Skip to main content

Network Emergence in Immune System Shape Space

  • Conference paper
Book cover Computational Science and Its Applications – ICCSA 2005 (ICCSA 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3481))

Included in the following conference series:

Abstract

We present a model which enables us to study emergent principles of immune system T-cell repertoire self-organisation, based on a stochastic cellular automata model of a simplified lymphatic compartment. An extension of the immune system shape space formalism is developed such that each activated effector T-cell clonotype and viral epitope are represented as nodes, and edges between nodes models the affinity or clearance pressure applied to the antigen presenting cell bearing the target epitope. When the model is repeatedly exposed to infection by heterologous or mutating viruses, a distinct topology of the network space emerges which parallels recent biological experimental results in the area of cytotoxic T-cell activation, apoptosis, crossreactivity, and memory – especially with respect to repeated reinfection. The model presented here is a stochastic agent-based approach, which allows a broad distribution of results to be studied by tuning crucial T-cell life-cycle probabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Perelson, A.S., Oster, G.F.: Theoretical Studies of Clonal Selection: Minimal Antibody Repertoire Size and Reliability of Self-Non-Self Discrimination. J. Theor. Biol. 81(4), 645–670 (1979)

    Article  MathSciNet  Google Scholar 

  2. Smith, D., Forrest, S., Ackley, D., Perelson, A.: Using lazy evaluation to simulate realistic-size repertoires in models of the immune system. Bull. Math. Biol. 60(4), 647–658 (1998)

    Article  MATH  Google Scholar 

  3. Brehm, M., Pinto, A., Daniels, K., Schneck, J., Welsh, R., Selin, L.: T cell immunodominance and maintenance of memory regulated by unexpectedly cross-reactive pathogens. Nat. Immunol. 3(7), 627–634 (2002)

    Google Scholar 

  4. Mason, D.: A very high level of crossreactivity is an essential feature of the T-cell receptor. Immunology Today 19(9), 395–404 (1998)

    Article  Google Scholar 

  5. Borghans, J.A., De Boer, R.J.: Crossreactivity of the T-cell receptor. Immunology Today 19(9), 428–429 (1998)

    Article  Google Scholar 

  6. Selin, L.K., Varga, S.M., Wong, I.C., Welsh, R.M.: Protective Heterologous Antiviral Immunity and Enhanced Immunopathogenesis Mediated by Memory T Cell Populations. J. Exp. Med. 188, 1705–1715 (1998)

    Article  Google Scholar 

  7. Nowak, M.A., May, R.M.: 14. In: Virus Dynamics, pp. 149–181. Oxford Univ. Press, Oxford New York (2000)

    Google Scholar 

  8. Murali-Krishna, K., Lau, L.L., Sambhara, S., Lemonnier, F., Altman, J., Ahmed, R.: Persistence of Memory CD8 T Cells in MHC Class I-Deficient Mice. Science 286, 1377–1381 (1999)

    Article  Google Scholar 

  9. De Boer, R.J., Oprea, M., Kaja, R.A., Murali-Krishna, Ahmed, R., Perelson, A.S.: Recruitment Times, Proliferation, and Apoptosis Rates during the CD8  +  T-Cell Response to Lymphocytic Choriomeningitis Virus. J. Virol. 75(22), 10663–10669 (2001)

    Article  Google Scholar 

  10. Badovinac, V.P., Porter, B.B., Harty, J.T.: CD8 + T cell contraction is controlled by early inflammation. Nat. Immunol. 5, 809–817 (2004)

    Article  Google Scholar 

  11. Burns, J., Ruskin, H.J.: A stochastic model of the effector T cell lifecycle. In: Sloot, P.M.A., Chopard, B., Hoekstra, A.G. (eds.) ACRI 2004. LNCS, vol. 3305, pp. 454–463. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  12. Burns, J., Ruskin, H.J.: Diversity Emergence and Dynamics During Primary Immune Response: A Shape Space, Physical Space Model. Theor. in Biosci. 123(2) (2004) 183–194

    Google Scholar 

  13. Burns, J., Ruskin, H.J.: Network topology in immune system shape space. In: Bubak, M., van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds.) ICCS 2004. LNCS, vol. 3038, pp. 1094–1101. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  14. Grayson, J., Harrington, L., Lanier, J., Wherry, E., Ahmed, R.: Differential Sensitivity of Naive and Memory CD8 +  T cells to Apoptosis in Vivo. J. Immunol. 169(7), 3760–3770 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ruskin, H.J., Burns, J. (2005). Network Emergence in Immune System Shape Space. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2005. ICCSA 2005. Lecture Notes in Computer Science, vol 3481. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11424826_133

Download citation

  • DOI: https://doi.org/10.1007/11424826_133

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25861-2

  • Online ISBN: 978-3-540-32044-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics