Skip to main content

Refined PFTK-Model of TCP Reno Throughput in the Presence of Correlated Losses

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNCCN,volume 3510))

Abstract

This paper presents a simple and accurate analytical model of TCP Reno throughput as a function of loss rate, average round trip time and receiver window size based on PFTK-model. The presented model refines previous work by careful examination of fast retransmit/fast recovery dynamics in the presence of correlated losses and taking into consideration slow start phase after timeout. The accuracy of the proposed model is validated against simulation results and compared with those of PFTK-model. Simulation results show that our model gives a more accurate estimation of TCP Reno throughput in the presence of correlated losses than PFTK-model.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fomenkov, M., Keys, K., Moore, D., Claffy, K.: Longitudinal study of Internet traffic in 1998-2003. Technical Report, Cooperative Association for Internet Data Analysis, CAIDA (2003)

    Google Scholar 

  2. Olsen, J.: Stochastic modeling and simulation of the TCP protocol. PhD thesis. Uppsala University, Sweden (2003)

    Google Scholar 

  3. Padhye, J., Firoiu, V., Towsley, D., Kurose, J.: Modeling TCP Reno performance: a simple model and its empirical validation. IEEE/ACM Transactions on Networking 8(2), 133–145 (2000)

    Article  Google Scholar 

  4. Fortin, S., Sericola, B.: A Markovian model for the stationary behavior of TCP. Technical Report RR-4240, IRISA-INRIA, France (September 2001)

    Google Scholar 

  5. Sikdar, B., Kalyanaraman, S., Vastola, K.: An integrated model for the latency and steady state throughput of TCP connections. Performance Evaluation 46(2-3), 139–154 (2001)

    Article  MATH  Google Scholar 

  6. Bogoiavlenskaia, O., Kojo, M., Mutka, M., Alanko, T.: Analytical Markovian model of TCP congestion avoidance algorithm performance. Technical Report C-2002-13, University of Helsinki, Finland (April 2002)

    Google Scholar 

  7. Cardwell, N., Savage, S., Anderson, T.: Modeling TCP latency. In: Proc. IEEE INFOCOM 2000, Tel Aviv, March 2000, vol. 3, pp. 1742–1751 (2000)

    Google Scholar 

  8. Fu, S., Atiquzzman, M.: Modeling TCP Reno with spurious timeouts in wireless mobile environment. In: Proc. 12-th International Conference on Computer Communications and Networks, Dallas (October 2003)

    Google Scholar 

  9. Allman, M., Paxson, V., Stevens, W.: TCP congestion control. IETF RFC 2581 (April 1999)

    Google Scholar 

  10. Braden, R.: Requirements for Internet hosts. IETF RFC 1122 (October 1989)

    Google Scholar 

  11. Paxson, V., Allman, M.: Computing TCP’s retransmission timer. IETF RFC 2988 (November 2000)

    Google Scholar 

  12. Fall, K., Floyd, S.: Simulation-based comparison of Tahoe, Reno and SACK TCP. ACM SIGCOMM Computer Communication Review 26(3), 5–21 (1996)

    Article  Google Scholar 

  13. UCB/LBNL/VINT. The network simulator - ns-2, http://www.isi.edu/nsnam/ns/

  14. Park, K., Kim, G., Crovella, M.: On the relationship between file sizes, transport protocols and self-similar network traffic. Technical Report 1996-016, Boston University, USA (August 1996)

    Google Scholar 

  15. Willinger, W., Taqqu, M., Sherman, R., Wilson, D.: Self-similarity through high variability: statistical analysis of Ethernet LAN traffic at the source level. IEEE/ACM Transactions on Networking 5(1), 71–86 (1997)

    Article  Google Scholar 

  16. Padhye, J., Firoiu, V., Towsley, D., Kurose, J.: A model-based TCP-friendly rate control protocol. In: Proc. NOSSDAV, Basking Ridge, June 1999, pp. 137–151 (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dunaytsev, R., Koucheryavy, Y., Harju, J. (2005). Refined PFTK-Model of TCP Reno Throughput in the Presence of Correlated Losses. In: Braun, T., Carle, G., Koucheryavy, Y., Tsaoussidis, V. (eds) Wired/Wireless Internet Communications. WWIC 2005. Lecture Notes in Computer Science, vol 3510. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11424505_5

Download citation

  • DOI: https://doi.org/10.1007/11424505_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25899-5

  • Online ISBN: 978-3-540-32104-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics