Skip to main content

Benchmarking on Approaches to Interval Observation Applied to Robust Fault Detection

  • Conference paper
Global Optimization and Constraint Satisfaction (COCOS 2003)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3478))

Abstract

Model-based fault detection is based on generating a difference, known as a residual, between the predicted output value from the system model and the real output value measured by the sensors. If this residual is bigger than a threshold, then it is determined that there is a fault in the system. Otherwise, it is considered that the system is working properly. However, it is very important to analyse how the effect of model uncertainty is taken into account when determining the optimal threshold to be used in residual evaluation. In case that uncertainty is located in parameters (interval model), an interval observer has been shown to be a suitable strategy to generate such threshold. However, interval observers can present several problems that in order to be solved, existing approaches require computational demanding algorithms.The aim of this paper is to study the viability of using region based approaches coming from the interval analysis community to solve the interval observation problem. Region based approaches are appealing because of its low computational complexity but they suffer from the wrapping effect. On the other hand, trajectory based approaches are immune to this problem but their computational complexity is higher. In this paper, these two interval observation philosophies will be presented, analysed and compared using in two examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bartys, M.Z.: Specification of actuators intended to use for benchmark definition (2002), http://diag.mchtr.pw.edu.pl/damadics/

  2. Chen, J., Patton, R.J.: Robust Model-Based Fault Diagnosis for Dynamic Systems. Kluwer Academic Publishers, Dordrecht (1999)

    MATH  Google Scholar 

  3. Calafiore, G.: A Set-valued Non-linear Filter for Robust Localization. In: Proceeding of European Control Conference 2001 (ECC 2001), Porto, Portugal (2001)

    Google Scholar 

  4. Cugueró, P., Puig, V., Saludes, J., Escobet, T.: A Class of Uncertain Linear Interval Models for which a Set Based Robust Simulation can be Reduced to Few Pointwise Simulations. In: Proceedings of Conference on Decision and Control 2002 (CDC 2002), Las Vegas, USA (2002)

    Google Scholar 

  5. Daafouz, J., Bara, G.I., Kratz, F., Ragot, J.: State Observers for Discrete-Time LPV Systems. In: 39th IEEE Conference on Control Decision and Control (2001)

    Google Scholar 

  6. ElGhaoui, L., Calafiore, G.: Worst-Case Simulation of Uncertain Systems. In: Garulli, A., Tesi, A., Vicino, A. (eds.) Robustness in Identification and Control. Springer, Heidelberg

    Google Scholar 

  7. Gouzé, J.L., Rapaport, A., Hadj-Sadok, M.Z.: Interval observers for uncertain biological systems. Ecological Modelling (133), 45–56 (2000)

    Google Scholar 

  8. Horak, D.T.: Failure detection in dynamic systems with modelling errors. J. Guidance, Control and Dynamics 11(6), 508–516

    Google Scholar 

  9. Kolev, L.V.: Interval Methods for Circuit Analysis. World Scientific, Singapore (1993)

    MATH  Google Scholar 

  10. Kühn, W.: Rigorously computed orbits of dynamical systems vithout the wrapping effect. Computing 61(1), 47–67 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  11. Lohner, R.J.: Enclosing the Solution of Ordinary Initial and Boundary Value Problems. In: Kaucher, E., Kulisch, U., Ullrich, C. (eds.) Computerarithmetic: Scientific Computation and Programming Languages, pp. 255–286. B.G. Teubner, Stuttgart (1987)

    Google Scholar 

  12. Moore, R.E.: Interval analysis. Prentice Hall, Englewood Cliffs (1966)

    MATH  Google Scholar 

  13. Moore, R.E.: Methods and applications of interval analysis. SIAM, Philadelphia (1979)

    MATH  Google Scholar 

  14. Nedialkov, N.S., Jackson, K.R.: A New Perspective of the Wrapping Effect in Interval Methods for Initial Value Problems for Ordinary Differential Equations. In: Kulisch, L., Facius (eds.) Perspectives on Enclosure Methods, pp. 219–264. Springer, Heidelberg (2001)

    Google Scholar 

  15. Neumaier, A.: The wrapping effect, ellipsoid arithmetic, stability and confidence regions. Computing Supplementum 9, 175–190 (1993)

    Google Scholar 

  16. Nickel, K.: How to Fight the Wrapping Effect. In: Nickel, K. (ed.) Interval Mathematics 1985. LNCS, vol. 212, pp. 121–132. Springer, Heidelberg (1985)

    Google Scholar 

  17. Ploix, S., Adrot, O., Ragot, J.: Parameter Uncertainty Computation in Static Linear Models. In: 38th IEEE Conference on Decision and Control, Phoenix, Arizona, USA

    Google Scholar 

  18. Puig, V., Saludes, J., Quevedo, J.: A new algorithm for adaptive threshold generation in robust fault detection based on a sliding window and global optimisation. In: Proceedings of European Control Conference 1999, ECC 1999, Germany (September 1999)

    Google Scholar 

  19. Puig, V., Cugueró, P., Quevedo, J.: Worst-Case Estimation and Simulation of Uncertain Discrete-Time Systems using Zonotopes. In: Proceedings of European Control Conference 2001 (ECC 2001), Portugal (September 2001)

    Google Scholar 

  20. Puig, V., Quevedo, J., Escobet, T., De las Heras, S.: Robust Fault Detection Approaches using Interval Models. In: IFAC World Congress (b 2002), Barcelona, Spain (2002)

    Google Scholar 

  21. Puig, V., Cugueró, P., Quevedo, J., Escobet, T.: Time-invariant approach to worst-case simulation and observation of discrete-time uncertain systems. In: Proceedings of Conference on Decision and Control 2002 (CDC 2002), Las Vegas, USA (2002)

    Google Scholar 

  22. Puig, V., Quevedo, J., Escobet, T., Stancu, A.: Passive Robust Fault Detection using Linear Interval Observers. In: IFAC Safe Process, Washington, USA (2003)

    Google Scholar 

  23. Puig, V., Saludes, J., Quevedo, J.: Worst-Case Simulation of Discrete Linear Time-Invariant Dynamic Systems. Reliable Computing 9(4), 251–290 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  24. Shamma, J.S.: Approximate Set-Value Observer for Nonlinear Systems. IEEE Transactions on Automatic Control 42(5) (1997)

    Google Scholar 

  25. Stancu, A., Puig, V., Quevedo, J., Patton, R.J.: Passive Robust Fault Detection using Non-Linear Interval Observers: Application to the DAMADICS Benchmark Problem. In: IFAC Safe Process, Washington, USA (2003)

    Google Scholar 

  26. Stancu, A., Puig, V., Quevedo, J.: Gas Turbine Model-Based Robust Fault Detection Using a Forward – Backward Test. In: Jermann, C., Neumaier, A., Sam, D. (eds.) COCOS 2003. LNCS, vol. 3478, pp. 154–170. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Stancu, A., Puig, V., Cugueró, P., Quevedo, J. (2005). Benchmarking on Approaches to Interval Observation Applied to Robust Fault Detection. In: Jermann, C., Neumaier, A., Sam, D. (eds) Global Optimization and Constraint Satisfaction. COCOS 2003. Lecture Notes in Computer Science, vol 3478. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11425076_13

Download citation

  • DOI: https://doi.org/10.1007/11425076_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-26003-5

  • Online ISBN: 978-3-540-32041-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics