
Applied Formal Methods - From CSP to
Executable Hybrid Specifications

Jan Peleska

University of Bremen,
P.O. Box 330 440

28334 Bremen, Germany
and

Verified Systems International GmbH
jp@verified.de

Abstract. Since 1985, CSP has been applied by the author, his research
team at Bremen University and verification engineers at Verified Systems
International to a variety of “real-world” projects. These include the veri-
fication of high-availability database servers, of fault-tolerant computers
now operable in the International Space Station, hardware-in-the-loop
tests for the novel Airbus A380 aircraft controller family and confor-
mance tests for the European Train Control System. Illustrated by ex-
amples from these projects, we highlight important aspects of the CSP
language design, its semantics and tool support, and describe the impact
of these features on the quality and efficiency of verification and test-
ing. New requirements with regard to the test of hybrid control systems,
the demand for executable formal specifications, as well as the ongoing
discussion about the practical applicability of formal methods have led
to the development of new specification formalisms. We sketch some key
decisions in the formalism design and indicate how some of the funda-
mental properties of CSP have been adopted, while others have been
deliberately discarded in these new developments.

1 Introduction

Motivation. The objectives of this contribution are twofold. First, we wish to
illustrate the usability of Communicating Sequential Processes CSP for speci-
fication, verification and testing in an industrial “real-world” context. Second,
we are convinced that further research work on CSP and similar formalisms
will benefit from the challenges which are posed by problems occurring in daily
industrial verification practice.

Overview. In Section 2, an overview of industrial verification projects managed
by the author is given. In each of these projects, CSP served as the underly-
ing formalism for specification, verification and testing. We sketch how existing
methods and theories contributed to the solution of each problem, and how the
“feed-back loop” between research and industrial projects was closed by practi-
cal problems leading to novel research challenges. In the two sections to follow,

more recent related research activities are described: Section 3 outlines recent
results and ongoing research work in the field of automated testdata generation
from Timed CSP (TCSP) specifications. In Section 4 we introduce a framework
for generating run-time environments for real-time execution of specifications
written in “high-level” formalisms, such as TCSP, Statecharts, further diagram
types of the Unified Modeling Language and Hybrid systems extensions thereof.
The latter allow to describe both time-discrete changes and analog evolutions of
physical observables. The framework, which is currently used for specification-
based testing against various formalisms – TCSP is one of them – has been
developed for the purpose of model-based development, test data generation
and on-the-fly checking of system behaviour. Section 5 contains the conclusion.

Further Reading. Some basic knowledge about CSP in its untimed and timed
variants is assumed in this article. For a detailed introduction readers are re-
ferred to [Hoa85,Ros98,Sch00]. References to further research results which are
of interest within the scope of this paper are given in the sections below.

2 Practice Stimulates Theory – Applied CSP and
Related Research Activities

2.1 Specification and Verification of Fault-Tolerant Systems

The Dual Computer System DCP. In 1985 the author and his team at Philips
started the design and development of a fault-tolerant dual computer system
DCP for a high-availability data base server. A design novelty at that time
consisted in using a more symmetric concept than the usual master-standby
technique: Both computers CPi , i = 0, 1 of the DCP were active during nor-
mal operation without being strictly synchronised on instruction level. They
both executed read-write transactions on their local data bases, but read-only
transactions were executed by just one of them, while the other only stored the
inputs from the client until the associated transaction had been completed. This
strategy could be exploited for higher performance in comparison to a server
consisting of only one computer. To minimise the number of synchronisation
messages to be exchanged and processed between them, the two computers only
synchronised their serialisation for conflicting read-write transactions1, so that
a consistent database state was maintained. As long as both computers were
active only one of them returned transaction results back to the client. If CPi

failed, computer CP(1−i) only had to redo the open read-only transactions per-
formed by CPi – this was possible because CP(1−i) still kept the associated input
data – and to transmit the results of all transactions which had not yet been
sent to the client when failure occurred. This strategy avoided loss of transac-
tions or messages from server to client, but it could lead to duplicate messages.

1 Two transactions Ti , i = 0, 1 are called conflicting if the write set of Ti has a non-
empty intersection with the union of T(1−i)’s read and write sets.

2

These could be filtered by implementing an alternating bit protocol for client-
server communication. After delivering the results of all open transactions to
the clients, the remaining computer CP(1−i) could provide all database services
since its local database was up-to-date. The only degradation visible to clients
consisted in slower response time, since now all read-only transactions had to
be performed on a single computer. Figure 1 sketches the DCP architecture;
the fault-tolerance mechanisms are encapsulated in a separate layer denoted by
NETi , i = 0, 1. Specification details are available in [Pel97, pp. 59].

app_tx app_rc

CLIENT

Target System

SYS

NET0

DCP

CP0 CP0

NET1

APP0 APP1

a1

b02 a12

b0
b1

b12a02

DCP CONTROL

off0 off1 on1

d1

c1

c0

d0

ABFTX ABFRC

on0

Fig. 1. Architecture of the dual computer system DCP .

Verification Strategy for the DCP. The complexity of the fault-tolerance ser-
vices which were needed to implement this type of behaviour suggested that a
rigorous verification approach should complement the conventional testing ac-
tivities planned for the DCP . At that time, Tony Hoare’s book [Hoa85] on CSP
became available, and later a joint publication with He Jifeng [JH87] described
an elegant verification technique for fault-tolerant systems: Using purely alge-
braic reasoning within the CSP process algebra, the authors showed that the
fault-tolerant implementation process and the associated requirements specifi-

3

cation process both satisfied the same set of mutually recursive equations. Now
equivalence between the two followed simply from fixed-point theory.

During initial formal verification attempts, however, it was realised that –
rather than applying a single verification technique for all tasks – it would be
more efficient to use a combination of specification and verification “styles”, so
that for each step within the verification suite the most promising technique
could be selected:

1. The top-level requirements were formulated in implicit specification style, as
a proof obligation on traces and refusals: SYS sat S (tr ,R).

2. Following a top-down decomposition of the system design sketched in Fig-
ure 1, each component was first associated with local proof obligations about
its interface behaviour.

3. Using compositional reasoning for the parallel and hiding operators (see, for
example, [Sch00, pp. 197]) it was shown in each decomposition step that
the required behaviour of sub-components would imply the proof obligation
specified for the higher-level component.

4. When the stepwise decomposition reached the level of sub-components to
be implemented as sequential processes Pi , these processes were not only
associated with their implicit specifications Pi sat Si(tr ,R), but also with
explicit representations in terms of the CSP process algebra.

5. If the explicitly defined processes were sufficiently simple to be implemented
in a direct way, their compliance with the associated implicit proof obliga-
tions was shown using the proof rules [Sch00, pp. 197] for the satisfaction
relation. If necessary, term re-writing based on the laws of the CSP process
algebra was performed for the process, in order to reach a representation close
enough to an implementation in the target programming language (Pascal)
and operating system.

6. If the implementation of the sequential process Pi required more complex
sequential algorithms the proof theories for nondeterministic sequential pro-
grams and distributed programs elaborated by Apt and Olderog [AO91] were
applied, in order to show that the communication pattern used in the process,
together with the sequential algorithms executed between communications,
really implied the proof obligations Pi sat Si(tr ,R).

The first five specification and verification techniques are all defined within
the well-known denotational semantics and associated proof theories of “mod-
ern” CSP: Term re-writing based on the algebraic laws preserves failures equiv-
alence, compositional proof rules about the satisfaction relation are defined for
each CSP operator, and failures refinement preserves the satisfaction relation.
The sixth technique, however, requires some explanation:

Verification of CSP With Sequential Imperative Program Parts. As is often the
case in distributed systems design, the communication structure of the dual com-
puter system and the sequential algorithms for queue management, serialisation
of conflicting transactions, fault management and related activities were designed

4

separately. Since Pascal was used as programming language, it was only natural
to use a conventional operational semantics interpretation and Hoare logic for
reasoning about pre- and postconditions, in order to prove the correctness of
the sequential parts. This left us with the task to prove that the effect of the
sequential algorithms as visible on local process variables also implied the proof
obligations Pi sat S (tr ,R) specified for the visible communication behaviour
of each sequential process Pi . Though Hoare had indicated in [Hoa85, pp. 185]
how to integrate local variables, assignment and control structures of imperative
programming languages into sequential CSP processes, the validity of combining
proofs obtained for sequential program fragments interpreted in an operational
semantics with CSP process behaviour interpreted in the denotational models
did not seem quite as obvious to us to be applied without further consideration.

To this end, the distributed programs introduced by Apt and Olderog [AO91]
proved to be helpful: The authors consider networks X = (S1 ‖ . . . ‖ Sn) of
sequential processes

Si ≡ Si0; do 2
mi
j=1gij →Sij od (∗)

In this representation, Si0,Sij are sequential nondeterministic program frag-
ments written in an imperative style, operating on local variables [AO91,
pp. 106]. Each gij is a communication construct of the form gij ≡ Bij&cij !x
or gk` ≡ Bk`&ck`?x . The communication construct is structured into guards
Bij which are Boolean expressions over local variables and channels cij carrying
messages cij .x . Channel outputs and inputs are denoted in the usual CSP style
as cij !x and ck`?x . Communication between sequential processes Si and Sk can
take place over matching gij , gk` – that is, gij = Bij&cij !xij , gk` = Bk`&ck`?xk`

and cij = ck` = c – whenever both Bij and Bk` evaluate to true in the actual
process states of Si and Sk . The effect of the communication is equivalent to an
assignment xk` := xij of the output variable value to the input variable.

The communication structure of the sequential processes Si matched ex-
actly with the communication pattern applied for the sequential processes of the
dual computer system. Moreover, Apt and Olderog introduced an operational
semantics for distributed programs which was identical with (nondeterministic)
sequential program semantics for the sequential process parts Sij . Indeed, it
is shown in [AO91, pp. 334] that distributed programs X can be transformed
into equivalent nondeterministic sequential programs ν(X), so that proofs about
distributed programs can be performed using the rules for nondeterministic se-
quential program verification. Program ν(X) is given by

ν(X) ≡ S10; . . . ; Sn0;
do 2(i,j ,k ,`)∈Γ Bij ∧ Bk`→ xk` := xij ; Sij ; Sk`; od

where the set Γ contains index quadruples of matching communication con-
structs gij = Bij&cij !xij and gk` = Bk`&ck`?xk` with cij = ck`. For a channel cij
let α(cij) (the channel alphabet) denote the set of all pairs cij .x with correctly

5

typed channel messages x . For distributed program X the alphabet A = α(X) is
the union over all alphabets of channels referenced in X plus event X indicating
termination of X (if X terminates at all). Using abbreviation

rΓ = A− {cij .xij | (i , j , k , `) ∈ Γ ∧ Bij ∧ Bk`}

and augmenting ν(X) by fresh variables trv : A∗ and Rv : P(A) and correspond-
ing assignments, we construct a new nondeterministic sequential program

X ′ ≡ S10; . . . ; Sn0; trv :=<>; Rv := rΓ ;
do

2(i,j ,k ,`)∈Γ Bij ∧ Bk`→

xk` := xij ; trv := trva < cij .xij >; Sij ; Sk`; Rv := rΓ ;
od

which still has the same behaviour with respect to the local variables of ν(X)
since the fresh variables trv ,Rv are nowhere referenced within the sequential
fragments Sij . In [Pel97, pp. 87] we have constructed a syntactic mapping from
the set of CSP processes X following the communication pattern (*) into the set
of nondeterministic sequential programs structured like X ′. Furthermore it has
been shown that proof obligation X sat S (tr ,R) holds if and only if

∀U : P(Rv) • S (trv ,U)

is a do . . .od loop invariant of the associated sequential program X ′ and
holds in case of termination. Intuitively speaking, the pair (trv ,Rv) represents a
failure of X , when interpreted in the denotational model, and Rv is a maximal
refusal applicable in the current process state X /trv .

With this correspondence between CSP processes and nondeterministic se-
quential programs at hand, proof obligations X sat S (tr ,R) can be derived for
the process by reasoning about its sequential program parts and local variables,
using the operational semantics and Hoare logic.

Remarks and Related Publications. In [Pel91,Pel97,BCOP98] it is illustrated
how this combination of sequential reasoning with algebraic, assertional and
refinement verification methods can be applied, so that also projects of a larger
scale, where a single verification technique would not suffice to discharge every
type of proof obligation, can be effectively handled.

Observe that the necessity to embed description techniques for sequential
algorithms into CSP has been realised by several authors, so that a variety of so-
lutions is now available, allowing to pick the ones which are most appropriate for
the description of each verification problem or for transformation of specifications
into executable code: When using machine-readable CSP with the FDR tool, al-
gorithms are specified using a functional programming language [Ros98, pp. 495].
The combined use of the functional programming paradigm and CSP has been

6

investigated extensively by several authors; we name Abdallah’s work [Abd94]
on the development of parallel algorithms based on functional specifications as
an example. As an alternative to imperative and functional descriptions, the im-
plicit specification of data manipulations has been made available by embedding
Z or one of its object-oriented variants into CSP. For this combination, we refer
to Fischer and Smith [FG97] and the literature cited there.

2.2 Formal Methods for the International Space Station

The International Space Station. The International Space Station ISS, launched
in July 2000 and today still in its construction phase in orbit, is a joint ven-
ture between the United States, Russia, Japan, Canada and Europe. Managed
through the European Space Agency ESA, Europe contributes to this huge in-
ternational project by

– The Colombus Orbital Facility, a research laboratory to specialise in research
into fluid physics, materials science and life sciences,

– The Automated Transfer Vehicle (ATV) to be used for carrying cargo from
the earth to the ISS and – once docked at the ISS – for boosting the station
higher in its orbit.

Moreover, Europe has developed and delivered several smaller sub-systems for
the ISS. One of these is the Data Management System DMS-R for the Rus-
sian segment of the ISS. The main responsibilities of the DMS-R are guidance,
navigation and control for the entire ISS, on-board system control, failure man-
agement and recovery, data acquisition and control for on-board systems and
experiments. The DMS-R has been developed by ESA with an industrial team
led by EADS ASTRIUM in Bremen, Germany.

The Fault-Tolerant Computer. The computing platform for the DMS-R is the
FTC, a fault-tolerant computer system. Various fault-tolerant configurations can
be selected for the FTC; the most reliable and at the same time the most complex
one consists of a four-times redundant setting, where the four computer nodes
cooperate according to Lamport’s Byzantine Agreement Protocol [LSP82]. The
corresponding FTC architecture is sketched in Figure 2.

The FTC communicates with other components in the ISS using a strictly
synchronised frame protocol over redundant MIL-STD 1553 busses. Each FTC
node has a layered hardware and software architecture: Applications are pro-
grammed in C and run on a ruggedised variant of the SUN Sparc CPU board
developed by Matra in France. The application layer makes use of the Applica-
tion Service Layer ASS for communication, time management and other services.
The fault-tolerant mechanisms are encapsulated in the fault management layer
FML. On each node, the FML is implemented on a separate hardware board
equipped with transputer technology, with software programmed in OCCAM.
Transputer links connect all FTC nodes with each other, in order to provide the
communication infrastructure for the Byzantine Agreement Protocol. Data bus

7

MIL-BUS

FML FML FML FML

AVI AVI AVI AVI

ASS ASS ASS ASS

Application Application Application Application

Fig. 2. FTC architecture.

access is managed through the avionics interface layer AVI, which again resides
on a transputer board of its own and is also driven by OCCAM software.

Between 1995 and 1998 the author and his research team at the University
of Bremen performed a variety of verification and testing activities for the FTC.
Two major objectives from a wider list of correctness goals consisted in proving
the absence of potential deadlocks or livelocks in the OCCAM code of the FML
and AVI.

Verification Strategy for the FTC. The close relationship between OCCAM and
CSP and the availability of the FDR model checker [For01], [Ros98, pp. 517]
suggested an abstract interpretation approach for these tasks: OCCAM code P
was mapped to a CSP abstraction A(P), thereby dropping all coding details
of P without impact on communication behaviour. Then deadlock or livelock
freedom was verified for A(P) by means of model checking with FDR. It soon
became clear that model checking on CSP abstractions could only be used to
verify small portions of OCCAM code; it would have been infeasible to map
the approximately 24,000 lines of code as “one chunk” to CSP and then per-
form model checking on the complete system abstraction. Instead, a verification
strategy combining several techniques had to be designed:

1. Abstraction methods were only used on small portions P1, . . . ,Pn of OC-
CAM code, resulting in a collection of CSP abstractions A(P1), . . . ,A(Pn).

2. Verification sub-goals were specified for the A(Pi) as refinement relations
SPECi v A(Pi) and verified via model checking for trace-, failures- or
failures-divergence refinement. The choice of the semantic model depended
on the sub-goal to be proved.

3. Compositional reasoning was used to derive the global verification goals from
sub-goals verified for the A(P1), . . . ,A(Pn).

8

4. Generic theories were applied to re-use correctness results which only depend
on generic characteristics of (sub-)systems: By showing that a CSP process
A(Pi) complied with a specific communication design pattern (this proof was
again performed by model checking) it was possible to use an instance of the
generic theory, in order to prove that A(Pi) satisfied a desired property.

While the techniques 2. and 3. were just routine tasks, the abstraction tech-
niques and the elaboration and application of generic theories required additional
investigations.

Abstraction Techniques. The verification strategy sketched above implied that a
variety of verification sub-goals would be investigated for OCCAM code portions
P1, . . . ,Pn . Furthermore, taking into account that verification goals on OCCAM
level were expressed on a different syntactic level than the associated goals for
CSP abstractions, a more formal definition of abstractions was required:

Definition 1. Let P be an OCCAM or CSP process and p a property of P to be
verified. Let A(P) denote a CSP process and A∗(p) a property defined on CSP
level. Then the pair (A(P),A∗(p)) is called a valid abstraction for (P , p), if

A(P) satisfies A∗(p) implies P satisfies p.
ut

The most important abstraction technique applied was abstraction through
data independence. Using this technique, the data ranges T of all OCCAM
channel protocols and local process variables are partitioned into the minimal
number of subsets T1 ∪ . . . ∪ Tk = T which have to be distinguished in order
to prove a given property p for an OCCAM process P . The CSP abstraction
A(P) then operates on channels whose alphabet contains as many elements as
partitions for T have to be distinguished; these can always be encoded as integral
numbers { 1, . . . , k }. Control commands in P which are relevant for p and involve
variables of type T are then abstracted to decisions on CSP level, where only
the membership in a partition Ti is distinguished, but not the actual variable
values itself.

Example 1. Suppose that channels c, d range over the natural numbers. We wish
to prove that process system

channel c, d : N
SYSTEM = (P ‖

{|c|}
Q)

P = c!0→STOP u c!1→STOP
Q = c?x → (if (x < 10) then (d !0→STOP) else (d !10→STOP))

is free of livelocks and always produces event d .0 before blocking. Formally, this
property p can be expressed as p ≡ ((d .0→STOP) vFD SYSTEM \ {| c |}),
vFD denoting the failures-divergence refinement relation. Since the condition in

9

Q only depends on the two situations x < 10 and x ≥ 10, it suffices to analyse
the abstracted process system

channel c′, d ′ : { 1, 2 }
A(SYSTEM) = (P ′ ‖

{|c′|}
Q ′)

P ′ = c′!1→STOP
Q ′ = c′?x → (if (x == 1) then (d ′!1→STOP) else (d ′!2→STOP))

where channels c′, d ′ are defined with the finite alphabet { 1, 2 } instead of the
infinite set N; value 1 representing the partition { x < 10 }, value 2 partition
{ 10 ≤ x } of the original channels c, d . The abstracted property A∗(p) to be
verified for A(SYSTEM) is

A∗(p) ≡ ((d ′.1→STOP) vFD A(SYSTEM) \ {| c′ |})

referring to abstracted channels c′, d ′. ut

With a CSP process A(P) generated from the original OCCAM process P by
abstraction through data independence at hand, further simplifications could be
made by constructing even more abstract CSP processes P ′ satisfying a refine-
ment relation P ′ v A(P) such that the desired property A∗(p) was preserved by
this type of refinement. Then it sufficed to establish A∗(p) for P ′. This technique
is called abstraction through refinement and is less powerful, but considerably
simpler than the abstraction through data independence, since it does not allow
to further reduce the alphabet of the abstraction process P ′.

Generic Theories. The local properties established for OCCAM processes
P1, . . . ,Pn via abstraction and model checking had to be combined by com-
positional reasoning, in order to establish overall verification goals like deadlock
and livelock freedom over given sets of input and output channels. In order to
simplify this compositional reasoning process, generic theories were elaborated
and applied in various situations, where different process sub-systems followed
the same communication pattern, as required by the generic theory. For FTC
verification, the generic parameters of each theory were

– number of processes involved,
– number and names of channels involved,
– specific parameters referring to re-occurring patterns in the communication

behaviour.

Example 2. In the compositional reasoning process performed to prove deadlock
freedom of the FML, it could be shown by model checking that each of the
process sub-systems depicted in Figure 3 is a refinement of a process instance of
type “multiplexer/concentrator” specified as MUXCON below. The definition
of MUXCON is generic in the number N specifying how many outputs must
be produced before the next input can be accepted and the number, names and

10

ASS

Interface

Distributor

Output

Distributor

Input

Voter

Control

Mode

Interfaces

Link

Transputer Links

Transputer Links

ToInDist[4]

InDist2OutDist

FromOutDist[4]

ToInDist[0..3]

ToInDist[6]

FromOutDist[0..3]

ToInDist[5]

Context.recovery

Context.control

ASS

Context

Manager

FromOutDist[5]

InDist2Voter output

Fig. 3. Top-level processes of the fault management layer FML.

alphabet of input channels {in1, . . . , inn} and output channels {out1, . . . , outm}.
Observe that an instance of MUXCON defined with N = 0 never refuses an
input.

MUXCON [N , {in1, . . . , inn}, {out1, . . . , outm}] =
MC [N , {in1, . . . , in`}, {out1, . . . , outm}](0)

MC [N , {in1, . . . , in`}, {out1, . . . , outm}](n) =
if (n = 0)
then (GET [N , {in1, . . . , in`}, {out1, . . . , outm}]

2 (STOP uPUT [N , {in1, . . . , in`}, {out1, . . . , outm}](1)))
else PUT [N , {in1, . . . , in`}, {out1, . . . , outm}](n)

GET [N , {in1, . . . , in`}, {out1, . . . , outm}] =
(2 e : {| in1, . . . , in` |} •

e→MC [N , {in1, . . . , in`}, {out1, . . . , outm}](N))

PUT [N , {in1, . . . , in`}, {out1, . . . , outm}](n) =
(u e : {| out1, . . . , outm |} •

e→MC [N , {in1, . . . , in`}, {out1, . . . , outm}](n − 1))

The following generic theory is associated with the above process class:

Theorem 1. A network of process instances P1, . . . ,Pq from class
MUXCON [N , {in1, . . . , inn}, {out1, . . . , outm}] is free of deadlocks, if every com-
munication cycle

Pj1

cj1−→ Pj2

cj2−→ . . .
cjk−1−→ Pjk

cjk−→ Pj1

11

contains at least one process instance Pj` defined with N = 0.

It could be shown by model checking that for each communication cycle in the
network of sub-systems shown in Figure 3, at least one sub-system is a refine-
ment of a MUXCON instance with N = 0. Since deadlock freedom is preserved
under refinement and refinement distributes through the parallel operator, this
established deadlock freedom for the full FML layer. ut

Remarks and Related Publications. The operation of the DMS-R system and its
fault-tolerant computing platform has started with the launch of the Russian
Service Module in July 2000 and is working nominally since then.

For more details about the ISS, the reader is referred to the web
sites of the European Space Agency (http://www.esa.int) and of EADS
(http://www.eads.net). A more comprehensive description of the verification
activities2 performed by the author and his research team for the International
Space Station is given in [PB99]. Details about the fault-tolerant computer sys-
tem FTC have been published in [UKP98]. The technical aspects of the FTC
deadlock and livelock analysis are described in [BKPS97,BPS98]. The systematic
application of generic theories and their mechanised verification with the HOL
theorem prover has been sketched in [BCOP98]. Roscoe presents a detailed in-
troduction and analysis of CSP abstraction concepts in [Ros98].

It should be noted that the abstractions from OCCAM to CSP which were
required to prove absence of deadlocks or livelocks by model checking have been
constructed in a manual way, relying on the verification engineers’ expertise with
respect to the decision whether an OCCAM code detail was relevant for com-
munication behaviour or could be removed in the abstraction. Of course, this
approach introduced the risk of inadvertently “losing” relevant code during the
abstraction process. However, the activity of code abstraction differs consider-
ably from the activity of code development itself. Moreover, the verification team
was completely independent from the development team. Therefore we consider
it as justified to assume that the probability of producing an abstraction error
which exactly masks a programmed deadlock or livelock situation is low enough
to be neglected. Observe finally, that the undecidability results presented by
[LNR05] indicate that a mechanised abstraction may be generally infeasible, as
soon as more complex data structures are involved.

2.3 Embedded Systems Testing for Airbus Avionic Systems

Testautomation Requirements Defined by Airbus. When Verified Systems Inter-
national GmbH was founded as a spin-off company of the University of Bremen in
1998, the company received the first contract from Airbus for testing an avionics
controller of the Airbus A340 aircraft.

The crucial requirements defined by Airbus in 1998 for the testing environ-
ment and its automation capabilities were
2 These activities also included hardware-in-the-loop tests and statistical throughput

analysis which have not been mentioned in the present contribution.

12

http://www.esa.int
 http://www.eads.net

– Test data generation should be highly automated with respect to choices of
data on individual interfaces, combinational patterns of input/output traces
and their timing.

– All output interfaces of the system under test (SUT) should be continuously
monitored, so that also transient output errors could be detected.

– Automated test oracles, that is, checkers of SUT responses against expected
(i. e., specified) SUT behaviour should be simple to program and capable
of detecting behavioural discrepancies with respect to interface data, causal
chains of inputs and outputs, as well as timing.

– Regression testing should be fully automated.

Conventional Testing, as of 1998. At the time when Airbus defined the test au-
tomation requirements listed above, most conventional testing approaches used
sequential test scripts: Each test execution consisted of an alternating sequence
of

– inputs to the SUT,
– explicitly programmed checks of SUT responses against expected results.

This technique had considerable disadvantages with respect to the above men-
tioned test automation goals defined by Airbus: First, the simulation of com-
ponents in the operational environment which interacted in parallel with the
SUT were hard to express in sequential scripts, since all relevant interleavings
of the parallel systems had to be programmed explicitly. This often led to over-
simplified test scripts where SUT failures occurring only for special input/output
sequences were overlooked. Second, illegal SUT outputs at event-based interfaces
or illegal state changes at state-based interfaces were not detected if they oc-
curred during the phase were the testing environment sent new inputs to the
SUT: Checking was only performed at specific points in time, and often only at
a subset of SUT output interfaces. Third, regression tests often failed though
the SUT behaved correctly: This was caused by not considering all legal SUT
output sequences in the test scripts. Instead, only one sequence was accepted as
correct, which corresponded to the observed SUT behaviour in a certain revi-
sion. After changes in the SUT software, this output order changed slightly, but
still legally. However, since the test script could only handle one sequence, the
regression tests failed. Last, but not least, the effort for developing programmed
test scripts was somewhat proportional to the length of the test execution: If
different behaviours should be exercised on the SUT over a long period, all be-
havioural patterns had to be explicitly programmed, leading either to long and
complex scripts or to over-simplified ones where the same pattern was executed
over and over.

Specification-based Testing With CSP and RT-Tester. Based on the experiences
with embedded systems testing for the International Space Station, Verified Sys-
tems’ test automation tool RT-Tester had matured to a commercial product in
1998. In contrast to other approaches, test configurations were always designed
as distributed systems, as indicated in Figure 4: The test automation tool offers

13

CCL

AML
AM−n

IFM−1 IFM−kIFM−2

IFML

System Under Test

AM−1

Communication Control Layer

Interface
Module Layer

Abstract
Machine Layer

. . .

. . . AM−2

Fig. 4. Generic architecture of the RT-Tester test automation system.

the possibility to run an arbitrary number of concurrent abstract machines (AM)
on the test engine, each machine performing one or more testing tasks like

– simulation of components in the operational environment of the SUT,
– stimulation of specific input sequences, in order to test a special test objective

which can only be checked in a certain pre-state, that is, after a specific input
trace starting with SUT initialisation,

– checking SUT outputs against expected results specifications.

The execution of abstract machines in hard real-time and the efficient com-
munication between them is supported by multi threading mechanisms and a
communication control layer (CCL) allowing to exchange data within a multi
CPU/multi node cluster architecture for test engines (see Section 4). The CCL
implements an abstract notion of communication channels. In the RT-Tester
version available in 1998, this notion corresponded to the CSP channel concept
implemented by the FDR tool, [Sch00, pp. 469]. Channels were used as the only
means of communication between abstract machines3. In order to map the chan-
nel abstraction onto concrete SUT interfaces, interface modules (IFM) refined
data from abstract channel events to concrete hardware driver calls or software
interfaces and abstracted SUT outputs back to channel events. This abstraction
concept allowed to re-use test specifications implemented as networks of AMs
on different integration levels: If a software integration test accessed software
interfaces s1, . . . , sn of the SUT software, and these mapped directly to hard-
ware interfaces h1, . . . , hn in the integrated HW/SW system, then the abstract
machines used in software the integration test could be re-used on HW/SW
integration level, just by exchanging the interface modules.

3 The current version of RT-Tester supports a broader variety of communication mech-
anisms: Test designers may combine the CSP channel concept described here with
channels transporting structured C/C++ data and with shared memory data ex-
change.

14

The behaviour of abstract machines could either be programmed in C or –
and this was considered as a major advantage when compared to other testing
tools – specified in Timed CSP (TCSP). In order to use the syntax which is
accepted by FDR, TCSP timing constructs had to be expressed as special events
expressing the setting of a timer – that is, a clock counting from a given value
δ > 0 down to 0 – and indicating that the timer has elapsed: As shown by
Meyer in his dissertation [Mey01], each network P of TCSP processes may be
decomposed into parallel processes

P ′ = (PU
‖

{|s0,...,sk ,e0,...,ek |}
TIM) \ {| s0, . . . , sk , e0, . . . , ek |} (∗∗)

such that

– PU does not contain any timing operator like WAIT t or
t
B ,

– TIM = i : { 0, . . . , k } • Ti with timer processes

Ti = si?t → ((WAIT t ; ei .t →Ti) 2Ti)

– P and P ′ are equivalent in the Timed Failures Model of TCSP.

Example 3. Consider the TCSP process network SYS with alphabet A =
{ in, out , a },

SYS = (P ‖
{ a }

Q) \ { a }

P = WAIT t ; a→ in→P

Q = (a→Q)
u
B (out →Q)

This can be equivalently tranformed into

SYS ′ = (((P ′ ‖
{ a }

Q ′) \ { a }) ‖
{|s0,s1,e0,e1|}

(T0 T1)) \ {| s0, s1, e0, e1 |}

P ′ = s0!t → e0.t → a→ in→P ′

Q ′ = s1!u→ ((a→Q ′)2 (e1.u→ out →Q ′))

with T0,T1 as defined above. ut

With this equivalence transformation at hand, the FDR tool can be used
to translate TCSP specifications written with timer events si , ei into transition
graphs. In fact, only the PU component of equation (**) has to be transformed:
A transition graph interpreter which is part of RT-Tester and controls the AM
execution handles the si , ei events in real-time by setting timers of duration
si .t when this event is generated by the abstract machine and simulating an
ei .t-event as soon as time interval t has elapsed (Figure 5). This approach im-
mediately solves the automated checking problem for timed traces by using an
abstract machine performing a back-to-back test in parallel with the SUT during
the test execution: The AM tracks every SUT input and output by navigating
through the transition graph TG representing the CSP specification of the re-
quired SUT behaviour. Whenever an outgoing transition of the current state is

15

TIM

SUT

inputs to SUT

outputs from SUT

TG(PU)

for check of
interpreter
AM

s0.t

s1.u

e0.t

e0.u

out1

out2

out3

in1

in2

Fig. 5. Abstract machine acting as on-the-fly checker during a test execution.

labelled by a timer event si .t , the AM sets the corresponding timer for duration
t . Whenever the timer signals an ei .t-event and such a transition exists in the
current state, it is taken by the AM. If the SUT produces an output out for
which no transition exists in the TG-state marked by the AM as current, an
output failure has been produced. The failure may be caused by a erroneous
calculation of output data within the SUT or by generating an output too early.
Since TCSP specification semantics assumes maximal progress, outputs which
cannot be refused by the SUT must occur immediately, if not blocked by the
environment.

s0.1

e0.1

a

in

s1.2

e1.2

out

a

TG(P’) TG(Q’)

1

2

3

4

1

2

3

Fig. 6. Transition graphs of processes P ′,Q ′ from Example 3.

Example 4. Suppose the requirements for an SUT are expressed by TCSP pro-
cess SYS as given in Example 3, with t = 1 and u = 2. Suppose further that

16

in is an input to the SUT and out an SUT output, while a cannot be observed
during the test execution. The checking abstract machine interprets the transi-
tion graph depicted in Figure 7, which is the product graph generated from the
representations for P ′ and Q ′ shown in Figure 6. Suppose the checker observes
trace

< (3, in), (3, out), (4, out) >

Then a failure is detected at timed event (4, out) because the checking AM
assumes transition graph state 42 in Figure 7, after internally tracing

< (0, s0.1), (0, s1.2), (1, e0.1), (1, τ), (1, s1.2), (3, e1.2),
(3, in), (3, s0.1), (3, out), (3, s1.2), (4, e0.1), (4, τ), (4, s1.2) >

and the out-event is not legal in this state. ut

Observe that the checking technique sketched above only requires to spec-
ify SUT behaviour. If such a formal TCSP specification exists, no additional
comparisons of observed test executions against expected results have to be pro-
grammed: Every SUT discrepancy is revealed by events for which no transitions
exist in the current state of the checking AM.

On-the-fly checking has the further advantage that legal but nondeterministic
SUT behaviour is not rejected by the checker, if the transition graph corresponds
to a complete specification of legal SUT behaviour. If unnormalised transition
graphs are used as in Figure 7, the checker has to mark several possible states
as current. The SUT behaviour is accepted as long as at least one possible state
exists. This procedure only allows checking in soft real-time, since the decision
whether SUT behaviour is legal now not only depends on the maximal number of
outgoing transitions to be compared against the observed behaviour but also on
the number of possible states. Therefore, if hard real-time checking is required,
normalised transition graphs should be used. These can also be generated by
FDR.

The transition graph interpretation technique sketched above is obviously
also suitable for real-time simulation: Abstract machines now operate on tran-
sition graphs representing environment specifications and generate events which
are inputs to other AMs or to the SUT and choose different paths through the
transition graph in places where several events are possible. This technique is
also the starting point for systematic test data generation which will be discussed
in more detail in Section 3.

Remarks and Related Publications. The testing activities performed by Verified
Systems for Airbus could be extended since the first contract in 1998, so that
today our testing projects comprise the A318, A340-500/600 and A380 aircrafts.
The tested controllers are

– the Cabin Communication Data System CIDS developed by Airbus KID-
Systeme,

17

11 12 13

21 22

31 32 33

41 42 43

23

s0.1

s1.2

s1.2

s0.1

e0.1

tau(a)

e1.2

e1.2

s0.1

e0.1

s1.2 e1.2

e0.1

s1.2 e1.2

out

out

out

out

in in in

TG((P’ [| { a } |] Q’) \ { a })

Fig. 7. Transition graph for parallel composition of P ′,Q ′ from Example 3.

– the Smoke Detection Controller SDF, also developed by Airbus KID-
Systeme,

– the Integrated Modular Avionics (IMA) Modules, a new type of controllers
which is first used for the Airbus A380 and has been developed by Diehl
Avionics (Germany) in cooperation with Thales (France).

The testing activities comprise

– hardware/software integration tests for one or more controllers with inte-
grated system and application software,

– so-called bare-module tests, where controller hardware, firmware, operating
system and configuration data are tested before integration of the application
software,

– software integration tests performed both on PC host simulation environ-
ments and on target hardware,

– module tests.

The same CSP-based testing technology has been applied by the author, his
research group at Bremen University and by Verified Systems in several other
projects: (1) Tests for a tramway crossing control system developed by EL-
PRO in Berlin, (2) Tests for an aerospace satellite controller developed by OHB

18

in Bremen [SMH99], (3) tests for interlocking system components developed
by Siemens Transportation Systems in Braunschweig, (4) UNISIG conformance
tests for radio-based train control systems developed by Siemens Transportation
Systems in Berlin4 and (5) tests of automotive controllers for DaimlerChrysler
in Sindelfingen.

For untimed process algebras, the relationship between semantic equiva-
lence (or refinement) and testing has first been observed by Hennessy and De
Nicola [DNH84], within the context of Hennessy’s Acceptance Tree semantics
which corresponds to the failures model of CSP. Brinksma observed that these
theoretic results could be applied in practice and developed techniques for au-
tomated conformance testing based on LOTOS specifications; an extensive bib-
liography is given in [BT00]. The analogous concepts and further improvements
have been elaborated for the untimed CSP world by the author in collaboration
with Michael Siegel in [PS96,Pel96,PS97,Pel97].

During the period 2000 — 2004, our research activities related to real-time
testing of avionics systems have been performed within the European research
project VICTORIA5 which focused on novel architectures, development and
verification technologies for aircraft electronic systems. The test concepts devel-
oped for tests of integrated modular avionics have been described in more detail
in [Pel03,MTB+04]. The advantages of interface abstraction and the resulting
possibility to re-use test specifications on different integration levels have been
discussed in more detail in [PT02]. The algorithm implemented in the RT-Tester
system for automated checking of timed traces observed during test executions
against SUT specifications has been published in [Pel02]. Further details about
automated testing against Timed CSP specifications, in particular automated
test data generation, are described below in Section 3.

3 Specification-Based Hard Real-Time Testing – Test
Automation for Timed CSP

Solved Problems. It has already been sketched in Section 2.3 how the test oracle
problem – that is, automated checking of SUT behaviour against expected re-
sults – and the simulation problem are solved for specification-based testing in
a TCSP context: Using Meyer’s structural decomposition of TCSP process net-
works, checking can be performed in back-to-back manner on transition graphs
as the one depicted in Figure 7, and simulation can be performed by abstract
machines deriving their behaviour from paths through these graphs.

4 The UNISIG standard has been defined for train control and communication within
the European Train Control Systems (ETCS) initiative. The test automation concept
has been published in [Ken04].

5 Detailed project descriptions are available under web links
http://www.informatik.uni-bremen.de/agbs/projects/victoria/ and
http://www.euproject-victoria.org/.

19

http://www.informatik.uni-bremen.de/agbs/projects/victoria/
http://www.euproject-victoria.org/

Test Data Generation. For automated test data generation, that is, generation
of timed traces containing inputs to the SUT, the evaluation of transition graphs
has to be further refined. The reason for this is that graphs like the one depicted
in Figure 7 do not encode information about the relative durations when several
active timers will elapse. As a consequence, the graph suggests elapsed-timer
transitions ei .ti which cannot occur in a certain state, because another timer
ek .tk will elapse before.

Example 5. When initially entering state 22 in Figure 7, transition e1.2 cannot
occur, since timer e0.1 will elapse before.

To solve this problem, we analyse an extended class of transition graphs,
where each state is also annotated by the vector (u0, . . . , uk) ∈ (R+

0)k of time
durations left for each timer until it elapses.

Example 6. When initially entering state 22 in Figure 7, the extended transition
graph has encoding (22, (1, 2)) for the corresponding state, since the e0.1 event
will occur after 1 time unit, and it would take 2 time units to elapse, before the
e1.2 event could occur.

The transition system represented by these extended transition graphs has un-
countably many states, but – adapting the concept of regions which has been
introduced for Timed Automata [SVD01] – it can be abstracted to another graph
GA which only shows the finitely many different timer constellations which influ-
ence whether visible transitions are enabled or not. Graph GA is generated from
the original graph as the one shown in Figure 7 by repeated transformations
with the goal to identify all nodes which are equivalent in this sense.

Example 7. To illustrate this process Figure 8 shows the initial part of GA, as
it results from this transformation applied to the graph from Figure 7.

In Figure 8, states like (22, (1, 2)) are identified with (21, (1, 0)), because in
any case timer e0.1 will elapse first. Original state 42 is now partitioned into 4
regions, each determining a different class of future behaviour: In (42, (0, 2)) only
an in event can occur and after that, the future behaviour is determined by node
(11, (0, 0))6. This behaviour does not change until 1 time unit has passed after
entering (42, (0, 2)), which is marked by the transition 1 to state (42, (0, 1)): If
an in event occurs exactly in this state, both timers will elapse simultaneously in
state (32, (0, 0)), leading to a new type of behaviour, because a nondeterministic
decision to engage into out instead of the hidden a event is possible. When
state (42, (0, 0.5)) is reached, the hidden a transition can never occur in the next
execution round, because the e1.2 timer always elapses before e0.1. Finally, when
state (43, (0, 0)) is reached, both in and out become enabled.

For the resulting region graphs GA it is possible to adapt a result by
Chow [Cho78] which was established for testing untimed automata: Using a
specific strategy to cover the graph by test traces and by checking that the SUT
6 Note that in our notation (42, (0, 2)) identifies all nodes (42, (0, 2−d)) with 0 ≤ d < 1.

The analogous applies to (42, (0, 1)) and (42, (0, 0.5)).

20

42,(0,0.5)

11, (0,0)

s0.1

1

tau

21,(1,0)

41,(0,0)

32,(0,0)

in

s1.2
42,(0,2)

1 0.5 0.5
42,(0,1)

in

s0.1

1

12,(0,1)

22,(1,1)

32,(0,0)

tau

tau

in out

43,(0,0)

.

in

s0.1

0.5

12,(0,0.5)

22,(1,0.5)

23,(0.5,0)

33,(0,0)

out
in

out

.

Fig. 8. Partial structure of graph GA transformed from Figure 7.

really reaches the intended target states in each test it is possible to prove (or
disprove) a failures refinement relation between TCSP specification and SUT by
executing a finite number of test traces. To this end, a finite variability assump-
tion has to be stated for the SUT, saying that transient error states must be
stable for at least a minimal time duration δ > 0. This assumption is realistic
from a practical point of view, since controllers cannot act arbitrarily fast.

Remarks and Related Publications. The simpler nature of the TCSP test data
generation problem, when compared to the solution for Timed Automata has
an important practical implication: In [SVD01] the authors emphasise that the
number of traces to be generated for exhaustive testing of Timed Automata
will be so large for non-trivial problems, that a complete execution of the corre-
sponding tests would be infeasible. Moreover, this also indicates that a heuristic
selection of “useful” test cases from the complete set might be equally infeasible,
or at least extremely complicated, since there are too few known criteria for
distinguishing “important” test traces from “less important” ones. We expect
that for the TCSP approach a much smaller number of test traces will be re-
quired for exhaustive testing of non-trivial systems whose behaviour is required
to be a timed trace refinement of a TCSP specification. The main reason for
this assumption lies in the fact that TCSP does not allow to refer to clock val-
ues and durations in an explicit way within boolean expressions: Time is only
“experienced” by observing that certain events occur before or after timers have
elapsed.

21

It is interesting to note that Schneider has introduced a new operator
in [Sch00, p. 272], the timed event prefix a@u→Q(u). This operator allows
to measure the time u which has passed between offering an event a to its
environment and the actual occurrence of the event. The measurement u may
be used as free variable in CSP process terms, in particular, it may appear in
communication guards. This operator is not allowed in our solution, where the

timeout
t
B and related syntactic abbreviations like WAIT t are the only ad-

missible time-related operators. Since the timed prefix offers the possibility to
access duration values explicitly within a TCSP specification, we expect that
the TCSP test data generation problem will become as complex as the one for
Timed Automata, if this operator is also admitted.

Further references related to specification-based testing have already been
given in Section 2.3.

4 Executable Formal Specifications: The Hybrid
Low-Level Language Framework

From Timed CSP to Specification Formalisms for Hybrid Systems. The applica-
tion domains where most of our verification activities described in Section 2 were
performed typically evaluated and acted on physical parameters of discrete (e. g.,
states of signals and points) and time-continuous (e. g., temperature, speed,
thrust) nature. This led to the investigation of hybrid specification formalisms,
where not only time-discrete changes of variables, but also time-continuous evo-
lutions of “analog” parameters could be described.

After the successful applications of TCSP a natural candidate for such a for-
malism was He Jifeng’s Hybrid CSP (HCSP) extension [Jif94]. Therefore its ap-
plicability was investigated by Amthor [Amt99] with respect to test automation
problems. However, it turned out that the restriction of time-continuous evolu-
tions to local CSP process variables was too severe to be used above software
design level: In physicals, global time-continuous observables occur naturally as
variables of physical laws and models. In contrast to this, HCSP already operates
on a discretised level: The actual state of time-continuous evolutions specified in
for local HCSP process variables can only be communicated to other observers
by using CSP channels at discrete points in time. Therefore, according to our
assessment, HCSP is well-suited for the software design of hybrid systems, but
less usable for physical modelling.

As an alternative to HCSP, Henzinger’s Hybrid Automata [Hen96] combine
synchronous CSP-style communication with global time-continuous variables.
Each sequential automaton concurrently acts on these analog parameters ac-
cording to flow equations, that is, differential equations describing the contin-
uous evolution of global parameters. Discrete changes can be triggered during
transitions between control states. While offering the basic tools for physical
modelling, Hybrid Automata are designed as flat networks, so that their practi-
cal application for large systems leads to specifications which are not sufficiently

22

structured and therefore unmanageable. The hierarchic extension of Hybrid Au-
tomata developed by Alur et. al. [ADE+01] does not incorporate events in their
semantic model; communication between parallel components is only performed
via shared variables. Moreover, the syntactic representation is rather specialised,
so that the chance for wider acceptance in an industrial application context seems
rather low.

Inspired by Hierarchical Hybrid Automata and with the intention to reach a
wider industrial community, we therefore decided to design a hybrid extension of
the UML. To this end, the UML2.0 profile mechanism offers a rather well-defined
means to extend the existing UML formalisms by new features and assign mean-
ing to them. The resulting HybridUML profile has been published in [BBHP03],
further description of its semantics can be found in [BBHP04]. HybridUML ex-
tends UML Statecharts [RJB99] by description mechanisms for invariants and
flow conditions which hold for the complete hierarchy of states subordinate to
the one where they have been defined (Figure 9). Additionally, class diagrams
are used to model state and sequential operations, and architectural aspects can
be specified using the structure diagrams.

[alge: α ≤ αmax]

off

[flow: α̇ = 0]

openGate

statemachine gateMotorBehavior

[flow: α̇ ≤ vmax]
[flow: α̇ ≥ vmin]

broken

ok

closeGate

closeGate

openGate

[α = αmax]

movingDown

[flow: α̇ = vclose]
[inv: α > αmin]

[flow: α̇ = vopen]
[inv: α < αmax]

movingUp

repairMotor

[α = αmin]

[inv: αmin ≤ α ≤ αmax]

[alge: α ≥ αmin]

Fig. 9. HybridUML Statechart with invariants and flow conditions.

The Hybrid Low-Level Language Framework. Apart from formal verification of
HybridUML specifications, a major research objective is to provide the means
to execute the specifications in hard real-time, for the purpose of application
development, simulation and testing. To this end, the HL3 framework developed
within our research group in cooperation with Verified Systems consists of a re-

23

usable hard real-time runtime environment R and a design pattern P for compi-
lation targets of arbitrary hybrid specifications. Given a high-level formalism H –
such as HybridUML – for the description of hybrid systems, transformations ΦH

from high-level specifications S into instances ΦH (S) of the HL3 pattern P can
be developed. For (ΦH (S),R), a formal semantics S(ΦH (S),R) based on timed
state-transition systems is defined so that the transformation both provides a
semantic definition of S and an executable program whose behavior will be con-
sistent with S(ΦH (S),R). Similar to machine code, HL3 should not be used for
manual programming, but as a target language for automated transformations.
In contrast to machine code, the real-time semantics of HL3 program can be
determined in a direct way, thereby assigning formal meaning to the high-level
specification used as the transformation source. This is achieved by using a very
limited range of instructions for multi-threading, timing control, and consistent
handling of global state in presence of concurrency.

Remarks and Related Publications. The transition from CSP-based formalisms
to hybrid systems has been performed since 1999 within the research project
HYBRIS7 Currently, our main research focus lies on the elaboration of a testing
theory for HybridUML. An instance of the HL3 framework is already used in the
latest version of the RT-Tester tool, and test support for specification-based test-
ing against HybridUML is currently developed. On a more application-oriented
level, the HL3 framework is instantiated for novel application domains, in par-
ticular for railway control systems [HP03].

The importance of semantically well-defined real-time execution environ-
ments has also been noted by other authors: For the Duration Calcu-
lus [ZRH93], implementable subsets have been investigated by several authors,
see Ravn [Rav95] and further references given there. Our HL3 framework com-
petes with Henzinger’s Giotto [HHK03] which can be used for implementing
executable Hybrid Automata and similar high-level formalisms. Giotto and HL3

are similar with respect to the time-triggered scheduling of discretised time-
continuous control functions. Our approach is slightly broader than Giotto, since
it aims at creating both executable target applications and/or the corresponding
testing environments, allows to distinguish between discretised time-continuous
and discrete control functions in an explicit way and offers the mechanisms
for implementing both CSP-style interleaving semantics and synchronous “true
parallelism” semantics as required for executable Statecharts and synchronous
languages.

5 Conclusion

In this article, the application of CSP in industrial projects has been described.
The projects focused on verification and test of embedded real-time systems
7 Efficient Analysis of Hybrid Systems HYBRIS. Research project within the priority

programme Software Specification – Integration of Software Specification Techniques
for Applications in Engineering initiated by the Deutsche Forschungsgemeinschaft
DFG. Information available under http://tfs.cs.tu-berlin.de/projekte/indspec/SPP.

24

http://tfs.cs.tu-berlin.de/projekte/indspec/SPP

in the avionics and space application domains. References to further projects
from these and other domains were given. The challenge of large-scale project
verification and test led to numerous research activities – some of which have
been sketched in this article – which were motivated by the need to combine
various methods in order to cope with the size and complexity of the problems
involved.

Since 1998, more than twenty verification engineers from Verified Systems
International GmbH, the University of Bremen and from our customers have
been involved in the CSP-based verification activities mentioned in this article.
From our point of view this is a sufficient proof for the applicability of Formal
Methods in general and, in particular, CSP. The other, even more important,
benchmark for the success of verification efforts is certainly the number of prob-
lems identified in the analysed systems. Readers will understand that an explicit
mentioning of “interesting” errors and their severity is not in the interest of our
cooperation partners. However, it can be said that the databases managed by
Verified Systems to document discrepancies uncovered during verification and
testing projects since 1998 contain about 2000 entries. About one third of these
findings are a direct consequence of Formal Methods applications in verifications
or automated tests.

On the other hand, the search for novel formal description techniques which
might appeal to a wider group of software or system developers is certainly not
completed and still sub-divided into many competing and sometimes incompat-
ible approaches.

According to our experience, the acceptance of a formal specification tech-
nique is considerably increased when specifications can be executed at least on
simulation or prototyping level. The return of investment gained by uncovered
bugs and discrepancies during verification, validation and testing does not seem
to be a sufficient motivation to learn and use a formal description technique
and associated methods and techniques in addition to the programming lan-
guages used to implement the executable system. We are therefore convinced
that the most promising strategies for formal methods in industry are based on
model-based development, where specifications can be directly transformed into
efficient executable code. These observations have led to the research work on
low-level formalisms which are suitable compilation targets for various more ab-
stract specification languages and can be executed in hard real-time, as described
in Section 4.

Finally, we would like to emphasise that the application of Formal Methods –
in particular in the field of safety-critical systems – should always be considered
as one means in a collection of several others which together ensure the quality
and dependability of the products we develop. This collection also comprises
techniques, tools and skills which are far less challenging from a scientific per-
spective (think of reliable configuration management, error reporting, project
budget management, . . .) but contribute to the overall product quality, just as
our latest advances in formal verification.

25

Acknowledgements. I would like to express my gratitude to the organisers and
speakers of the 25 Years of CSP event at the London South Bank University, for
creating a stimulating conference with numerous interesting – sometimes even
exciting – contributions and discussions. My special thanks go to Ali Abdallah
for organising this outstanding event and for expertly compiling the conference
proceedings.

References

[Abd94] A.E. Abdallah. Derivation of Parallel Algorithms: From Functional Specifi-
cations to csp Processes. In B. Moller, editor, Proceedings of Mathematics of
Program Construction, volume 947 of Lecture Notes in Computer Science,
pages 67–96. Springer-Verlag, August 1994.

[ADE+01] R. Alur, T. Dang, J. Esposito, R. Fierro, Y. Hur, F. Ivančić, V. Kumar,
I. Lee, P. Mishra, G. Pappas, and O. Sokolsky. Hierarchical hybrid modeling
of embedded systems. Lecture Notes in Computer Science, 2211:14–31, 2001.

[Amt99] P. Amthor. Structural Decomposition of Hybrid Systems – Test Automation
for Hybrid Reactive Systems. Monographs of the Bremen Institute of Safe
Systems (BISS) No. 13, University of Bremen, October 1999.

[AO91] K. R. Apt and E.-R. Olderog. Verification of sequential and concurrent
programs. Texts and monographs in computer science. Springer, 1991.

[BBHP03] Kirsten Berkenkötter, Stefan Bisanz, Ulrich Hannemann, and Jan Pe-
leska. HybridUML Profile for UML 2.0. SVERTS Workshop at
the 〈〈 UML 〉〉 2003 Conference, October 2003. http://www-
verimag.imag.fr/EVENTS/2003/SVERTS/.

[BBHP04] K. Berkenkötter, S. Bisanz, U. Hannemann, and J. Peleska. Exe-
cutable HybridUML and its application to train control systems. In
H. Ehrig, W. Damm, J. Desel, M. Große-Rhode, W. Reif, E. Schnieder, and
E. Westkämper, editors, Integration of Software Specification Techniques for
Applications in Engineering, volume 3147 of LNCS, pages 145–173. German
Research Foundation DFG, Springer, 2004.

[BCOP98] B. Buth, R. Cardell-Oliver, and J. Peleska. Combining tools for the verifica-
tion of fault-tolerant systems. In B. Buth, R. Berghammer, and J. Peleska,
editors, Tools for System Development and Verification, volume 1 of Mono-
graphs of the Bremen Institute of Safe Systems, pages 41–69. Shaker, 1998.

[BKPS97] B. Buth, M. Kouvaras, J. Peleska, and H. Shi. Deadlock analysis for a
fault-tolerant system. In M. Johnson, editor, Algebraic Methodology and
Software Technology. Proceedings of the AMAST’97, Sidney, Australia, De-
cember 1997, volume 1349 of LNCS, pages 60–75. Springer, December 1997.

[BPS98] B. Buth, J. Peleska, and H. Shi. Combining methods for the livelock analysis
of a fault-tolerant system. In A. M. Haeberer, editor, Algebraic Methodology
and Software Technology. Proceedings of the 7th International Conference,
AMAST 98, Amazonia, Brazil, January 1999, volume 1548 of LNCS, pages
124–139. Springer, January 1998.

[BT00] E. Brinksma and J. Tretmans. Testing transition systems: An annotated
bibliography. In F. Cassez, C. Jard, B. Rozoy, and M. Ryan, editors, Proceed-
ings of Summer School MOVEP’2k Modelling and Verification of Parallel
Processes, pages 44–50, Nantes, July 2000.

26

http://www-verimag.imag.fr/EVENTS/2003/SVERTS/
http://www-verimag.imag.fr/EVENTS/2003/SVERTS/

[Cho78] Tsun S. Chow. Testing software design modeled by finite-state machines.
IEEE Transactions on Software Engineering, SE-4(3):178–186, March 1978.

[DNH84] R. De Nicola and M. Hennessy. Testing Equivalences for Processes. Theo-
retical Computer Science, 34:83–133, 1984.

[FG97] C. Fischer and Smith G. Combining CSP and Object-Z: Finite trace or infi-
nite trace semantics? In T. Mizuno, N. Shiratori, T. Higashino, and A. To-
gashi, editors, Formal Description Techniques and Protocol Specification,
Verification, and Testing (FORTE/PSTV’97), pages 503–518. Chapman &
Hall, 1997.

[For01] Formal Systems (Europe) Ltd. Failures–Divergence Refinement – FDR2
User Manual, 2001. http://www.formal.demon.co.uk/FDR2.html.

[Hen96] Thomas A. Henzinger. The theory of hybrid automata. In Proceedings of
the 11th Annual Symposium on Logic in Computer Science (LICS), pages
278–292. IEEE Computer Society Press, 1996.

[HHK03] Th. A. Henzinger, B. Horowitz, and Chr. M. Kirsch. Giotto: A time-
triggered language for embedded programming. Proceedings of the IEEE,
91:84–99, 2003.

[Hoa85] C.A.R. Hoare. Communicating Sequential Processes. International Series in
Computer Science. Prentice Hall, 1985.

[HP03] A. E. Haxthausen and J. Peleska. Generation of executable railway con-
trol components from domain-specific descriptions. In G. Tarnai and
E. Schnieder, editors, Formal Methods for Railway Operation and Control
Systems: Proceedings of Symposium FORMS, pages 83–90, Budapest, May
2003. L’Harmattan Hongrie.

[JH87] He Jifeng and C. A. R. Hoare. Algebraic specification and proof of a dis-
tributed recovery algorithm. Distributed Computing, 2:1–12, 1987.

[Jif94] He Jifeng. From CSP to hybrid systems. In A.W. Roscoe, editor, A Classical
Mind, Essays in Honour of C.A.R. Hoare, International Series in Computer
Science, pages 171–189. Prentice Hall, 1994.

[Ken04] D. Kendelbacher. Architekturkonzept und Designaspekte einer signal-
technisch nichtsicheren Kommunikationsplattform für sicherheitsrelevante
Bahnanwendungen. PhD thesis, University of Bremen, Department of Math-
ematics and Computer Science, 2004. Available under http://elib.suub.uni-
bremen.de/publications/dissertations/E-Diss835 dis 50b.pdf.

[LNR05] R. Lazic, T. Newcomb, and B. Roscoe. On model checking data-independent
systems with arrays with whole-array operations. In A. Abdallah, C. B.
Jones, and J. W. Sanders, editors, Twenty-five Years of Communicating
Sequential Processes, LNCS. To appear, Springer, 2005.

[LSP82] L. Lamport, R. Shostak, and M. Pease. The byzantine generals problem.
ACM Transactions on Programming Languages and Systems, 4(3), 1982.

[Mey01] O. Meyer. Structural Decomposition of Timed-CSP and its Application in
Real-Time Testing. PhD thesis, TZI Center for Computing Technologies,
University of Bremen, Germany, 2001.

[MTB+04] O. Meyer, A. Tsiolakis, S.-O. Berkhahn, J. Kruse, and D. Marti-
nen. Automated testing of aircraft controller modules. In Proceed-
ing s of the 5th International Conference on Software Testing ICSTEST,
Düsseldorf, April 2004. SQS. Extended abstract and slides available under
http://www.informatik.uni-bremen.de/∼tsio/papers/.

[PB99] J. Peleska and B. Buth. Formal Methods for the International Space Station
ISS. In E.-R. Olderog and B. Steffen, editors, Correct System Design – Re-

27

http://www.formal.demon.co.uk/FDR2.html
http://elib.suub.uni-bremen.de/publications/dissertations/E-Diss835{_}dis{_}50b.pdf
http://elib.suub.uni-bremen.de/publications/dissertations/E-Diss835{_}dis{_}50b.pdf
http://www.informatik.uni-bremen.de/$sim $tsio/papers/

cent Insights and Avances, number 1710 in LNCS State–of–the–Art Survey,
pages 363–389. Springer, 1999.

[Pel91] Jan Peleska. Design and verification of fault tolerant systems with csp.
Distributed Computing, 5(1):95–106, 1991.

[Pel96] J. Peleska. Test automation for safety-critical systems: Industrial applica-
tion and future developments. In M.-C. Gaudel and J. Woodcock, editors,
FME ’96: Industrial Benefit and Advances in Formal Methods, volume 1051
of LNCS, pages 39–59, Berlin, Heidelberg, New York, 1996. Springer-Verlag.

[Pel97] J. Peleska. Formal Methods and the Development of Dependable Systems.
Bericht Nr. 9612. Christian-Albrechts-Universität Kiel, Institut für Infor-
matik und praktische Mathematik, 1997. Habilitation thesis, available under
http://www.informatik.uni-bremen.de/agbs/jp.

[Pel02] Jan Peleska. Formal methods for test automation - hard real-time test-
ing of controllers for the airbus aircraft family. In Proc. of the Sixth
Biennial World Conference on Integrated Design & Process Technology
(IDPT2002). Society for Design and Process Science, June 2002. Available
under http://www.informatik.uni-bremen.de/agbs/jp/papers.

[Pel03] J. Peleska. Automated testsuites for modern aircraft controllers. In
R. Drechsler, editor, Methoden und Beschreibungssprachen zur Modellierung
und Verifikation von Schaltungen und Systemen, pages 1–10, Aachen, 2003.
Shaker.

[PS96] J. Peleska and M. Siegel. From Testing Theory to Test Driver Implemen-
tation. In M.-C. Gaudel and J. Woodcock, editors, FME ’96: Industrial
Benefit and Advances in Formal Methods, volume 1051 of LNCS, pages
538–556, Berlin, Heidelberg, New York, 1996. Springer-Verlag.

[PS97] J. Peleska and M. Siegel. Test automation of safety-critical reactive systems.
South African Computer Jounal, 19:53–77, 1997.

[PT02] J. Peleska and A. Tsiolakis. Automated Integration Testing for Avionics
Systems. In Proceedings of the 3rd ICSTEST – International Conference on
Software Testing, April 2002. Extended abstract and slides available under
http://www.informatik.uni-bremen.de/agbs/jp/papers/ftrtft98.ps.

[Rav95] A. P. Ravn. Design of embedded real-time computing systems. Technical
Report ID-TR 1995-170, ID/DTU, Lyngby, Denmark, October 1995. dr.
techn. dissertation.

[RJB99] James Rumbaugh, Ivar Jacobson, and Grady Booch. The Unified Modeling
Language – Reference Manual. Addison-Wesley, 1999.

[Ros98] A. W. Roscoe. The Theory and Practice of Concurrency. Prentice-Hall,
1998.

[Sch00] S. Schneider. Concurrent and Real-time Systems – The CSP Approach.
Wiley and Sons Ltd., 2000.

[SMH99] H. Schlingloff, O. Meyer, and Th. Hülsing. Correctness Analysis of an Em-
bedded Controller. In Proceedings of DASIA (Data Systems in Aerospace)
’99 Conference, volume ESA SP-447, Lisbon, Portugal, 1999.

[SVD01] Jan Springintveld, Frits W. Vaandrager, and Pedro R. D’Argenio. Testing
timed automata. Theoretical Computer Science, 254(1-2):225–257, 2001.

[UKP98] G. Urban, H.-J. Kolinowitz, and J. Peleska. A survivable avionics system for
space applications. In The Twenty-Eighth Annual International Symposium
on Fault-Tolerant Computing, FTCS-28, Munich, Germany, June 23-25,
1998, pages 372–379. IEEE Computer Society, June 1998.

28

http://www.informatik.uni-bremen.de/agbs/jp
http://www.informatik.uni-bremen.de/agbs/jp/papers
http://www.informatik.uni-bremen.de/agbs/jp/papers/ftrtft98.ps

[ZRH93] Chaochen Zhou, A. P. Ravn, and M. R. Hansen. An extended duration
calculus for hybrid real-time systems. In Hybrid Systems, pages 36–59. The
Computer Society of the IEEE, 1993. Extended abstract.

29

