tion translator ℄ from instru
tions used in P to in-stru
tions used in P℄ is shown in Table 3. The notation (;j 6=i � � �) means repeti-tion of syntax for every j from 0 to n � 1 ex
ept i, all
onjoined with ; in anyorder. utI I℄y = ri[x℄ yA := A[x℄; ya := ai[x℄;if yA = yathen y = Yielse y = ya�reset(ri; y) ai[℄ := A[℄; Yi := y?ri[x℄ ?ai[x℄; yA := A[x℄; ?n; ai[x℄ 6= n;(;j 6=i ya := aj [x℄;if ya 6= yAthen ya 6= nelse aj [x℄ := n�);A[x℄ := nother no
hangeTable 3. Translating instru
tions for arrays with reset to instru
tions for arrays withassignment
De�nition 9. Given a DI program with arrays with reset P = init oI repeat oT ,we
an form a
orresponding DI program with arrays with assignment P℄ =init o℄I repeat o℄T as des
ribed above. utTheorem 5. Given a DI program P with n arrays of type Y [X ℄ with reset anda type instan
e I for P, there exists a DI program P℄ with n + 1 arrays oftype Y [X ℄ with assignment su
h that there is a bisimulation between hhPiiI andhhP℄iiI . ut6.2 Simulation of universal register ma
hinesBy Theorem 5, any program with two arrays with reset is bisimilar to a pro-gram with three arrays with assignment. Theorem 4 states that unrea
habilityis unde
idable for the former
lass, and so it also is for the latter.It turns out that a stronger negative result is possible. We adapt the resultsfrom Se
tion 5.3 about array reset to work instead with array assignment. Weshow that, for any universal register ma
hine P , there exists a DI programP℄ with only two arrays with array assignment whi
h has the same observablebehaviour as P . The proof runs very similarly, so we present only the di�eren
es.

{ The variable � ℄ ` y0 : Y from De�nition 3 is unne
essary.{ Figure 2
ould be repla
ed by Figure 4.
S

I 23384084559

7936 9

e
0

h
2 1hh

2354408557

7196

Fig. 4. Building a linked list using arrays with assignment{ The
orresponding explanation from Example 2 would be altered as follows:Instead of I [x℄ being set to y0 at unused lo
ations x, we have I [x℄ = S[x℄ tomark a lo
ation as unused. Conversely, a lo
ation x must have I [x℄ 6= S[x℄ ifit is in use to prevent it being overwritten. This had to be the
ase anywayotherwise the su

essor of that lo
ation would be itself, and hen
e would bean in�nite list | ex
ept at e, whose su

essor is never used, so we must besure to have I [e℄ 6= S[e℄.{ Table 2 is updated as follows:� Remove the instru
tion n 6= y0 in (in
(r))℄. The role of y0 has beenrepla
ed.� Repla
e I [hr℄ := y0 with I [hr℄ := S[hr℄ in (de
(r))℄. This is the new wayof marking a lo
ation as unused.� Repla
e ?hr with ?hr; I [hr℄ 6= S[hr℄ in (de
(r))℄, and repla
e the �rsto

urren
e of ?x (i.e. within the while-loop) with ?x; I [x℄ 6= S[x℄ in(in
(r))℄. This is the new
he
k for a used lo
ation.� Repla
e I [x℄ = y0 with I [x℄ = S[x℄ in (in
(r))℄. This tests for an unusedlo
ation.{ In De�nition 5, the pie
e of
ode reset(I; y0); ?y; y 6= y0; I [e℄ := y is used tomark every lo
ation as unused, and to pi
k a non-y0 value as the identi�erfor lo
ation e so it is marked as being used. This should be repla
ed byI [℄ := S[℄; ?y; y 6= S[e℄; I [e℄ := y to mark every lo
ation as unused (be
auseI [x℄ = S[x℄ at every lo
ation x), and then to make I [e℄ 6= S[e℄ so this lo
ationis marked as being used.{ We require a modi�
ation to the inverse fun
tion implied by an array asused in Se
tion 5.3. We now say that t(I)�1 is de�ned at a value w andis equal to v when there is exa
tly one v su
h that both t(I)(v) = w andt(I)(v) 6= t(S)(v).{ In the de�nition of � (De�nition 6), the last
ondition should be that t(I)(v)is equal to t(S)(v) instead of t(y0).

We
an now state the following theorems.Theorem 6. Given a universal register ma
hine P there exists a DI programP℄, and two arrays of type Y [X ℄ with array assignment, su
h that there is abisimulation between hhPii and hhP℄iiI� for any in�nite type instan
es I�. utTheorem 7. The problems InfCU and FinPCU for the
lass of DI programswith just two arrays of type Y [X ℄ with array assignment is unde
idable. utNote that a program with only one array with array assignment is unable tomake any use of the array assignment instru
tion: it
an therefore be
onsiderednot to have this instru
tion.7 Con
lusionsThis paper has extended previous work on DI systems with arrays without whole-array operations [16, 4, 6℄ by
onsidering array reset and array assignment.For programs with array reset, we showed that parameterised model
he
kingof
ontrol-state unrea
hability properties is de
idable when there is only one ar-ray, but unde
idable if two arrays are allowed. If the arrays store booleans ratherthan values whose type is a parameter, we showed de
idability for programs withany number of arrays. The de
idability results are based on the theory of well-stru
tured transition systems [11℄, whereas unde
idability followed by redu
ingthe Halting Problem for universal register ma
hines.Programs with array assignment were shown to be at least as expressive asprograms with array reset. However, this yields a weaker unde
idability resultthan for programs with reset, but unde
idability for two arrays was obtainabledire
tly.Future work in
ludes
onsidering programs with array assignment in whi
hthe arrays store booleans. More generally, programs with more than two data-type parameters, multi-dimensional arrays, and array operations other than resetand assignment should be
onsidered, as well as
lasses of
orre
tness propertiesother than
ontrol-state unrea
hability.We would like to thank Zhe Dang, Alain Finkel, and Kedar Namjoshi foruseful dis
ussions.Referen
es1. Wolper, P.: Expressing interesting properties of programs in propositional temporallogi
. In: Pro
eedings of the 13th ACM Symposium on Prin
iples of ProgrammingLanguages. (1986) 184{1932. Lazi�
, R.S., Nowak, D.: A unifying approa
h to data independen
e. In: Pro
eed-ings of the 11th International Conferen
e on Con
urren
y Theory. Volume 1877 ofLe
ture Notes in Computer S
ien
e., Springer-Verlag (2000) 581{5953. Creese, S.J., Ros
oe, A.W.: Data independent indu
tion over stru
tured networks.In: International Conferen
e on Parallel and Distributed Pro
essing Te
hniquesand Appli
ations, CSREA Press (2000)

4. M
Millan, K.L.: Veri�
ation of in�nite state systems by
ompositional model
he
king. In: Conferen
e on Corre
t Hardware Design and Veri�
ation Methods.(1999) 219{2345. Broadfoot, P.J., Lowe, G., Ros
oe, A.W.: Automating data independen
e. In:Pro
eedings of the 6th European Symposium on Resear
h on Computer Se
urity.(2000) 75{1906. Lazi�
, R.S., New
omb, T.C., Ros
oe, A.W.: On model
he
king data-independentsystems with arrays without reset. Theory and Pra
ti
e of Logi
 Programming:Spe
ial Issue on Veri�
ation and Computational Logi
 (2003) To appear. Draftavailable as resear
h report RR-02-02 from Oxford University Computing Labora-tory.7. Adve, S., Ghara
horloo, K.: Shared memory
onsisten
y models: a tutorial. Com-puter 29 (1996) 66{768. Chandy, K.M., Misra, J.: Parallel Program Design: A Foundation. Addison WesleyPublishing Company, In
., Reading, Massa
husetts (1988)9. Hojati, R., Brayton, R.K.: Automati
 datapath abstra
tion in hardware systems.In: Pro
eedings of the 7th International Conferen
e on Computer Aided Veri�
a-tion. Volume 939 of Le
ture Notes in Computer S
ien
e., Springer-Verlag (1995)98{11310. Lazi�
, R.S.: A Semanti
 Study of Data Independen
e with Appli
ations to ModelChe
king. PhD thesis, Oxford University Computing Laboratory (1999)11. Finkel, A., S
hnoebelen, P.: Well-stru
tured transition systems everywhere! The-oreti
al Computer S
ien
e 256 (2001) 63{9212. Esparza, J., Finkel, A., Mayr, R.: On the veri�
ation of broad
ast proto
ols. In:Pro
eedings of the 14th IEEE Symposium on Logi
 in Computer S
ien
e, IEEEComp. So
. Press (1999) 352{35913. Lomazova, I.A.: Nested petri nets: Multi-level and re
ursive systems. FundamentaInformati
ae 47 (2001) 283{29414. Melham, T., Jones, R.: Abstra
tion by symboli
 indexing transformations. In: Pro-
eedings of the Fourth International Conferen
e on Formal Methods in Computer-Aided Design. Volume 2517 of Le
ture Notes in Computer S
ien
e., Springer-Verlag(2002)15. New
omb, T.C.: Model Che
king Data-Independent Systems With Arrays. PhDthesis, Oxford University Computing Laboratory (2003) To appear. Draft availableat the Con
urren
y Group web pages.16. Hojati, R., Isles, A.J., Brayton, R.K.: Automati
 state redu
tion te
hniques forhardware systems modelled using uninterpreted fun
tions and in�nite memory.In: Pro
eedings of the IEEE International High Level Design Validation and TestWorkshop. (1997)

