
Ubiquitous Systems and Petri Nets

David de Frutos Escrig�, Olga Marroqúın Alonso��,
and Fernando Rosa Velardo∗

Departamento de Sistemas Informáticos y Programación,
Universidad Complutense de Madrid, E-28040 Madrid, Spain

{defrutos, alonso, fernandorosa}@sip.ucm.es

Abstract. Several years before the popularization of the Internet, Mark
Weiser proposed the concept of ubiquitous computing with the purpose
of enhancing the use of computers by making many computers available
throughout the physical environment, but making them effectively in-
visible to the user. Nowadays, such idea affects all areas of computing
science, including both hardware and software. In this paper, a formal
model for ubiquitous systems based on Petri nets is introduced and mo-
tivated with examples and applications. This simple model allows the
definition of two-level ubiquitous systems, composed of a collection of
processor nets providing services, and a collection of process nets re-
questing those services. The modeled systems abstract from middleware
details, such as service discovery protocols, and security infrastructures,
such as PKI’s or trust policies, but not from mobility or component
compatibility.

1 Introduction

The term ubiquitous computing was coined by Mark Weiser [11, 12] in order to
describe environments full of devices that compute and communicate with its
surrounding context and, furthermore, interact with it in a highly distributed but
pervasive way. By pervasive we mean that users will not be aware of the existence
of such environment, much in the same way as they pay little attention to other
technologies, already fully integrated in their everyday life. Thus, ubiquitous
computing is a vast field that involves not only many areas of computer science,
including hardware components, network protocols, and computational methods,
but also social sciences.

Since Weiser’s vision [11], a great deal has been achieved, mainly because of
advances in micro-electronics, that make possible the design of smaller embedded
devices. However, the state of the art is probably not as developed as expected.
One of the reasons may be the lack of widely accepted formal models, needed
at various levels of abstraction, in order to understand “the probably largest
engineered artifact in human history” (see [7]).

� Work partially supported by the MCYT project MIDAS, TIC2003-01000.
�� Work partially supported by the MCYT project MASTER, TIC2003-07848-C02-01.

O. Gervasi et al. (Eds.): ICCSA 2005, LNCS 3481, pp. 1156–1166, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Ubiquitous Systems and Petri Nets 1157

Nevertheless, some recently developed formal models can be applied in fields
related to ubiquitous computing like workflow, flexible manufacturing or agent-
oriented approaches (mobile agents or intelligent agents as in AI research).
Among these models we are here interested in those based on Petri nets for
their amenable graphical representation and their solid theoretical basis. For in-
stance, the interest of Elementary Object Systems [8, 9] has been illustrated in
numerous case studies [8]. Elementary Object Systems are composed of a system
net and one or more object nets that move along the former, like ordinary to-
kens of it. Such tokens are able to change their marking, but not their structure,
either when lying on a place or when being moved by a transition of the system
net. In this way, the change of the object net marking can be either independent
from the system net or triggered by it.

In contrast with Elementary Object Systems and their reference semantics,
which allow to access a net token from many places at the same time, in Nested
Petri nets [5, 6] each token is located at a single place at each time. Net tokens
may be produced, copied and removed during a system run, as expressed by
labels on arcs. The number of those tokens, as well as the level of nestedness, is
unlimited, thus obtaining multi-level nested systems, whose behaviour consists
of three kinds of steps: An autonomous step in a given level of a Nested Petri
net follows the ordinary firing rule for high-level Petri nets; horizontal synchro-
nization is defined as the simultaneous firing of two element nets located in the
same place of a system net; and vertical synchronization is the firing of a system
net together with the firing of its token nets that are involved.

In earlier papers [3, 4], we have introduced another multi-level extension of the
Elementary Object Systems called Ambient Petri nets, which allows the arbitrary
nesting of ambients permitted in the Ambient Calculus [1]. As a consequence,
it is possible to find in the places of an Ambient Petri net both ordinary and
high-level tokens. The latter move along the net due to the firing of ambient
transitions, labeled by capabilities that are obtained from names: Given a name
n of a component net, that is, a bounded place where computation happens, the
capability in n allows to enter into n, the capability out n allows to exit out of n,
and the capability openn allows to open n. Besides, ordinary transitions consume
and produce only ordinary tokens by following the firing rule from ordinary
Petri nets. In [4] the basic model of Ambient Petri nets has been extended with
the aim of supporting the replication operator from the Ambient Calculus, !P ,
which generates an unbounded number of parallel replicas of P . By combining
these elements, together with concepts such as limitation of access to locations,
Ambient Petri nets provide a framework to describe wide area network mobility.

Although the described models were not originally conceived in the frame-
work of ubiquitous computing, they can be used for handling some of its most
important aspects, specially mobility. Nevertheless, many features of ubiquitous
computing, such as the supply and demand of resources between processors and
processes, context awareness, and ad-hoc nets, are not naturally modeled. In
order to formalize such features, in this paper we define a new model based on



1158 D. de Frutos Escrig, O.M. Alonso, and F.R. Velardo

Petri nets called Ubiquitous nets, whose basic version relies on ordinary Petri
nets, though it can be easily enhanced by considering coloured Petri nets.

Ubiquitous nets allow to model both devices (processors) and software com-
ponents located in processors (processes), in such a way that processes change
their location due to the firing of special movement transitions. Besides, we ab-
stract from middleware details, such as those dealing with service discovery or
transport protocols, so transitions offering or requesting a service are detected
by others just by its mere existence. Then, a service is supplied whenever its
offer and request are co-located, that is, whenever the firing of the correspond-
ing service-supply and service-request transitions can be done at the same time.
The synchronization criteria is merely syntactical, that is, two transitions can
synchronize whenever the corresponding labels match. Nevertheless, in real open
systems we could always make use of specific-domain ontologies, in order to avoid
this lack of flexibility.

The paper is structured as follows. Section 2 gives the formal definition of
ubiquitous nets by considering the simplest possible model in which processes
move from location to location with no processor interaction. Section 3 illustrates
those definitions with a simple example composed of three processor nets and a
process net that is required to follow an authentication protocol in order to obtain
a specific service. Extensions of the basic model are introduced and motivated
in Section 4. Finally, conclusions and areas for further study are discussed in
Section 5.

2 Formal Definitions

Ubiquitous systems are defined in order to model the supply and demand of
services/resources of both processors and processes, respectively. To define the
exchange of such services, we consider a countable alphabet of labels S, which will
denote available resources. Moreover, we assume the existence of two bijections
!:S → S ! and ?:S → S?, by means of which we associate to each label s∈S two
synchronizing actions, s!∈S ! and s?∈S?, respectively. The countable alphabet
of labels S ! will denote resources provided by processor nets, while the countable
alphabet of labels S? will denote resources requested by process nets. Besides,
we consider a countable alphabet of labels A, which will denote autonomous
actions performed by either processors or processes.

In order to identify the different components of a ubiquitous system, we start
with two given sets of processor names, Nr, and process names, Ns, thus taking
N =Nr∪Ns. Then we have:

Definition 1. A processor net is a labeled Petri net L=(P, T, F, λ) where:

– P and T are disjoint sets of places and transitions.
– F ⊆(P×T )∪ (T×P ) is the set of arcs of the net.
– λ is a function from T to the set A∪S !.



Ubiquitous Systems and Petri Nets 1159

Definition 2. A process net is a labeled Petri net A=(P, T, F, λ) where:

– P and T are disjoint sets of places and transitions.
– F ⊆(P×T )∪ (T×P ) is the set of arcs of the net.
– λ is a function from T to the set A∪S?∪Ms, where Ms ={gol | l∈Nr}.

As stated above, ubiquitous systems are composed of a collection of processor
nets which provide services to a collection of process nets. Therefore, a processor
net has two types of transitions: autonomous transitions (those with λ(t)∈A),
and service-supply transitions (those with λ(t)∈S !). Those services are requested
by process nets, which migrate from processor to processor due to the execu-
tion of go transitions. Therefore, a process net has three types of transitions:
autonomous transitions (those with λ(t)∈A), service-request transitions (those
with λ(t)∈S?), and movement transitions (those with λ(t)∈Ms).

Definition 3. A plain ubiquitous system is a pair of the form U = 〈R, S〉
where R= {l1 :L1, . . . , lm :Lm} is a finite collection of named processor nets or
locations and S={a1 :A1, . . . , an :An} is a finite collection of named process nets
or agents, with m>0, n≥0, ∀k∈{1, . . . , m} lk ∈Nr and Lk =(P k

l , T k
l , F k

l , λk
l ),

and ∀k∈{1, . . . , n} ak∈Ns and Ak =(P k
a , T k

a , F k
a , λk

a).

Note that, in contrast with Ambient Petri nets, ubiquitous nets define two-level
systems with no distinguished root net, so we consider that all processors and
process nets have the same significance. The static nature of processor nets,
whose location is fixed, highlights the static character of some devices such as
operating systems. On the other hand, the dynamic nature of process nets, that
move from processor to processor in order to request the execution of services,
reflects the behaviour of processes performed in a distributed way by the whole
distributed system.

The current location of processes is described by means of a location function
loc, which, given a process net, returns its communicating processor. In the
following, we assume that in an ubiquitous system each component net has a
different name. Nr(U)={l1, . . . , lm} will denote the set of processor names in U,
and Ns(U)={a1, . . . , an} will denote the set of process names in U.

Definition 4. Given a plain ubiquitous system U, we define a location func-
tion for U as a function loc : Ns(U)→Nr(U). A located ubiquitous system
is a plain ubiquitous system for which we have defined a location function.

A located ubiquitous system describes the structure of both processors and pro-
cesses. In order to suitably represent their state, we use the usual concept of
marking, in such a way that places are occupied by ordinary tokens that move
along the system by following the ordinary firing rule.

Definition 5. A dynamic located ubiquitous system is a located ubiquitous
system for which we have defined an ordinary marking M : P →N, where P is

the full set of places of the ubiquitous system, that is, P =(
m⋃

k=1

P k
l )∪(

n⋃

k=1

P k
a ).



1160 D. de Frutos Escrig, O.M. Alonso, and F.R. Velardo

Similarly, we define the full sets of transitions and arcs of the ubiquitous system

as the sets T =(
m⋃

k=1

T k
l )∪(

n⋃

k=1

T k
a ) and F =(

m⋃

k=1

F k
l )∪(

n⋃

k=1

F k
a ), respectively, and

the full labelling function of the system as λ(t)=λk
c (t) if t∈T k

c with c∈{a, l}.
As stated before, both processors and processes can perform autonomous

transitions that model independent actions, that is, actions whose execution does
not depend on the surrounding context of the evolving net. The corresponding
firing rule is the one for ordinary Petri nets, since the location function does not
change. Besides, a process can move from its current location to any other due to
the execution of movement transitions, labeled by gol with l∈Nr, which specify
the new destination l. Note that in this basic model we disregard security issues,
so we consider that the full set of processor names is known to the full collection
of processes of the system. Finally, the supply of a service s is modelled by means
of the synchronized firing of two transitions, t1∈T k

a and t2∈T k′
l with λk

a(t1)=s?
and λk′

l (t2)= s!, corresponding respectively to the request of the service by the
process net Ak, and its offering by the processor net Lk′

. Those transitions can
only be fired simultaneously, each of them following the firing rule for ordinary
Petri nets.

Definition 6. Let 〈U, loc〉 be a located ubiquitous system and M be a marking
of it. An autonomous transition t∈T , with λ(t)∈A, is enabled at marking M
if ∀p∈•t M(p)>0. The reachable state of U after the firing of t is that described
as follows:
– The reachable marking M ′ is defined by M ′(p)=M(p)−F (p, t)+F (t, p) for

all p∈P .
– The location function loc does not change.

Definition 7. Let 〈U, loc〉 be a located ubiquitous system and M be a marking of
it. A movement transition t∈T k

a , with λk
a(t)=gol∈Ms, is enabled at marking

M if ∀p ∈• t M(p) > 0. The reachable state of U after the firing of t is that
described by:
– The reachable marking M ′ is defined by M ′(p)=M(p)−F (p, t)+F (t, p) for

all p∈P .
– The current location of process net ak changes, getting loc(ak)= l. The loca-

tion of the rest of the process nets remains the same.

Definition 8. Let 〈U, loc〉 be a located ubiquitous system and M be a marking of
it. A pair of service-supply/service-request transitions (t1, t2), with t1 ∈T k

a

and t2 ∈T k′
l , λ(t1)= s?∈S? and λ(t2)= s!∈S !, and loc(ak)= lk

′
, is enabled at

marking M if ∀p∈•t1∪•t2 M(p)>0. The reachable state of U after the firing of
(t1, t2) is that described as follows:
– The reachable marking M ′ is defined by

M ′(p) = M(p) −
∑

v∈{t1,t2}
F (p, v) +

∑

v∈{t1,t2}
F (v, p) ∀p∈P

– The location function loc does not change.



Ubiquitous Systems and Petri Nets 1161

Due to the firing rule in Definition 8, services are provided in mutual exclusion
with the purpose of avoiding their concurrent use, since they are considered un-
shareable resources. In this way, whenever a process requests a service s to its
processor, both nets must synchronize the firing of the corresponding transitions
in order to satisfy such demand. At that moment, service s becomes unavailable
for any process requesting the same resource. Note that if there exist more than
one process net demanding such service, the choice among them is made in a
non-deterministic way.

3 A Simple Application

In order to illustrate the behaviour of ubiquitous nets, in this section we present
an example that models a system composed of three processor nets, L1, L2 and
L3, and a process net, A, initially located in L3 (Figure 1). Processor L1 can be
interpreted as an electronic notes system [2] that requires authentication to view
its contents (action identified as service s2), and L2 can be seen as an electronic
thermometer [10] in which the action of consulting the temperature is denoted
by s3. Both processors can also give the local time, which is denoted as service

Fig. 1. An ubiquitous system modeled by Petri nets



1162 D. de Frutos Escrig, O.M. Alonso, and F.R. Velardo

s1. Processor net L3, composed of a single place and no transitions, can neither
evolve in an independent way nor interact with any process, since it is just a
container that allows to store agent nets.

Therefore, process A can move either to L1 or L2, where it demands ser-
vices s2 or s3 (trying to view the contents of the notes system or asking for the
temperature, respectively). In order to supply service s2, processor L1 requires
first to log in and if it is successfully done then to proceed with a commitment
(otherwise it aborts), whereas processor L2 does not demand any such authen-
tication to offer its services. On the other hand, after the firing of a movement
transition, process A may not only log in if asked, but also try to commit with
no previous logging, thus trying to force the authentication protocol.

In this scenario, it is clear that after the firing of transition gol2 , process
A obtains service s3 from its new location L2, which must be updated before
offering again its services (for instance, checking the temperature again). Then,
process A needs to restart before going back to its initial state, where now it
may choose to execute transition gol1 . As a consequence of this firing, process A
moves to L1, that demands it to log in before proceeding with a commitment,
which is needed to supply service s2.

4 Extensions of the Basic Model

Ubiquitous nets allow to define two-level systems focusing on both the supply
and demand of services and the mobility of processes. Nevertheless, their sim-
plicity produces some drawbacks, that can be easily removed by introducing
some extensions in the defined basic model.

In the first place, real systems constrain both mobility of processes and access
to their resources as a general rule. In particular, processes do not migrate by
themselves, but are moved by processors. As a consequence, it is reasonable to
limit the access to processors depending on their current availability to receive
processes. Moreover, processes would need to obtain the permission of their
present location to move away to the desired processor.

Therefore, in general it is necessary to model a three-way synchronization
among the moved process, its current location and its new destination. In order
to do it we introduce processor transitions labelled by lgol and lin. Their intended
meaning is that the processor firing a transition labelled by lgol allows any pro-
cess that can fire transition gol to exit out of it. This migration can only take
place when the destination processor, l, executes the admission transition lin at
the same time.

Definition 9. A go-processor net is a Petri net Lgo =(P, T, F, λ) where:

– P and T are disjoint sets of places and transitions.
– F ⊆(P×T )∪ (T×P ) is the set of arcs of the net.
– λ is a function from T to A∪S !∪Mr, where Mr ={lin}∪{lgol | l∈Nr}.

Definition 10. Let 〈U, loc〉 be a located ubiquitous system with go-processor nets
and M be a marking of it. A tuple of movement transitions (t1, t2, t3), with



Ubiquitous Systems and Petri Nets 1163

t1 ∈ T i
l , t2 ∈ T k

a and t3 ∈ T i′
l , λ(t1) = lgoli′ , λ(t2) = goli′ and λ(t3) = lin, and

loc(ak)= li, is enabled at marking M if ∀p∈•t1∪•t2∪•t3 M(p)>0. The reached
state of U after the firing of (t1, t2, t3) is that described by:

– The reachable marking M ′ is defined by

M ′(p) = M(p) −
∑

v∈{t1,t2,t3}
F (p, v) +

∑

v∈{t1,t2,t3}
F (v, p) ∀p∈P

– The current location of the process net ak changes, getting loc(ak)= li
′
. The

location of the rest of the process nets remains the same.

In this extended model, authentication could be simply modeled: We only have
to replace lin transitions by others labeled by lina, where a is the name of the
incoming process, that is, the one the destination location is ready to receive. In
this way, it is easy to limit the access to some services by taking into account
the names of processes, and hence a processor net will only admit those agents
whose name appears in labels of the form lina.

However, in this model processes must include in their code concrete infor-
mation about their desired movements, although in some cases such movements
are performed in a non-deterministic way (this happens, for instance, whenever
there exists a choice between movement transitions). Furthermore, processors
must have a static knowledge of the names of those processes whose entry is
allowed. Nevertheless, this assumption is a bit coarse, and more flexible mecha-
nisms to control authentication and mobility are desirable. Regarding the latter,
processor names will appear as token values. Then, a synchronized firing of the
movement transitions, that in this new version of the model would be labeled
by lgo, go and lin, respectively, produces the migration of the involved process
to the location indicated by the consumed token. In this way, labels of tokens
represent a permission or a capability to enter into the corresponding processors.

Definition 11. A ggo-processor net is a Petri net Lggo =(P, T, F, λ) where:

– P and T are disjoint sets of places and transitions.
– F ⊆(P×T )∪ (T×P ) is the set of arcs of the net.
– λ is a function from T to the set A∪S !∪{lin, lgo}.

Definition 12. A ggo-process net is a Petri net Aggo =(P, T, F, λ) where:

– P and T are disjoint sets of places and transitions.
– F ⊆(P×T )∪ (T×P ) is the set of arcs of the net.
– λ is a function from T to the set A∪S?∪{go}.
– Each t ∈ T such that λ(t) = go has a distinguished precondition,

wheret ∈ P , whose tokens should be labelled with processor names.



1164 D. de Frutos Escrig, O.M. Alonso, and F.R. Velardo

In order to define the behaviour of ggo-systems, we have to separate ordinary
places from those distinguished ones storing processor names. This could be eas-
ily formalized using a simple version of coloured Petri nets, though its definition
could be rather cumbersome. Here we propose a less formal but clearer definition.

Definition 13. A dynamic located ubiquitous ggo-system is a located ubiq-
uitous system with ggo-processor and ggo-process nets, for which we have defined
a marking M :P →N∪M(Nr(U)), where P is the set of places of the ubiquitous
system, and all the tokens are ordinary ones except from those in distinguished
places, that is, M(p)∈N ∀p∈P\Pgo and M(p)⊆M(Nr(U)) ∀p∈Pgo , where Pgo

is the set of distinguished places of the ubiquitous system Pgo ={wheret | t∈T,
λ(t)=go}.
Therefore, each process in a ggo-system has some distinguished places in Pgo

connected as preconditions of its go transitions. In this way, whenever a three-
way synchronization is performed, the name of the new location is taken from
the distinguished place wheret, taking as t the corresponding transition labeled
by go. Then, it is simple to model a mechanism for the transmission of processor
names to processes by means of special agents that move from location to lo-
cation providing the corresponding process nets with their labeled tokens. Such
mechanism is not formalized here due to lack of space.

Definition 14. Let 〈U, loc〉 be a located ubiquitous ggo-system and M be a mark-
ing of it. A tuple of movement transitions (t1, t2, t3), with t1 ∈ T i

l , t2 ∈ T k
a

and t3 ∈ T i′
l , λ(t1) = lgo, λ(t2) = go and λ(t3) = lin, loc(ak) = li and li

′
is a

processor name stored in the distinguished precondition wheret2 of t2, is enabled
at marking M if ∀p∈•t1∪•t2∪•t3 M(p) > 0. The reachable state of U after the
firing of (t1, t2, t3) is that described as follows:

– The reachable marking M ′ is defined by

M ′(p) = M(p) − ∑

v∈{t1,t2,t3}
F (p, v) +

∑

v∈{t1,t2,t3}
F (v, p) ∀p∈P\Pgo

M ′(p) = M(p) ∀p∈Pgo

– The current location of the process net ak changes, getting loc(ak)= li
′
. The

location of the rest of the process nets remains the same.

Following the above definition, the marking of places in Pgo does not change due
to the firing of transitions, since the distinguished input place of a go transition is
just a container for the names of the available destinations. The coloured formal
version of ggo-systems would be more flexible, allowing us to indicate how the
tokens annotated with processor names are transmitted and consumed, in such a
way that processes can have a dynamic knowledge of their possible destinations.



Ubiquitous Systems and Petri Nets 1165

5 Conclusions and Future Work

We have introduced a model for two-level ubiquitous systems, in which a collec-
tion of processors provide services to a collection of processes that request those
services. In the simplest version of the model, processors remain fixed in their
locations, whereas processes move from processor to processor in order to obtain
the resources they need.

Supply and demand of services is modeled by the synchronized firing of two
transitions: a service-demand transition located in the involved process and a
service-supply transition located in the corresponding processor. Besides, mobil-
ity is formalized by the execution of movement transitions, by means of which
each process sets its destinations.

This simple model is then enhanced with some extensions that include, first
a three-way synchronization mechanism that limits resource access (a process
moves if and only if its current processor lets it go and its new location lets it
in), and then introduces the colouring of some tokens, that allow to dynamically
determine the destinations of the moving processes.

As work in progress, we are currently introducing new features in our model to
cover the most of the characteristic properties of ubiquitous computing, mainly
a procedure to dynamically transmit private processor names to processes, in
such a way that access to locations can be adequately constrained. We will
do that by using a simple version of coloured Petri nets. Certainly, this will
lead us to the analysis of security properties by means of, for example, typing
mechanisms to suitably restricting the contents of net places. In addition to this,
we will generalize the described framework in order to encompass the dynamic
generation of new processes during a system run. With this purpose, we will
introduce a set of process types {A1, A2, . . . , Ak}, which are ordinary process
nets initialized in such a way that the firing of a special transition createi will
generate a new copy of the process of type i.

References

1. L. Cardelli. Mobility and Security. Proceedings of the NATO Advanced Study
Institute on Foundations of Secure Computation, pp.3-37. IOS Press, 2000.

2. K. Cheverst, A. Dix, D. Fitton and M. Rouncefield. ‘Out To Lunch’: Exploring
the Sharing of Personal Context through Office Door Displays. Proceedings of the
Australasian Computer-Human Conference-OzCHI 2003, pp.74-83. 2003.

3. D. Frutos Escrig and O. Marroqúın Alonso. Ambient Petri Nets. Foundations of
Global Computing 2003, ENTCS vol.85, 27 pp. Elsevier Science, 2003.

4. D. Frutos Escrig and O. Marroqúın Alonso. Replicated Ambient Petri Nets. Com-
putational Science-ICCS 2003, LNCS vol.2658, pp.774-783. Springer-Verlag, 2003.

5. I.A. Lomazova. Nested Petri Nets; Multi-level and Recursive Systems. Fundamenta
Informaticae vol.47, pp.283-293. IOS Press, 2002.

6. I.A. Lomazova. Modeling Dynamic Objects in Distributed Systems with Nested Petri
Nets. Fundamenta Informaticae vol.51, pp.121-133. IOS Press, 2002.



1166 D. de Frutos Escrig, O.M. Alonso, and F.R. Velardo

7. R. Milner. Theories for the Global Ubiquitous Computer. Foundations of Soft-
ware Science and Computation Structures-FoSSaCS 2004, LNCS vol.2987, pp.5-11.
Springer-Verlag, 2004.

8. R. Valk. Petri Nets as Token Objects: An Introduction to Elementary Object Nets.
Applications and Theory of Petri Nets 1998, LNCS vol.1420, pp.1-25. Springer-
Verlag, 1998.

9. R. Valk. Concurrency in Communicating Object Petri Nets. Concurrent Object-
Oriented Programming and Petri Nets, LNCS vol.2001, pp.164-195. Springer-
Verlag, 2001.

10. R. Want. Enabling Ubiquitous Sensing with RFID. Computer vol.37(4), pp.84-86.
IEEE Computer Society Press, 2004.

11. M. Weiser. Some Computer Science Issues in Ubiquitous Computing. Communica-
tions of the ACM vol.36(7), pp.74-84. ACM Press, 1993.

12. M. Weiser. The Computer for the 21st Century. Proceedings of Human-computer
Interaction: Toward the Year 2000, pp.933-940. Morgan Kaufmann Publishers Inc,
1995.


	Introduction
	Formal Definitions
	A Simple Application
	Extensions of the Basic Model
	Conclusions and Future Work



