Searching for Privacy: Design and Implementation of a
P3P-Enabled Search Engine

Simon Byer$, Lorrie Faith Cranot, Dave Kormanh, and Patrick McDaniél

! AT&T Research
Florham Park, NJ
{byers,davek,pdmcdan }@research.att.com

2 Carnegie Mellon University

School of Computer Science
Pittsburgh, PA
lorrie@cs.cmu.edu

Abstract. Although the number of online privacy policies is increasing, it re-
mains difficult for Internet users to understand them, let alone to compare poli-
cies across sites or identify sites with the best privacy practices. The World Wide
Web Consortium (W3C) developed the Platform for Privacy Preferences (P3P
1.0) specification to provide a standard computer-readable format for privacy
policies. This standard enables web browsers and other user agents to interpret
privacy policies on behalf of their users. This paper introduces our prototype P3P-
enabled Privacy Bird Search engine. Users of this search service are given visual
indicators of the privacy policies at sites included in query results. Our system
acts as a front end to a general search engine by evaluating the P3P policies asso-
ciated with search results against a user’s privacy preference settings. To improve
system performance we cache unexpired P3P policy information (including in-
formation about the absence of P3P policies) for thousands of the most popular
sites as well as for sites that have been returned in previous search results. We
discuss the system architecture and its implementation, and consider the work
necessary to evolve our prototype into a fully functional and efficient service.

1 Introduction

As people increasingly use the Internet for shopping and other activities, the level of
online privacy concern is rising [14]. Many web sites have attempted to address pri-
vacy concerns by posting privacy policies and participating in self-regulatory privacy
programs. However, it remains difficult for Internet users to understand privacy poli-
cies [15], let alone to compare policies across sites or identify sites with the best pri-
vacy practices. The World Wide Web Consortium (W3C) developed the Platform for
Privacy Preferences (P3P 1.0) Specification to provide a standard computer-readable
format for privacy policies, thus enabling web browsers and other user agents to read
privacy policies on behalf of their users [7]. However, the P3P user agents available to
date have focused on blocking cookies and on providing information about the privacy
policy associated with a web page that a user is requesting [8]. Even with these tools,
it remains difficult for users to ferret out the web sites that have the best policies. We

have developed a prototype P3P-enabled search engine called Privacy Bird Search that
offers users the ability to perform Web searches that return privacy policy information
along side search results.

1.1 P3P and APPEL

The P3P 1.0 Specification defines a standard XML format for a computer-readable pri-
vacy policy called &3P policy Although P3P policies contain some human-readable
elements, they consist mostly of multiple-choice elements, which facilitate automated
evaluation. A P3P policy includes elements that describe the kinds of a data a web site
collects, the purposes for which data is used, potential data recipients, data retention
policies, information on resolving privacy-related disputes, an indication as to whether
a site allows individuals to gain access to their own data, and other information.

P3P became an official W3C Recommendation in April 2002 and has since been
adopted by nearly a third of the most popular (top 100) web sites [4]. P3P user agent
software is built into the Microsoft Internet Explorer 6 (IE6) and Netscape Naviga-
tor 7 web browsers. In addition, a P3P user agent called AT&T Privacy Bird can be
downloaded for free and used as an add-on to the IE5 and IE6 web browsers. Other ex-
perimental P3P user agents are also available. In addition, a variety of tools have been
developed to help web site operators generate P3P policies.

W3C also produced a specification for a language called A P3P Preference Ex-
change Language (APPEL) that can be used to encode user privacy preferences. APPEL
is not an official W3C Recommendation; however, it has been implemented in Privacy
Bird and other P3P user agents. APPEL is an XML-based language in which privacy
preferences are encoded as rules that can be used to evaluate a P3P policy and control
user agent behavior [6]. For example, an APPEL ruleset might specify that access to a
web site should be blocked if the site collects data for telemarketing purposes without
providing opportunities to opt-out.

1.2 Privacy Bird

AT&T Privacy Bird is implemented as an Internet Explorer browser helper object. The
software adds a bird icon to the top right corner of the IE title bar. Users can configure
Privacy Bird with their personal privacy preferences using a graphical user interface
or by importing APPEL files. The preference interface allows users to select from pre-
set high, medium, and low settings, or to configure their own custom setting. The user’s
preference settings are encoded as as APPEL rule set. At each web site a user visits, Pri-
vacy Bird checks for P3P policies. When Privacy Bird finds a policy, it uses an APPEL
evaluation engine to compare the policy to the user’s preferences. The Privacy Bird icon
appears as a green “happy” bird at sites with policies that match a user’s preferences. At
sites with policies that do not match a user’s preferences the icon appears as a red “an-
gry” bird. The icon appears as a yellow “uncertain” bird at sites that have no P3P policy.
A user can click on the bird to get a summary of the site’s privacy policy, including the
specific points where the site’s policy differs from the user’s preferences [9].

1.3 Related Work

A wide variety of web privacy tools are available that perform functions such as iden-
tifying web bugs, blocking cookies, reducing the amount of information transmitted by
web browsers to web sites, and facilitating anonymous or pseudonymous browsing [8].
Several now-defunct dot coms offered privacy-related services including an electronic
wallet linked to a privacy rating service (Enonymous) and a search engine dubbed “pri-
vacy friendly” because it did not have banner ads or cookies (Topclick). Neither of these
services provided search results annotated with privacy information. Existing P3P user
agents can make cookie blocking decisions based on P3P policies and display informa-
tion about a site’s privacy policies to users. However, none of these tools or services are
designed to compare web site privacy policies or assist users in finding the sites with
the best policies.

Tools and services are available to assist users in finding sites that match criteria
unrelated to privacy. General web search engines find sites that match a user’s text
query. Google offers a SafeSearch feature in which sites with pornography or explicit
sexual content are removed from search results. Shop bots and comparison shopping
services find sites that sell a particular product, often offering the ability to compare
these sites on the basis of price, reputation, delivery fees, and other criteria. However,
currently none of these services offer comparisons based on privacy policies.

Studies have found that search engines are frequently used by most Internet users
and that they serve as “gatekeepers” of Internet content [10]. Therefore, we believe that
the search engine is the place where privacy policy information is likely to be of use
most frequently.

After a user has conducted a web search and decided to visit a particular site, she
has invested some time and effort and may be reluctant to turn away from that site even
if she discovers that the site’s privacy policy does not match her personal preferences.
Without tools to assist her, she might have to visit several other sites before she finds
one that has both the information or products she is looking for and a privacy policy that
matches her preferences. In many cases such a site may not exist. As studies show that
users typically do not visit more than two pages returned in a set of search results [13],
it is unlikely that most users will undertake such a process to find a site that matches
their privacy preferences.

A survey of Privacy Bird users showed strong interest in being able to do compari-
son shopping on the basis of privacy policies [9]. By adding Privacy Bird functionality
to a search engine, we make it possible for users to determine which sites in their search
results have policies that match their personal privacy preferences.

2 System Architecture

The Privacy Bird Search engine builds directly on the Google search engine service [2],
and consists of four main architectural components: a policy acquisition module, a
Google integration module, an APPEL evaluation engine, and a caching daemon. These
components work in concert to acquire, maintain, and present a view of the P3P policies
of sites returned by user search queries. This section gives an overview of the design
and operation of this system.

APPEL
Evaluation Engine

Y
(4)4

v
Google
(3a) Integration
Module
(3c)

(3b) ‘} g Google

— . . Internet v
. Policy Acquisition
Policy Module
Database " 3
4 —\

b @7)

(8) Caching Daemon

Fig. 1. Privacy Bird Search Engine Architecture - privacy evaluation results are generated by the
evaluation of cached or real-time retrieved policies, and as directed by search results returned by
the Googlesearch engine.

The logical information flow and components of the Privacy Bird Search engine
are illustrated in Figure 1. Users submit queries to the service through a search page
provided by the Google integration model (step 1 in the figure). The integration model
redirects the queries to Google, which returns results (2). The Google integration mod-
ule checks the local cache for privacy policies associated with returned links. If avail-
able, the policies are acquired directly from the policy database (3a). If not, the policy
is acquired directly from the link’s parent website using the policy acquisition module
(3b) and placed in the database for future use (3c). The policies are evaluated using the
APPEL evaluation engine, and results returned to the Google integration module (4).
Finally, the search results are annotated with a red, yellow, or green bird (depending on
the evaluation results) and returned to the original end user (5).

Working independently of user queries, the caching daemon maintains the fresh-
ness of the policy database. The daemon periodically queries the database for all ex-
pired policies (6), and uses the policy acquisition module to refresh them (7). Once
re-acquired, they are pushed back into the policy database (8).

We use the automated P3P policy acquisition tool reported in [4] to obtain P3P poli-
cies, and refer interested readers to that publication for further details. The remainder
of this section briefly describes the design of the other core components.

9 8 P3P enabled Google Search

—| P3P enabled Google Search

o

¢ Google

\

il

-3 &2 5

i1

e can only offer you basic search enabled with P3P for nov

news star tribune att “p3p Coogle Search 3

Preference Level: O low ® medium O high

Fig. 2. Search Page

2.1 Google Integration

The Google integration module accepts user queries, submits them to the Google search
engine, and returns annotated results to the user.

Depicted in figure 2, users enter search queries using a Google-style interface hosted
on our server. The integration module submits queries to the Google search engine and
retrieves encoded results. The integration module then checks each URL in the search
results to see whether it has a corresponding entry in the local P3P policy cache. If no
entry is found, it attempts to obtain a P3P policy directly from the web site. Next the
policies are evaluated and the results annotated and presented to the user in a Google-
style results page.

lllustrated in Figure 3, our current system simply places an appropriate Privacy Bird
icon next to each returned link. However, other presentation choices may be desirable.
For example, one may wish to reorder the links so that those with green birds are pre-
sented first. In the extreme, one may eliminate all red or non-green birds entirely. We
consider the social and political implications of different result presentations in Sec-
tion 5.

All of these tasks are performed by website scripting. The Google integration mod-
ule simply joins the services of Google, the evaluation engine, and the caching daemon.
While intuitively simple, this requires some complex processing of the dissimilar arti-
facts used by each service. We consider the coordination of these services in depth in
Section 3.1

We have also added an advanced searching feature that causes the Google integra-
tion module to return to the user any P3P policy information it has cached for a given
site. The prefix “p3p:” followed by a host and domain name signals a search for P3P
policy information.

As shown in Figure 4, a P3P policy search returns information about the location
of a site’s P3P policy reference files, the content of any P3P headers, and the site’s
cached P3P policies. In addition, the results page includes a hyperlink that submits the

ESESNS) P3P enabled Google Search for:news startribune.com att

I -1e

=) file:///Users/pdmedan/Downloads /google.html = Q~ Google

[0 ESORICS'04 Dictinnary CBE Time Apple .Mac Research Post Travel mapquest Lion
l P3P enabled Google Search..

Preference Level: O low @ medium C high

CO ()8 [e news startribune.com att | [P3P enabled Google Search |

(778l Looking for News and Current Events?
e hittpefwww herald com/: Minneapolis Star Tribune - http://www startribune com/ ... if
vou know any web pages for news and current .. please let me know at penn@attnet ...
home.att net/~penn/newsnews htm - 21k - No Cache yet Similar Pages

u}'-:\‘*] Newspapers in Internet
«. should soon explode through the internet with ATT. ... Detroit News (http://detnews com/TDNHOME/tdnhome ... Star
Tribune (http://www startribune com) Popular Science ..
www.univieac.at/Schroedinger/2_96/net33 htm - 6k - No Cache yet Similar Pages
[_?]" :\‘\J The Philly Wire: Kate Bush
e hittp/fwww startribune com/stories/387/4636163 html (AltaVista ... and Information | KATE
BUSH NEWS & INFORMATION ... http://home attnet/~james53 1453/ (AskJeeves/Teoma ..
www. phillywire com/Kate_Bush html - 30k - No Cache yet Similar Pages

w}"l Yahoo! Groups : Explorator Messs age 179 of 276
wod site in Turkmenistan: http://home attnet/~moltenmuse ...
e WWwempireonline co.uk/mews/news_asp’
groups yahoo com/group/Explorator/mes

39k - No Cache yet Similar Pages

almilar Pages

(L2 %20 |ANE| Explorator 5.16

sempireonline co uk/mews/news_asp?story ..

sthost uchicago edu/pipermail/ane/2002 \ugusl_'i]i]li}if:.l‘.lml 26k - No Cache yet Similar Pages

@‘I EditorandPublisher com - Information Authority for the Newspap
... Times on the Web: startribune com (McClatch ingtonpost . with a special interest
in online news. ... Christopher Harper christopherharper@worldnet.att net New ...

www.editorandpublisher com/eandp/eppys/99finalists jsp - 57k - No Cache yet Similar Pages

@‘I Stand Up for the Troops benefit set Monday
.. Print this story Make us your homepage Search More search options >
http://www startribune com/stories/462/3835192 html
[4/28/2003 10:40:43 AM| News Find it!

home att net/~craigallencomedy/StarTribune pdf - - No Cache yet Similar Pages

(2 2 july/August New Media Index
o Wwwowashingtonpost.com and http://www startribune com, respectively ... an online service
featuring global sports news and information ... at http://www.olympic.att.com ...

www naa.org/presstime/96/PTIME/pT96nmi html - 18k - No Cache yet Similar Pages

the Latin participle: http://www startribune com/stories/1519

asite in Turkmenistan: http://home attnet/~moltenmuse ... the Latin participle: http://www startribune com/stories/1519

Fig. 3. Results Page

site’s policy directly to the W3C P3P Validatdto facilitate checking of policy syntax.
This advanced feature has been designed primarily for use by web site developers and

researchers.

3 W3C maintains a free P3P validation servichig://www.w3.org/P3P/validator.html

This service can be used to check the syntax of P3P policies and policy reference files, and to
verify that all P3P policies are properly located and referenced. This service is quite useful for

debugging P3P-related problems on web sites.

> e 8 P3P enabled Google Search for: p3p:www.yahoo.com

i P3P enabled Google Search... | %

Preference Level: O low & medium O high

] ’ P |
o # . 1l.P3PG le S h
i GO &)g[e p3prwww.yahoo.com bbbl Uil

Summary of P3P data on www.yahoo.com :

W3C Success: http://www.yahoo.com/w3c/p3p.xml

P3P Header found: policyref="http://pip.yahoo.com/wic/p3p.xml", CP="CAO DSF COR CUR .
Mo P3P link found in http://www.yahoo.com/_ylh=X30DMTBlc2ZmZzF2BFO9TAzI3IMIYXNDKEdAGVzd.
http://privacy.yahoo.com/us/wic/p3p_us.xml found from http://p3p.yahoo.com/wic/p3p.
http://privacy.yahoo.com/us/w3c/p3p_us.xml found from http://www.yahoo.com/w3c/p3p..

P3P policy for www.vahoo.com found at: privacy.vahoo.com/us/w 3¢/p3p us.xml
Click here to validate this P3P policy at the w3c¢ P3P validator.
Cached policy :

<?xml version="1.0" encoding="UTF-8" 2>
<POLICIES xmlns="http://www.w3.org/2002/01/P3Pv1">
<POLICY name="global” discuri="http://help.yahoo.com/help/us/privacy/world/index.htm,
<ENTITY>

<DATA-GROUP>

<DATA ref="#business.name">Yahoo! Inc.</DATA>

<DATR ref="#business.contact-info.postal.street">701 First Avenue</DATA>

<DATA ref="#business.contact-info.postal.city">Sunnvale</DATA>

<DATR ref="#business.contact-info.postal.stateprov”>CA</DATA>

<DATA ref="#business.contact-info.postal.postalcode">94089</DATA>

<DATR ref="#business.contact-info.postal.country">USA</DATA>

<DATA ref="#business.contact-info.online.uri">http://help.yahoo.com/help/us/privac;
</DATA-GROUP>
</ENTITY>

<ACCESS>
<contact-and-other/>
</ACCESS>

<DISFUTES-GROUP> _
<DISPUTES resolution-type="service" service="http://add.yahoo.com/fast/help/us/priv,
<LONG=DESCRIPTION>If you have comments, guestions or suggestions regarding the Yah

1 5 -+

Fig. 4. P3P Policy Query Result Page

2.2 APPEL Evaluation Engine

A simpler P3P-enabled search service might establish a standard set of privacy pref-
erences and evaluate all P3P policies against these preferences. However, this would
eliminate one of the truly attractive features of P3P, choice. The APPEL evaluation en-
gine gives us the ability to evaluate web site P3P policies against any APPEL-encoded
privacy preference set without having to change any hard-coded rules.

For the purpose of demonstrating the feasibility of this concept in our prototype, we
implemented an interface that includes three privacy settings, corresponding to three
APPEL rulesets. In the future we plan to expand our interface to allow users to create or

import rulesets. These rulesets could be maintained on the $eryaiaced in a cookie
on the user’s computer.
The three Privacy Bird Search settings are:

— Low: Trigger a red bird at sites that collect health or medical information and share
it with other companies or use it for analysis, marketing, or to make decisions that
may affect what content or ads the user sees. Also trigger a red bird at sites that
engage in marketing but do not provide a way to opt-out.

— Medium Same as low, plus trigger a red bird at sites that share personally identi-
fiable information, financial information, or purchase information with other com-
panies. Also trigger a red bird at sites that collect personally identified data but
provide no access provisions.

— High: Same as medium, plus trigger a red bird at sites that share any personal in-
formation (including non-identified information) with other companies or use it to
determine the user’s habits, interests, or other characteristics. Also trigger a red bird
at sites that may contact users for marketing or use financial or purchase informa-
tion for analysis, marketing, or to make decisions that may affect what content or
ads the user sees.

Currently, P3P policies are evaluated in response to each end user query. The red,
yellow, or green bird result is used for annotation, but not stored beyond that request,
i.e., there is no attempt to persistently store evaluation results. This misses an oppor-
tunity to optimize request processing costs, but as yet we have not seen evaluation as
a limiting factor. We expect that this decision will effect the future scalability of the
system, and will be revisited as needs dictate.

2.3 The Caching Daemon

The Privacy Bird caching daemon maintains the P3P policy database. glalidaemon,

this daemon runs in the background and constantly scans the Internet for website P3P
policies. Policies are refreshed as they become stale, and new site policies are discov-
ered and subsequently monitored as directed by end-user queries. In this way, the ser-
vice learns from users which policies it should be monitoring.

The P3P policy database is simply a collection of ASCII files containing the P3P
policies of the monitored sites. A sub-directory is created for each site whose policies
are being monitored. Each subdirectory contains all P3P policies, reference files, and a
single informational file namestate

The statefile contains a single line with the current state of the P3P-related files
associated with the monitored site. The encoded data indicates whether the site is a
“static” entry (see Section 3.3), the number of hits since its last refresh, the time of its
next refresh, the time of its last reference, and a flag indicating that it should (or should
not) be purged from the cache as soon as possible.

4 The ruleset could be mapped to a unique identifier held in a user cookie. This would eliminate
the need to communicate the potentially large policy, and allow policies to be used across
browsers.

The P3FEXPIRYelement dictates how long a downloaded policy should be consid-
ered valid. This tells the daemon exactly how long it can continue to use a downloaded
policy, and when is should be discarded. As directed by the P3P specification, where
EXPIRY is not set, a default expiration of 24 hours is assumed. As expected, the caching
daemon holds a policy for this period if no EXPIRY is specified. Non-existence of poli-
cies are also cached in a similar way, save that no policies are stored in the directory. A
site with no P3P policy is checked once every 24 hours to see if they have added one.

pb_daemon constantly scans the database for new entries, and purges old pol-
icy files and refreshes others dictated by EXPIRY information, if any. New sites are
detected by periodically scanning the local database. The Google integration module
stores acquired policies in the database. The policies are subsequently discovered at the
next scan by the daemon. Because discovery occurs via the filesystem, the daemon need
not directly communicate with the other components of the architecture. This vastly
simplified the construction of the tool as it obviated the need for building specialized
protocols for inter-process communication.

3 Implementation

We have implemented a prototype version of our Privacy Bird Search engine. The pro-
totype has only basic user interface features and has not yet undergone performance
testing. Eventually, we plan to evolve this prototype into a service that we can make
available to the public via the Privacy Bird web site.

The following considers some of the low level implementation issues and challenges
we faced during the construction of the Privacy Bird Search engine.

3.1 Google Integration Module

The Google integration module is built directly upon the Google search engine API [3].
Based on the SOAP [16] and WDSL [5] standards, this API provides a programmatic
interface to the Google search engine. We found the Google API to be both well docu-
mented and easy to use. It allowed us to quickly integrate its service directly with our
perl implementation of the integration module. In essence, this APl reduced the job of
implementing an Internet search to a quick and rather painless exercise.

The Google integration module is written entirely in perl. User cookies containing
privacy preferences are decoded using simple perl subroutines and results recorded in
process-local data structures. Call-outs to the APPEL evaluation engine allow us to
access the evaluation tools, and results are again stored in the local data structure. The
results of the Google query are extracted from the documented API structures, and used
in the presentation functions.

Because of users’ familiarity with it, the current implementation models the results
after the Google results page. The Google integration module simply merges the search
results with template files to generate the HTML source returned to the end users. This
will allow us to quickly alter the feel of the results page as needs and user desires dictate.
We plan to experiment further with different presentations as the prototype matures.

3.2 APPEL Evaluation Engine

While the evaluation of APPEL is intuitively simple, its implementation in software

is complex and often difficult to debug [8]. The Privacy Bird APPEL evaluation en-
gine first parses a P3P policy and an APPEL ruleset. Then it normalizes both policy
and ruleset in several ways, including removing comments and white space characters
and inserting default attribute values for attributes that have been omitted. Because P3P
includes a somewhat complicated data model in which data elements may either be
enumerated (for example, #business.contact-info.telecom.telephone.number) or identi-
fied by category (for example physical contact information), the APPEL engine must
expand all data references so that rules about data categories can be applied to policies
that include data elements and vice versa. The APPEL engine then applies each APPEL
rule to the P3P policy in order to determine whether any of the rules fire. Evaluation of
each rule involves an eight-part test that is applied recursively. The Privacy Bird APPEL
engine collects description strings associated with each rule that fires and returns them
to the calling application.

As the preceding discussion indicates, building an APPEL evaluation requires enor-
mous domain knowledge and testing. Thus, rather than implementing a new APPEL
evaluation engine, we have extracted the APPEL evaluation modules from the AT&T
Privacy Bird software package [1]. However, this decision introduced an entirely differ-
ent set of problems.

AT&T'’s Privacy Bird is a helper tool for Microsoft's Internet Explorer browser and
requires a Windows operating system. We designed Privacy Bird Search entirely on the
UNIX platform. Hence, we needed to port the code to a UNIX platform. The APPEL
evaluation modules in Privacy Bird use Windows native libraries, which complicated
the move to UNIX. For example, the Windowring APl was used widely in the
APPEL evaluation code. Similar to tis&ring object in the ANSI Standard Template
Library [12], the WindowsString objects provide APIs for the safe and efficient
manipulation of resizable buffers of alpha-numeric characters. Because this APl was not
available on UNIX, we had to build a custom string object and replace &t#eiryg
API call with an equivalent one. This required a fairly deep understanding of a large
portion of code itself.

Because the original modules were integrated directly into the browser, we had to
construct a new interface to the evaluation engine. For flexibility, we concluded that
a command utility was the best way to access the evaluation engine. This lead to the
following simple interface:

appel _eval [user policy] [site policies]

Theuser policycontains the APPEL privacy preferences. Based on user preferences or
by default, the current Google integration module currently selects an APPEL policy
encoding one the of three privacy preference profiles (e.g., high, medium, or low). The
site policiesare the collection of P3P related files retrieved directly from a site under
consideration. The result of the APPEL evaluation is a Privacy Bird decision, which is
printed to standard output in numeric form (e.g., 1, 2, or 3).

3.3 The Caching Daemon

The caching daemon is written entirely in perl. A number of APIs for the manipulation
and use of the files created and maintained by the caching daemon (e.g., state files, P3P
policies) are directly implemented in tiR8PSEARCHberl module® The daemon itself

is implemented in an executabpd _daemon perl script. As mentioned previously,
pb_daemon does not communicate directly with the other components of Privacy Bird
Search (e.g., via interprocess communication), but simply maintains the on-disk cache
of P3P policies.

There are two classes of sites in the caching daei@taticsites are those that are
deemed important enough (e.g., appear frequently in searches) that fresh copies of the
policies should always be maintained. Other non-static sites are those that the service
acquires, but are free to be ejected from the cache should resource constraints mandate
it. Static sites are identified in the caching daemon configuration as a single file of
URLSs, where each line contains the root of the site to which the policy applies. This file
is read at startup and processed as described below.

The caching daemon is started using the following command line arguments:

pb_daemon [-r refreshratg¢ [-d repository
Where theefresh rateis the rate at which the daemon rescans the P3P policy database,
and therepositoryis the path to the the root of that database. The refresh rate defaults
to 30 seconds, and the repository defaultgp8p.searchrepository

The caching daemon operates as follows:

1. The daemon begins by initializing the list of static sites by reading the URLs in-
cluded in the localgtatic _urls.dat) configuration file. Where a directory
does not exist for a configured static site, one is created in the database. Where one
exists, the local state file is read and its contents noted.

2. The daemon scans the database for directories not associated with statically defined
sites. As before, the local state file is read and its contents noted.

3. The daemon queues the “stale” or missing policies for refresh (those entries which
have not been refreshed in the last 24 hours, those with explicit and expired EX-
PIRY values, or those for which the daemon has no current information).

4. The policies are refreshed in the order in which they were queued. The policies
and update state file are written to the appropriate directory once this process is
completed. If the files cannot be retrieved, the stale files are removed and an empty
state file written.

5. The main thread wakes evagfresh rateseconds, rescans the database, and queues
and refreshes the stale policies. This loop continues indefinitely.

The caching daemon does not refresh P3P policies directly. Rather, it forks a process
for each site to be updated. This has the advantage that the daemon can easily parallelize
updates. The current implementation forks a configurable number of update processes
(by default, 5). Process termination is detected via8@CHLDsignal, and the results
obtained by rescanning the refreshed directory.

5 The P3BPSEARCHnNodule also contains the APIs used by the Google integration module to
acquire P3P policies from the end websites.

A key question for any such system is when to purge stale or unused site data. Some
site policies may not be used frequently, or again. Hence, it is wasteful of resources to
maintain the data. We are now considering several cache ejection strategies. The most
obvious strategies would be to cap the disk space usage and employ a commonly used
cache ejection discipline when the usage is exceeded (e.g, least frequently used, least
recently used).

A second, possibly more appropriate, approach would implement a neglection thresh-
old: any policy which is not used for some period of time should be ejected. This would
not only save disk space, but reduce the overhead of refreshing P3P policies and the
associated state maintenance costs. An interesting question is whether to eject at all, as
currently there are probably fewer than 5,000 P3P-enabled web sites on the Internet. Of
course, as the use of P3P grows, this will be become a more important issue.

4 Performance

The current version of Privacy Bird Search is a prototype that has not yet undergone
any performance optimizations other than the introduction of a caching daemon. It is
implemented on a single 300 MHz UltraSPARC. The following discussion broadly con-
siders the performance of the architecture and ways it can be improved. Ultimately, the
performance must support scaling to a very large number of users.

While the current implementation is stable, the performance is less than optimal.
The amount of time to return query results is impacted mostly by the time it takes to
process a Google search request using the Google API, the time it takes to fetch P3P
policies from web sites or from our cache, and the time it takes to evaluate P3P policies
against user privacy preferences. It takes approximately 400 milliseconds to complete
a search request using the Google search API (i.e., total first request to last response
byte, with 30 search results returned). This response time will be affected by network
conditions. The time it takes to fetch P3P policies from web sites varies considerably
depending on web server performance and network congestion. Evaluating a single P3P
policy is fairly quick, taking about 180 milliseconds to complete. However, if most of
the 30 search results have P3P policies, this can add a delay of several seconds. Most of
the cost of each evaluation is in launching the perl interpreter and disk 1/0. The actual
processing time by the APPEL evaluation engine is about 16 milliseconds.

We have not conducted a rigorous performance study. However, we have timed a
number of search queries to get a feel for where the biggest performance costs are and
where we might focus our optimization efforts. For example, searching for the term
“lorrie cranor” can take a little over 25 seconds to return 30 results if no policies are
previously cached. The same query takes about 6.4 seconds where policies are cached.
The overwhelming amount of time spent in the uncached test is spent fetching P3P
policies. In our current prototype policies are fetched serially—clearly, fetching P3P
policies in parallel would improve performance considerably. Not only would this re-
duce total acquisition time, but it would allow us to evaluate policies while waiting for
others to be returned. To further improve performance would require reducing policy
evaluation time. Again parallel processing would improve performance considerably. In
addition, if all the code were binary we could reduce the substantial overhead associated

with launching the perl interpreter used to wrap the call to the binary evaluation tool.
Minor performance gains could be achieved through optimization of the complicated
APPEL evaluation code, including use of an XML parser optimized for this task.

Alternatively, caching evaluation results for each of our standard APPEL rule sets
would improve performance, especially if caching was optimized to minimize disk I/O
time. Each time the caching daemon retrieves a new policy the APPEL evaluation en-
gine could be used to evaluate that policy for each of our standard APPEL rule sets (and
perhaps also a set of popular user-defined APPEL files). The results of each evaluation
could be stored as single bits.

When the policy cache is used, the performance of our prototype is reasonable for a
prototype, but not for a production system. However, we believe the approaches outlined
here will ultimately result in a stable and scalable system.

Note that because our implementation uses the Google API (as opposed to being
integrated directly into a search engine) we had to build our own policy cache. A search
engine may be able to implement privacy enhanced searching by integrating privacy
tools with existing content discovery and management infrastructure. Moreover, we
argue that the introduction of privacy features would represent a small incremental cost
to an established search engine.

5 Discussion and Future work

We have implemented a prototype P3P-enabled search engine that allows users to deter-
mine which of their search results are on web sites that have privacy policies matching
their personal privacy preferences. We have demonstrated the feasibility of adding P3P
functionality to a search engine. The next steps are to address performance and scal-
ing issues, experiment with user interfaces, and investigate the types of P3P policies
associated with web sites that are found using typical search queries.

Although our prototype system was developed with the intention of evolving into a
fully functional and efficient service, we have not yet addressed all of the issues nec-
essary to insure that the system will scale. As discussed in the previous sections, cache
ejection, the policy of not caching evaluation results, and related issues may need to be
revisited.

A number of user interface issues warrant further investigation. We would like to
find an interface design that is easy to use and helps users find sites that are most likely
to both match their queries and their privacy preferences. Our prototype Privacy Bird
Search returns search results pages annotated with Privacy Bird icons. Users can then
scroll through the search results to find those hits that have green bird icons. However,
users tend not to look past the first screen or two of search results, and some search
queries may not return green bird icons in the first two screens of results. Alternative
interfaces might reorder search results so that green bird hits appear on top. However,
this raises a number of questions. Should yellow and red birds also be taken into con-
sideration when hits are reordered? If so, should sites with a policy that does not match
a user’s preferences be ranked higher or lower than sites with no policy at all? Should
an attempt be made to order red bird hits according to the number of deviations from
a user’s preferences? For search results that return a large number of hits, should re-

ordering be performed on only a subset of the hits (for example, the top 10 or top 100
hits)? Privacy Bird Search is designed as a front end to another search engine; however,
a similar system built into a search engine could be positioned so that the privacy policy
was taken into account in that search engine’s ranking system. In that case a variety of
options might be available to determine how much influence privacy policies have on
ranking as compared with other factors. What kind of interface will best allow users to
configure their preferences about privacy policies, ranking or search results, and other
customizable features?

Ranking of search results on the basis of privacy policies raises usability issues as
well as commercial and political issues. Because so many Internet users view the web
primarily through the filter of a search engine, search engine ranking has enormous in-
fluence on what web sites users visit. This in turn influences the companies with which
people do business and the ideas to which they are exposed [11]. If a popular search en-
gine were to begin using privacy policies as a factor in search ranking it could influence
web site operator decision-making about posting privacy policies and P3P policies. De-
pending on the approach to ranking, sites may have incentives to improve their policies.
A search engine that offered only a standard privacy setting or that used a default pref-
erence set unless a user went to an advanced interface to configure preferences might
influence sites to adapt their policies to match the standard or default setting. On the
other hand, a search engine that ranked sites with no P3P policies higher than those
with P3P policies that do not match a user’s preferences might serve to discourage P3P
adoption. Furthermore, because commercial sites are more likely to adopt P3P poli-
cies than non-commercial sites, reordering could reduce the chances that users would
become aware of non-commercial sites.

In addition to annotating search results with privacy bird icons, we also planto add a
feature that will allow users to click on the bird icons to retrieve summary information
about a web site’s privacy policy, similar to the information provided by the Privacy
Bird browser helper object [9]. This will include a summary of the site’s policy, an
explanation of why a site received a red bird, a link to any opt-out information provided
by the site, and a link to the site’s full human-readable privacy policy.

We previously developed software to gather data on P3P enabled web sites auto-
matically. We have reported the results of our initial study of data collected using this
software in [4]. However, no studies have yet attempted to use P3P to compare web
site privacy policies systematically or determine the degree of variation of P3P policies
across similar sites. Some factors that will determine the usefulness of a P3P-enabled
search engine include the fraction of P3P-enabled sites among top hits to frequent
search queries, and the fraction of those that tend to match users’ privacy preferences.
If few queries return hits that are both good matches to the query and have policies that
match users’ preferences, users are likely to find Privacy Bird Search more frustrating
than useful. Future work in this area might include observations of Privacy Bird Search
in use as well as simulations based on lists of most popular search queries.

Our work on Privacy Bird Search brings us a step closer to being able to provide
privacy-related information to Web users at a time when it will be most useful. We were
able to leverage our previous work developing the Privacy Bird browser helper object
and automated tools for taking a census of P3P policies to develop this prototype. After

further work on user interface, performance, and scalability issues we expect to be able
to make Privacy Bird Search available to the public.

References

[1] AT&T Privacy Bird, January 2004.

(2]
(3]
(4]

(5]

(6]

[7]

(8]
9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

http://privacybird.com/

Google, January 2004.

http://http://www.google.com/

Google Web APIs Home, January 2004

http://http://www.google.com/apis/

Simon Byers, Lorrie Faith Cranor, and David Kormann Automated Analysis of P3P-
Enabled Web Sites. Im Proceedings of the Fifth International Conference on Electronic
Commerce (ICEC2003Dctober 2003. Pittsburgh, PA.

Erik Christensen, Francisco Curbera, Greg Meredith, and Sanjiva Weeraw&vabeSer-
vices Description Language (WSDL) 1W3C, 1.1 edition, March 2001.
http://www.w3c.org/TR/wsdl

Lorrie Cranor, Marc Langheinrich, and Massimo Marchioki.P3P Preference Exchange
Language 1.0 (APPEL 1.0\W3C Working Draft, 15 April 2002.
http://www.w3.org/TR/P3P-preferences/

Lorrie Cranor, Marc Langheinrich, Massimo Marchlorl Martin Presler-Marshall, and
Joseph ReagleThe Platform for Privacy Preferences 1.0 (P3P1.0) Specificatidf8C
Recommendation, 16 April 2002.

http://www.w3.0rg/TR/P3P/ .

Lorrie Faith CranorWeb Privacy with P3PO’Reilly and Associates, Sebastopol, 2002.
Lorrie Faith Cranor, Manjula Arjula, and Praveen Guduru. Use of a P3P User Agent by
Early Adopters. IrProceedings of the ACM Workshop on Privacy in the Electronic Sqciety
21 November 2002.

http://doi.acm.org/10.1145/644527.644528

Eszter Hargittai. The Changing Online Landscape: From Free-for-All to Commercial Gate-
keeping. In Peter Day and Doug Schuler, edit@emmunity Practice in the Network
Society: Local Actions/Global Interactiohlew York.

L. Introna and H. Nissenbaum. Shaping the Web: Why the Politics of Search Engines
Matters. The Information Sociefyl6(3):1-17, 2000.

David R. Musser, Atul Saini, and Alexander Stepar®VL Tutorial and Reference Guide:
C++ Programming With the Standard Template LibranAddison-Wesley Professional
Computing Series. Addison-Wesley, Reading, MA, 1996.

A. Spink, B.J. Jansen, D. Wolfram, and T. Saracevic. From E-Sex to ECommerce:Web
Search Change$EEE Computer35(3):107-109, 2002.

Humphrey Taylor. Most people are “privacy pragmatists” who, while concerned about
privacy, will sometimes trade it off for other benefit¥he Harris Pol| (17), March 19
2003.

http://www.harrisinteractive.com/harris_poll/index.asp?PID=

365.

Joseph Turow. Americans and online privacy: The system is broken. Technical report,
Annenberg Public Policy Center, June 2003.
http://www.asc.upenn.edu/usr/jturow/internet-privacy-report/
36-page-turow-version-9.pdf

W3C. Simple Object Access Protocol (SOAP) 2Q00.

http://www.w3c.org/TR/ISOAP

