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On model 
he
king data-independent systemswith arrays with whole-array operations?Ranko Lazi�
1??, Tom New
omb2, and Bill Ros
oe21 Department of Computer S
ien
e, University of Warwi
k, UK2 Computing Laboratory, University of Oxford, UKAbstra
t. We 
onsider programs whi
h are data independent with re-spe
t to two type variables X and Y , and 
an in addition use arraysindexed by X and storing values from Y . We are interested in whethera program satis�es its 
ontrol-state unrea
hability spe
i�
ation for allnon-empty �nite instan
es of X and Y . The de
idability of this problemwithout whole-array operations is a 
orollary to earlier results.We address the possible addition of two whole-array operations: an arrayreset instru
tion, whi
h sets every element of an array to a parti
ularvalue, and an array assignment or 
opy instru
tion. For programs withreset, we obtain de
idability if there is only one array or if Y is �xedto be the boolean type, and we obtain unde
idability otherwise. Forprograms with array assignment, we show that they are more expressivethan programs with reset, whi
h yields unde
idability if there are at leastthree arrays. We also obtain unde
idability for two arrays dire
tly.Keywords: model 
he
king, in�nite-state systems, data independen
e,arrays1 Introdu
tionA system is data independent (DI) [1, 2℄ with respe
t to a type if it 
an onlyinput, output, move values of that type around within its store, and test whetherpairs of su
h values are equal. This has been exploited for the veri�
ation of
ommuni
ation networks [3℄, pro
essors [4℄, and se
urity proto
ols [5℄.We 
onsider programs DI with respe
t to two distin
t types X and Y , whi
h
an in addition use arrays (or memories), indexed by X and storing values fromY . We have already shown that a parti
ular 
lass of programs that do not usewhole-array operations (i.e. ones that 
an only read and write to individuallo
ations in the array) are amenable to model 
he
king [6℄. In this paper, westudy what happens to these de
idability results on the addition of whole-arrayoperations.? We a
knowledge support from the EPSRC Standard Resear
h Grant `ExploitingData Independen
e', GR/M32900. The �rst author was also supported by a resear
hgrant from the Intel Corporation, the se
ond author by QinetiQ Malvern, and thethird author by the US ONR.?? Also aÆliated to the Mathemati
al Institute, Serbian A
ademy of S
ien
es and Arts,Belgrade.



One motivation for 
onsidering DI programs with arrays is 
a
he and 
a
he-
oheren
e proto
ols [7℄. Su
h proto
ols are DI with respe
t to the types of mem-ory addresses and data values. Another appli
ation area is parameterised veri�-
ation of network proto
ols by indu
tion, where ea
h node of the network is DIwith respe
t to the type of node identities [3℄. Arrays arise when ea
h node isDI with respe
t to another type, and it stores values of that type.The te
hniques whi
h we used to establish de
idability of parameterisedmodel 
he
king for DI programs with arrays 
annot be used when whole-arrayoperations are introdu
ed. The partial-fun
tions semanti
s used there relied onthe fa
t that there 
ould always be parts of the array that were `untou
hed' bythe program, and 
an therefore be assumed to hold any required value.In order to investigate data independen
e with arrays, we introdu
e a pro-gramming framework inspired by UNITY [8℄, where programs have state andexe
ute in dis
rete steps depending only on the 
urrent state. Although dataindependen
e has been 
hara
terised in many other languages, e.g. [1, 9, 10℄, ourlanguage is designed to be a simple framework for the study of data independen
ewithout the 
lutter of distra
ting language features.Given a DI program with arrays and a spe
i�
ation for the program, themain question of interest is whether the program satis�es the spe
i�
ation forall non-empty �nite instan
es of X and Y . The 
lass of spe
i�
ations we willbe 
onsidering here is 
ontrol-state unrea
hability, whi
h 
an express any safetyproperty. For su
h spe
i�
ations, we observe that the answer to the above pa-rameterised model-
he
king problem for �nite instan
es redu
es to a single 
he
kwith X and Y instantiated to in�nite sets.We 
onsider the reset (or initialiser) instru
tion, whi
h sets every lo
ation inan array to a given value. This is useful for modelling distributed databases andproto
ols with broad
asts. We prove that su
h systems with exa
tly one array arewell-stru
tured [11℄, showing that unrea
hability model 
he
king is de
idable forthem. However, we also show that for programs with just two arrays with reset,unrea
hability is not de
idable: this result is a
quired using an emulation by su
hsystems of universal register ma
hines3. We further show that unrea
hability isde
idable for programs with arbitrarily many arrays with reset when Y is not atype variable, but is �xed to be the boolean type. In su
h programs, any booleanoperation 
an be used, sin
e it 
an be expressed in terms of equality tests.The study of 
a
he proto
ols motivates an array assignment (or array 
opy)instru
tion, for moving blo
ks of data between memory and 
a
he or settingup the initial 
ondition that the 
ontents of the 
a
he a

urately re
e
ts the
ontents of the memory. For programs with array assignment, we show thatthey are more expressive than programs with reset, whi
h yields unde
idabilityif there are at least three arrays. We also obtain unde
idability for two arraysby dire
t emulation of universal register ma
hines.Programs with arrays with reset are 
omparable to broad
ast proto
ols [12℄.The arrays 
an be used to map pro
ess identi�ers to 
ontrol states or data values,3 By universal, we mean a register ma
hine that 
an 
ompute anything that is 
om-putable.



and the broad
asting of a message, whi
h may put all pro
esses into a parti
ularstate, might be mimi
ked by a reset instru
tion. In [12℄, it is shown that themodel 
he
king of safety properties is de
idable for broad
ast proto
ols. Thisresult has te
hni
al similarities to the de
idability results in this paper. However,arrays 
an 
ontain data whose type is a parameter (i.e. an unboundedly largeset), whereas the set of states of a pro
ess in a broad
ast proto
ol is �xed.Our de
idability results are also related to de
idability results for Petri Nets.The result for arrays storing booleans is related to the de
idability of the Cover-ing Problem for Petri Nets with transfer ar
s [11℄: the di�eren
es in formalisms,espe
ially that we have state variables whi
h 
an index the arrays, make our re-sult interesting. Programs with an array storing data whose type is a parameterare related to Nested Petri Nets [13℄ with transfer ar
s: in addition to formal-ism di�eren
es, de
idability of the Covering Problem for Nested Petri Nets withtransfer ar
s has not been studied.Another related te
hnique is symboli
 indexing [14℄, whi
h is appli
able to
ir
uit designs with large memories. However, the pro
edure relies on a 
ase splitwhi
h must be spe
i�ed manually, and only �xed (although large) sizes of arrays
an be 
onsidered.Some of the results in this paper were announ
ed by the authors at the VCL2001 workshop, whose pro
eedings were not formally published. This paper 
anbe 
onsidered an abridged version of Chapters 3, 8 and 9 of [15℄, and readers areadvised to 
onsult this referen
e for further details and full proofs.2 PreliminariesA well-quasi-ordering � is a re
exive and transitive relation whi
h has the prop-erty that for any in�nite sequen
e of states s0; s1; : : :, there exist i < j su
h thatsi � sj .A transition system is a stru
ture (Q;Q0;!; P; p�q) where:{ Q is the state spa
e,{ Q0 � Q is the set of initial states,{ ! � Q�Q is the su

essor relation, relating states with their possible nextstates,{ P is a �nite set of observables,{ p�q : P ! 2Q is the extensions fun
tion, su
h that Sfppq j p 2 Pg = Q (i.e.every state has at least one observable). Thus ppq is the set of states in Qthat have some observable property p.Given two transition systems S1 = (Q1; Q01;!1; P; p�q1) and S2 = (Q2; Q02;!2; P; p�q2) over the same observables P , a relation � � Q1 �Q2 is a bisimulationbetween S1 and S2 when the following �ve 
onditions hold:1. If s � t, then for every p 2 P , we have that s 2 ppq1 i� t 2 ppq2.2. For all s 2 Q01, there exists t 2 Q02 su
h that s � t.3. If s � t and s!1 s0 then there exists t0 2 Q2 su
h that s0 � t0 and t!2 t0.



4. For all t 2 Q02, there exists s 2 Q01 su
h that s � t.5. If s � t and t!2 t0 then there exists s0 2 Q1 su
h that s0 � t0 and s!1 s0.In this 
ase, we 
an say that the transition systems S1 and S2 are bisimilar.A state s is rea
hable in a transition system S = (Q;Q0;!; P; p�q) if thereexists a sequen
e of states s0 ! s1 ! � � � ! sn su
h that s0 2 Q0 and sn = s.3 LanguageA type is one of the following: the booleans Bool, the natural numbers Nat,either of the type variables X or Y , and the array types T2[T1℄ where T1 and T2are non-array types.A type 
ontext is a mapping from variables (whi
h are just mathemati
alsymbols) to types. For a type 
ontext � we will write � ` x : T if � maps thevariable x to the type T , and say that x has type or is of type T in � . We mayomit � in these notations if the type 
ontext we are referring to is obvious orunambiguous.A type instan
e for a type 
ontext � (or for a program with type 
ontext � )gives two 
ountable non-empty sets as instan
es for X and Y . We may also talkof (in)�nite type instan
es, whi
h map only to (in)�nite sets.A state s of a type 
ontext � (or of a program with type 
ontext � ) togetherwith a type instan
e I for � is a fun
tion mapping ea
h variable used in � to a
on
rete value in its type. The set of all states of a type 
ontext (or of a program)is 
alled the state spa
e. We may write s(a[x℄) as a shorthand for s(a)(s(x)).The instru
tions asso
iated with a type 
ontext � are as displayed in Table1, where T1 and T2 range over the non-array types.Instru
tion Type 
onstraints on �Boolean ?b; b; b b : BoolData ?x; x = x0; x 6= x0 x; x0 : X or YArray ?a[x℄; a[x℄ = yreset(a; y); a[ ℄ := a0[ ℄ a; a0 : T2[T1℄;x : T1; y : T2Counter in
(r);de
(r); isZero(r) r : NatTable 1. Instru
tionsThe ? operator represents the sele
tion (or input) of a value into a variableor lo
ation. There are also guarding (or blo
king) instru
tions su
h as equalitytesting x = x0, that do not update the state but whi
h 
an only pro
eed if true.The instru
tions b and b 
an pro
eed only if b is respe
tively true or false.The instru
tion reset(a; y) will implement an array reset or initialiser oper-ation, setting every lo
ation in an array a to a parti
ular value y. There is alsoan array 
opy or assignment operation a[ ℄ := a0[ ℄.



Variables of type Nat 
an be in
reased by one, de
reased if not zero, and
ompared to zero.The operations of a type 
ontext � are generated by the grammar:Op ::= Op;Op j Op +Op j Op� j Iwhere I is any � -permitted instru
tion. The operator 
ombinators are sequential
omposition (; ), 
hoi
e or sele
tion (+), and �nite repetition (�).We may use synta
ti
 abbreviations su
h as x := x0 for ?x;x = x0 orwhile Op1 do Op2 od for (Op1;Op2)�;:Op1. We may use bra
kets (� � �) orindentations in programs to show pre
eden
e.A program with type 
ontext � is syntax of the form init OpI repeat OpT ;where the initial operation OpI and the transitional operation OpT are both� -operations.Given a program P = init OpI repeat OpT and a type instan
e I forthe program, the semanti
s of the program under I is the transition systemhhPiiI = (Q;Q0;!; P; p�q); where{ Q (states) is the state spa
e of the program P with the type instan
e I,{ Q0 (initial states) is the set of all states that 
an result from the exe
utionof OpI from any state in Q (i.e. the variables and all lo
ations in the arrays
an be 
onsidered arbitrarily initialised before the exe
ution of OpI),{ ! is the relation indu
ed by the operation OpT ,{ P (observables) is the set of boolean variables used in P .{ p�q is a mapping from P to sets in Q su
h that pbq = fs j s(b) = trueg.P 
an be thought of as exe
uting OpI on
e from any state to form the setof initial states of the transition system. From these, repeating the transitionaloperation OpT forever (or for as long as it yields next states) generates su

es-sive sets of next states. Note that ea
h iteration of the transitional operationgenerates any number of transitions (ea
h of length one) in the �nal transitionsystem.Note 1. A UNITY program over a set of variables 
onsists of an initial 
ondition,followed by a set of guarded multiple assignments [8℄. A UNITY program 
an beexpressed in our language quite naturally, although extra temporary variablesmay be needed to reprodu
e multiple simultaneous assignment. Conversely, anyprogram in our language 
an be 
onverted to a UNITY program whi
h wouldhave equivalent observational behaviour whenever a boolean signal is true.Further dis
ussion of motivation and appli
ation of the language, and exam-ple programs, 
an be found in [15℄. ut4 Model-
he
king problemsThe 
ontrol-state unrea
hability problem CU for a 
lass of programs C is: `Givenany program P from the 
lass C, any boolean b from the program P , and anyparti
ular type instan
e I for P , are all states whi
h map b to true unrea
hable



in hhPiiI?' We will write FinCU and InfCU to restri
t the problem to just�nite and in�nite type instan
es respe
tively.The parameterised 
ontrol-state unrea
hability problem PCU for a 
lass ofprograms C is: `Given any program P from the 
lass C and any boolean b fromthe program P , are all states whi
h map b to true unrea
hable in hhPiiI for allpossible type instan
es I for P?' We will write FinPCU to restri
t the problemto just �nite type instan
es.The data independen
e of the data types means that systems with equinu-merous type instan
es are isomorphi
. Therefore, InfPCU is in fa
t the sameproblem as PCU.We 
an use the following theorem to dedu
e results about the parameterisedmodel-
he
king problem for all �nite types from 
he
ks using just one parti
ularin�nite type instan
e.Theorem 1. Suppose we have a program P without variables of type Nat, aboolean variable b of P, and an in�nite type instan
e I� for P. Then,b rea
hable in hhPii?I� () 9I � b rea
hable in hhPiiI :where 9I existentially quanti�es only over �nite type instan
es for P. utCorollary 1. For a parti
ular 
lass of programs, InfCU is de
idable if and onlyif FinPCU is de
idable. utA DI system with arrays with reset is a program with no variables of typeNat whi
h may not use array assignment, and of the forminit (;a?y; reset(a; y));OpIrepeat OpT ;where y is any variable with type Y . It is sensible to assume that the program hassu
h a variable, otherwise it would be unable to read from or write to its arrays.The notation (;a � � �) means repetition of syntax, repla
ing a with a di�erentarray ea
h time, in any order.In the above de�nition of DI systems with arrays with reset, the pre�x ofinstru
tions ensures that all arrays are initialised (i.e. reset) to arbitrary values.This simpli�es proofs a little.A universal register ma
hine (URM) is a program that may only use variablesof type Bool or Nat. The program must be of the forminit (;risZero(r));OpIrepeat OpT :where the operation before OpI repeats isZero(r); for some 
omplete enumera-tion of the variables of type Nat.



5 Reset5.1 One array storing data from a variable typeIn this se
tion we will prove that parameterised model 
he
king of 
ontrol-stateunrea
hability properties for systems with one array of type Y [X ℄ with reset isde
idable. We begin with the following 
ru
ial observation.Note 2. Arrays are initialised at the beginning of the program, and at any statethere is only ever a �nite number of instru
tions sin
e the last reset on a parti
u-lar array. Therefore every possible rea
hable state will have only a �nite numberof lo
ations in ea
h array that are di�erent from the last reset value. utLet P be a DI program with only one (resettable) array, and let I� be anin�nite type instan
e for P . Let hhPiiI� = (Q;Q0;!; P; p�q). To aid the followingproof, we restri
t Q (and Q0 also) to 
ontain only states that 
onform to theobservation made in Note 2 | that there are only �nitely many di�erent valuesin the array at any time and only one of them o

urs in�nitely often | as otherstates 
an never be rea
hable. This simpli�es the presentation, although it wouldbe possible not to restri
t Q and to just mention this at the required pla
es inthe proof.We de�ne some notation before giving the well-quasi-ordering on the states.De�nition 1. For a state s, a subset V of I�(X), and a value w 2 I�(Y ), wewill denote the number of o

urren
es of w in lo
ations V in the array s(a) asCs(V;w), whi
h 
an be formally de�ned as follows:Cs(V;w) = jfv 2 V j s(a)(v) = wgj:Note that the answer will be 1 if V is an in�nite set and w is the value of thelast reset, else it will be a natural number. utWe write y :: Y to mean y is a term of type Y | that is, y is either a variabley : Y or y is syntax of the form a[x℄ where x : X . We will also use:s(: X) = fs(x) j x : Xg and s(:: Y ) = fs(y) j y :: Y g:For ease of presentation, we may also write X and Y to mean I�(X) and I�(Y )when it is 
lear that a set is required rather than a type symbol.De�nition 2. The relation � � Q�Q is de�ned as s � t i� there exist bije
-tions: � : s(:X) =�! t(:X) and � : s(::Y ) =�! t(::Y )su
h that all of the following:1. s(b) = t(b) for all b : Bool.2. �(s(x)) = t(x) for all x : X.3. �(s(y)) = t(y) for all y :: Y .



4. For all w 2 s(:: Y ), there are at least the same number of �(w)'s in thearray t(a) as there are w's in s(a), ex
luding lo
ations whi
h are the terms.Formally: Cs(X n s(:X); w) � Ct(X n t(:X); �(w)):5. There exists an inje
tion 
 : Y n s(:: Y ) ��! Y n t(:: Y ) su
h that all othervalues from the type Y not dealt with above 
an be mat
hed up from s(a) tot(a) in the manner of Condition 4 above, but with the inje
tion 
 instead ofthe bije
tion �. Formally: for all w 2 Y n s(::Y ),Cs(X n s(:X); w) � Ct(X n t(:X); 
(w)): utExample 1. We illustrate the de�nition of � on an example pair of states s andt. The �rst three 
onditions say that boolean variables must be equal and theterms must have the same equality relationship on them. We will fo
us of the�nal two 
onditions, whi
h are used to 
ompare the parts of the array that arenot referen
ed by the 
urrent values of X-variables (i.e. lo
ations that are notimmediately a

essible in the 
urrent state before doing a ?x instru
tion).Condition 4 says that, for ea
h term y :: Y , there must be at least as manyt(y)'s in the rest of the array t(a) (i.e. lo
ations not referen
ed by X-variables)than there are s(y)'s in the rest of the array s(a).Suppose s has no other lo
ation in the array holding a value equal to thevalue of term y0; similarly, suppose there are four, one, and three other lo
ations
ontaining the values s(y1); s(y2) and s(y3) respe
tively. This is represented pi
-torially as a histogram: see Figure 1 (a). Condition 4 of s �0 t holds for any twhose 
orresponding histogram `
overs' the histogram of s.
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Fig. 1. Histogram representation of array with resetCondition 5 says that the same relationship holds for all the other Y -values(i.e. values not held in terms), ex
ept that we are allowed to arrange the 
olumnsof the histogram in any way we wish. In this example we use the fa
t that it



is suÆ
ient to 
onsider the arrangement where they are sorted in reverse order,instead of having to 
onsider every possible permutation.Suppose the state s was last reset to a value v0 whi
h is not equal to avalue held in any term: the array will therefore hold an in�nite number of thesevalues. The array may also hold a �nite number of other values: suppose s(a)also holds distin
t values v1; : : : ; v5 (whi
h are di�erent from v0 and the valuesof any terms) in 
ardinalities �ve, four, four, two, and one respe
tively. This 
anbe represented as a histogram: see Figure 1 (b). Condition 5 requires that t's
orresponding histogram 
overs that of s. utThe following two propositions tell us that hhPiiI� is a well-stru
tured tran-sition system [11℄.Proposition 1. The relation � is a well-quasi-ordering on the state set Q. utProposition 2. The relation � is strongly upward 
ompatible with !, i.e. forall s � t and s! s0 there exists t0 2 Q su
h that t! t0 and s0 � t0. utAny state s 
an be represented �nitely by a tuple with the following 
ompo-nents:{ the values of the boolean variables;{ the equivalen
e relations on the variables of type X and on terms of type Yindu
ed by the equality of values stored in them;{ for ea
h y :: Y , the value Cs(X n s(:X); s(y));{ a bag (i.e. multiset) 
onsisting of, for ea
h w 2 Y n s(::Y ), the valueCs(X n s(:X); w)if it is non-zero.4This representation yields a quotient \hhPiiI� of the transition system hhPiiI� ,whi
h is a well-stru
tured transition system with respe
t to the quotient �̂ ofthe quasi ordering �. Moreover, for any state representation ŝ, a �nite set ofstate representations whose upward 
losure is " Pred(" ŝ) is 
omputable, and�̂ is de
idable. Therefore, 
ontrol-state unrea
hability 
an be de
ided by theba
kward set-saturation algorithm in [11℄.Theorem 2. The problems InfCU and FinPCU are de
idable for the 
lass ofDI programs with reset with just one array of type Y [X ℄. ut5.2 Multiple arrays storing boolean dataHere we 
onsider DI programs that use multiple arrays all indexed by a type vari-able X and storing boolean values. De
idability of parameterised model 
he
kingof 
ontrol-state unrea
hability properties for these systems follows similarly asfor systems in Se
tion 5.1.The following are the main di�eren
es in de�ning the quasi ordering:4 There are only �nitely many w's for whi
h this value is non-zero | see Note 2.



{ As the type Y used there is now the booleans, the program is no longer DIwith respe
t to it. Therefore, the fun
tion � must be removed (i.e. repla
edwith the identity relation) from De�nition 2.{ In De�nition 1, rede�ne the Cs operator to take a ve
tor of boolean valuesw = (w1; : : : ; wn) rather than a single value:Cs(V; (w1; : : : ; wn)) = jfv 2 V j 8i � s(ai)(v) = wigj:The �nite representation of states is now as follows:{ the values of the boolean variables;{ the equivalen
e relation on the variables of type X indu
ed by the equalityof values stored in them;{ for ea
h w 2 Bn , the value Cs(X n s(:X);w).Theorem 3. The problems InfCU and FinPCU are de
idable for the 
lass ofDI programs with arbitrarily many arrays only of type Bool[X ℄ with reset. ut5.3 Multiple arrays storing data from a variable typeWe now show that unrea
hability model 
he
king is unde
idable with more thanone array of type Y [X ℄. We demonstrate that for any URM P there is a DIprogram P℄ with just two type variables X and Y and only two arrays withreset whi
h has the same observable behaviour as P . We 
an en
ode the valuesof the variables r : Nat as the length of a linked list in the arrays in P℄.De�nition 3. The type 
ontext � ℄ of P℄ is de�ned as follows, where P has type
ontext � . � ℄ has the same variables of type Bool as � and has two arrays� ℄ ` S; I : Y [X ℄ to hold the linked lists. It also has variables � ℄ ` hr : X for theheads of the linked lists representing ea
h � ` r : Nat, and a variable � ℄ ` e : Xwhi
h marks the end of all the lists. A variable � ℄ ` y0 : Y is used to holda spe
ial value whi
h marks a lo
ation in I as being unused. The program alsomakes use of temporary variables � ℄ ` x : X and � ℄ ` y; n : Y . utExample 2. Figure 2 shows an example state of the arrays S and I , representinga state in the URM where its 
ounter variables are set as follows: r0 = 0, r1 = 2and r2 = 3.The array I is used to give unique identi�ers in Y to all of the �nitely manylo
ations in X that are 
urrently being used to model the linked lists. It is set toy0 (whi
h happens to be the value 0 in this example) at all the unused lo
ations.Where I is non-zero, the array S gives the identi�er of that lo
ation's su

essor.Che
king a register r is zero be
omes a simple matter of 
he
king whetherhr = e. We 
an de
rease a register r by updating hr to the value x, where I [x℄is equal to S[hr℄, remembering to mark the old lo
ation as being now unused bydoing I [hr℄ := y0.To in
rease r by one, we must �nd a brand new identi�er as well as anunused lo
ation for hr and make it link to the old lo
ation. To ensure that a
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Fig. 2. Building a linked list using arrays with reset
hosen identi�er is new we must go through all the lists and 
he
k that it is notbeing used already. We 
an 
he
k whether a lo
ation is being used by testing ifit is zero in I .Noti
e that there are important invariants our emulator must maintain inaddition to the requirement that the linked lists must have length equal to theappropriate URM register.{ The identi�ers should be unique so that ea
h head has exa
tly one list fromit.{ Aside from the end marker e, the lo
ations in any pair of lists are disjoint.{ I must have unused lo
ations set to y0, of whi
h there must always be in-�nitely many. utDe�nition 4. An instru
tion translator ℄ from instru
tions used in P to in-stru
tions used in P℄ is shown in Table 2. The syntax (;r0 � � �) means the repe-tition of syntax, repla
ing r0 with a di�erent variable of type Nat ea
h time, all
onjoined with the ; operator. utDe�nition 5. Given a URM P = init oI repeat oT , the 
orresponding DIprogram with arrays isP℄ = init reset(I; y0); y 6= y0; I [e℄ := y; o℄Irepeat o℄T :utLet hhPii = (Q;Q0;!; P; p�q) and hhP℄ii = (Q℄; Q0℄;!℄; P; p�q℄): We willshow there exists a bisimulation between hhPii and hhP℄iiI� for any in�nite typeinstan
e I� for P℄.First, some shorthands. Given a state t, we will say that the inverse fun
tiont(I)�1 : I�(Y ) ! I�(X) is de�ned at a value w 2 I�(Y ) and is equal to thevalue v when there is exa
tly one value v in I�(X) su
h that t(I)(v) = w. Wewill use notation to 
ompose arrays as follows: t(I)�1(t(S)(v)) may be writtent(I�1 Æ S)(v).We now de�ne our 
orresponden
e relationship between the two transitionsystems.



I I℄isZero(r) hr = ede
(r) hr 6= e; I[hr℄ := y0; y := S[hr℄;?hr; I[hr℄ = yin
(r) ?n; n 6= y0;n 6= I[e℄;(;r0 x := hr0 ;while x 6= e don 6= I[x℄; y := S[x℄;?x; I[x℄ = yod);?x; I[x℄ = y0;I[x℄ := n; y := I[hr℄;S[x℄ := y;hr := xother no 
hangeTable 2. Translating URM instru
tions to instru
tions on arrays with resetDe�nition 6. De�ne a relation � � Q�Q℄ as s � t i�{ s(b) = t(b) for b : Bool.{ For every r : Nat there exists a �nite sequen
e vr0 � � � vrs(r) su
h that:� For ea
h r : Nat:� vrs(r) = t(hr),� vri�1 = t(I�1 Æ S)(vri ) for i = 1; : : : ; s(r),� vr0 = t(e).� The values of ea
h t(I)(vri ) for r : Nat and i = 1; : : : ; s(r) together witht(e) are pairwise unequal. (`Uniqueness Invariant.')� For all v 2 I�(X), we have that vri 6= v for every r : Nat and i =0; : : : ; s(r) if and only if t(I)(v) = t(y0). (`Unused Invariant.') utProposition 3. There relation � is a bisimulation between hhPii and hhP℄iiI�for any in�nite type instan
e I� for P℄. utThe following 
an be dedu
ed from the unde
idability of the Halting Problemfor URM's and Corollary 1.Theorem 4. The problems InfCU and FinPCU for the 
lass of DI programswith two arrays of type Y [X ℄ with reset are unde
idable. ut6 Array assignment6.1 Simulation of arrays with resetWe show that for any program P using arrays with reset, there exists a programP℄ using arrays with assignment whi
h has bisimilar semanti
s. This shows that,in some sense, array assignment is at least as expressive as array reset.



De�nition 7. The type 
ontext � ℄ of the program P℄ is de�ned as follows. If weassume the arrays used in P are r0; : : : ; rn�1, we have arrays � ℄ ` a0; : : : ; an�1 :Y [X ℄ in P℄. We also have another array � ℄ ` A : Y [X ℄ whi
h we will use to
he
k whether lo
ations have 
hanged sin
e the last reset of that array. The type
ontext � ℄ has all the same non-array variables as � ex
ept that it also has extravariables � ℄ ` Y0; : : : ; Yn�1 : Y to store the last reset value to the 
orrespondingarray. There are also temporary variables � ℄ ` ya; yA; n : Y . utExample 3. Here is an example state of a system using arrays with reset, togetherwith an emulating state from the system using array assignment.
with assignment
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Fig. 3. Emulating array reset with array assignmentOn the left of the �gure, the arrays r0 and r1 from the system with the resetoperation available are shown. It 
an be seen that r0 was last reset to 5 and r1was last reset to 0. The lo
ations where these arrays have been 
hanged sin
etheir last update are emphasised with verti
al bars.On the right, the arrays a0 and a1 from the system with array assignment areshown to be identi
al to r0 and r1 respe
tively at these lo
ations that have been
hanged (also shown within verti
al bars). Pla
es whi
h have not been 
hangedsin
e the last reset of the array are instead equal to whatever is in the array Aat those lo
ations | the variables Y0 and Y1 
an be used to �nd the value ofthe last resets. Now the instru
tions translate as follows:{ When we wish to read a lo
ation ri[x℄ in the abstra
t program P , we returnai[x℄ when ai[x℄ 6= A[x℄, and Yi when ai[x℄ = A[x℄.{ Resetting an array 
an be emulated by the array assignment ai[ ℄ := A[ ℄,while setting Yi to the value of the reset.{ When writing to an abstra
t lo
ation ri[x℄, we write instead to ai[x℄. Fur-thermore we should make sure that A[x℄ is not equal to ai[x℄; if it is not,we must 
hange A[x℄ and any other aj [x℄ whi
h is marked as un
hanged bybeing equal to A[x℄. ut



De�nition 8. An instru
tion translator ℄ from instru
tions used in P to in-stru
tions used in P℄ is shown in Table 3. The notation (;j 6=i � � �) means repeti-tion of syntax for every j from 0 to n � 1 ex
ept i, all 
onjoined with ; in anyorder. utI I℄y = ri[x℄ yA := A[x℄; ya := ai[x℄;if yA = yathen y = Yielse y = ya�reset(ri; y) ai[ ℄ := A[ ℄; Yi := y?ri[x℄ ?ai[x℄; yA := A[x℄; ?n; ai[x℄ 6= n;(;j 6=i ya := aj [x℄;if ya 6= yAthen ya 6= nelse aj [x℄ := n�);A[x℄ := nother no 
hangeTable 3. Translating instru
tions for arrays with reset to instru
tions for arrays withassignment
De�nition 9. Given a DI program with arrays with reset P = init oI repeat oT ,we 
an form a 
orresponding DI program with arrays with assignment P℄ =init o℄I repeat o℄T as des
ribed above. utTheorem 5. Given a DI program P with n arrays of type Y [X ℄ with reset anda type instan
e I for P, there exists a DI program P℄ with n + 1 arrays oftype Y [X ℄ with assignment su
h that there is a bisimulation between hhPiiI andhhP℄iiI . ut6.2 Simulation of universal register ma
hinesBy Theorem 5, any program with two arrays with reset is bisimilar to a pro-gram with three arrays with assignment. Theorem 4 states that unrea
habilityis unde
idable for the former 
lass, and so it also is for the latter.It turns out that a stronger negative result is possible. We adapt the resultsfrom Se
tion 5.3 about array reset to work instead with array assignment. Weshow that, for any universal register ma
hine P , there exists a DI programP℄ with only two arrays with array assignment whi
h has the same observablebehaviour as P . The proof runs very similarly, so we present only the di�eren
es.



{ The variable � ℄ ` y0 : Y from De�nition 3 is unne
essary.{ Figure 2 
ould be repla
ed by Figure 4.
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Fig. 4. Building a linked list using arrays with assignment{ The 
orresponding explanation from Example 2 would be altered as follows:Instead of I [x℄ being set to y0 at unused lo
ations x, we have I [x℄ = S[x℄ tomark a lo
ation as unused. Conversely, a lo
ation x must have I [x℄ 6= S[x℄ ifit is in use to prevent it being overwritten. This had to be the 
ase anywayotherwise the su

essor of that lo
ation would be itself, and hen
e would bean in�nite list | ex
ept at e, whose su

essor is never used, so we must besure to have I [e℄ 6= S[e℄.{ Table 2 is updated as follows:� Remove the instru
tion n 6= y0 in (in
(r))℄. The role of y0 has beenrepla
ed.� Repla
e I [hr℄ := y0 with I [hr℄ := S[hr℄ in (de
(r))℄. This is the new wayof marking a lo
ation as unused.� Repla
e ?hr with ?hr; I [hr℄ 6= S[hr℄ in (de
(r))℄, and repla
e the �rsto

urren
e of ?x (i.e. within the while-loop) with ?x; I [x℄ 6= S[x℄ in(in
(r))℄. This is the new 
he
k for a used lo
ation.� Repla
e I [x℄ = y0 with I [x℄ = S[x℄ in (in
(r))℄. This tests for an unusedlo
ation.{ In De�nition 5, the pie
e of 
ode reset(I; y0); ?y; y 6= y0; I [e℄ := y is used tomark every lo
ation as unused, and to pi
k a non-y0 value as the identi�erfor lo
ation e so it is marked as being used. This should be repla
ed byI [ ℄ := S[ ℄; ?y; y 6= S[e℄; I [e℄ := y to mark every lo
ation as unused (be
auseI [x℄ = S[x℄ at every lo
ation x), and then to make I [e℄ 6= S[e℄ so this lo
ationis marked as being used.{ We require a modi�
ation to the inverse fun
tion implied by an array asused in Se
tion 5.3. We now say that t(I)�1 is de�ned at a value w andis equal to v when there is exa
tly one v su
h that both t(I)(v) = w andt(I)(v) 6= t(S)(v).{ In the de�nition of � (De�nition 6), the last 
ondition should be that t(I)(v)is equal to t(S)(v) instead of t(y0).



We 
an now state the following theorems.Theorem 6. Given a universal register ma
hine P there exists a DI programP℄, and two arrays of type Y [X ℄ with array assignment, su
h that there is abisimulation between hhPii and hhP℄iiI� for any in�nite type instan
es I�. utTheorem 7. The problems InfCU and FinPCU for the 
lass of DI programswith just two arrays of type Y [X ℄ with array assignment is unde
idable. utNote that a program with only one array with array assignment is unable tomake any use of the array assignment instru
tion: it 
an therefore be 
onsiderednot to have this instru
tion.7 Con
lusionsThis paper has extended previous work on DI systems with arrays without whole-array operations [16, 4, 6℄ by 
onsidering array reset and array assignment.For programs with array reset, we showed that parameterised model 
he
kingof 
ontrol-state unrea
hability properties is de
idable when there is only one ar-ray, but unde
idable if two arrays are allowed. If the arrays store booleans ratherthan values whose type is a parameter, we showed de
idability for programs withany number of arrays. The de
idability results are based on the theory of well-stru
tured transition systems [11℄, whereas unde
idability followed by redu
ingthe Halting Problem for universal register ma
hines.Programs with array assignment were shown to be at least as expressive asprograms with array reset. However, this yields a weaker unde
idability resultthan for programs with reset, but unde
idability for two arrays was obtainabledire
tly.Future work in
ludes 
onsidering programs with array assignment in whi
hthe arrays store booleans. More generally, programs with more than two data-type parameters, multi-dimensional arrays, and array operations other than resetand assignment should be 
onsidered, as well as 
lasses of 
orre
tness propertiesother than 
ontrol-state unrea
hability.We would like to thank Zhe Dang, Alain Finkel, and Kedar Namjoshi foruseful dis
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