Skip to main content

Gas Turbine Model-Based Robust Fault Detection Using a Forward – Backward Test

  • Conference paper
Book cover Global Optimization and Constraint Satisfaction (COCOS 2003)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3478))

Abstract

The problem of robust model based fault detection of dynamic systems using interval observers has been mainly addressed checking if the measured output is inside the interval of possible estimated outputs obtained considering uncertainty on model parameters. This task can be computationally expensive because the interval observers can be affected by the wrapping effect. In this paper, a mixed approach consisting in determining a computationally cheaper inner approximation of the estimated output interval, based only on simulating vertices of parameter uncertainty region (forward test), is combined with a backward consistency check when the real measured output falls outside this inner solution (backward check). The backward check is implemented using interval constraint satisfaction algorithms which can perform efficiently in deciding if the measured output is consistent with the interval model. The classical alternative to this backward check will force to solve a global optimisation problem, or equivalently, a global consistency problem. Finally, this approach will be tested on a gas turbine nozzle servosystem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Armengol, J., Vehí, J., Travé-Massuyès, L., Sainz, M.A.: Application of Modal Intervals to the Generation of Error-Bounded Envelopes. Reliable Computing 7(2), 171–185 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  2. Chen, J., Patton, R.J.: Robust Model-Based Fault Diagnosis for Dynamic Systems. Kluwer Academic Publishers, Dordrecht (1999)

    MATH  Google Scholar 

  3. Cugueró, P., Puig, V., Saludes, J., Escobet, T.: A Class of Uncertain Linear Interval Models for which a Set Based Robust Simulation can be Reduced to Few Pointwise Simulations. In: Proceedings of Conference on Decision and Control 2002 (CDC 2002), Las Vegas, USA (2002)

    Google Scholar 

  4. Gertler, J.J.: Fault Detection and Diagnosis in Engineering Systems. Marcel Decker, New York (1998)

    Google Scholar 

  5. Hyvönen, E.: Constraint Reasoning based on Interval Arithmetic: The Tolerance Approach. Artificial Intelligence 58, 71–112 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  6. Jaulin, L., Kieffer, M., Didrit, O., Walter, E.: Applied Interval Analysis, with Examples in Parameter and State Estimation, Robust Control and Robotics. Springer, Heidelberg (2001)

    MATH  Google Scholar 

  7. Kearfott, R.B.: Rigorous Global Search: Continuous Problems. Kluwer Academic Publishers, Dordrecht (1996)

    MATH  Google Scholar 

  8. Kolev, L.V.: Interval Methods for Circuit Analysis. World Scientific, Singapore (1993)

    MATH  Google Scholar 

  9. Dao, M., Jaulin, L.: Proj2D Solver (2003), http://www.istia.univ-angers.fr/~dao/

  10. Nickel, K.: How to fight the wrapping effect. In: Nickel, K. (ed.) Interval Mathematics 1985. LNCS, vol. 212, pp. 121–132. Springer, Heidelberg (1986)

    Google Scholar 

  11. Puig, V., Quevedo, J., Escobet, T., De las Heras, S.: Robust Fault Detection Approaches using Interval Models. In: IFAC World Congress (b 2002), Barcelona, Spain (2002)

    Google Scholar 

  12. Puig, V., Quevedo, J., Escobet, T., Stancu, A.: Passive Robust Fault Detection using Linear Interval Observers. In: IFAC Safe Process, 2003, Washington, USA (2003)

    Google Scholar 

  13. Puig, V., Saludes, J., Quevedo, J.: Worst-Case Simulation of Discrete Linear Time-Invariant Dynamic Systems. Reliable Computing 9(4), 251–290 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  14. Stancu, A., Puig, V., Quevedo, J., Patton, R.J.: Passive Robust Fault Detection using Non-Linear Interval Observers: Application to the DAMADICS Benchmark Problem. In: IFAC Safe Process, Washington, USA (2003)

    Google Scholar 

  15. Stancu, A., Puig, V., Cugueró, P., Quevedo, J.: Benchmarking on Approaches to Interval Observation Applied to Robust Fault Detection. In: Jermann, C., Neumaier, A., Sam, D. (eds.) COCOS 2003. LNCS, vol. 3478, pp. 171–191. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  16. Travé-Massuyes, L.R.M.: TIGER: Gas Turbine condition monitoring using qualitative model based diagnosis. IEEE Expert Intelligent Systems and Applications (May-June 1997)

    Google Scholar 

  17. Waltz, D.: Understanding line drawings of scenes with shadows. In: Winston, P.H. (ed.) The Psychology of Computer Vision, pp. 19–91. McGraw-Hill, New York (1975)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Stancu, A., Puig, V., Quevedo, J. (2005). Gas Turbine Model-Based Robust Fault Detection Using a Forward – Backward Test. In: Jermann, C., Neumaier, A., Sam, D. (eds) Global Optimization and Constraint Satisfaction. COCOS 2003. Lecture Notes in Computer Science, vol 3478. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11425076_12

Download citation

  • DOI: https://doi.org/10.1007/11425076_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-26003-5

  • Online ISBN: 978-3-540-32041-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics