Skip to main content

Clustering Time-Series Medical Databases Based on the Improved Multiscale Matching

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3488))

Abstract

This paper presents a novel method called modified multiscale matching, that enable us to multiscale structural comparison of irregularly-sampled, different-length time series like medical data. We revised the conventional multiscale matching algorithm so that it produces sequence dissimilarity that can be further used for clustering. The main improvements are: (1) introduction of a new segment representation that elude the problem of shrinkage at high scales, (2) introduction of a new dissimilarity measure that directly reflects the dissimilarity of sequence values. We examined the usefulness of the method on the cylinder-bell-funnel dataset and chronic hepatitis dataset. The results demonstrated that the dissimilarity matrix produced by the proposed method, combined with conventional clustering techniques, lead to the successful clustering for both synthetic and real-world data.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Keogh, E.: Mining and Indexing Time Series Data. In: Tutorial at the 2001 IEEE International Conference on Data Mining (2001)

    Google Scholar 

  2. Chu, S., Keogh, E.J., Hart, D., Pazzani, M.J.: Iterative Deepening Dynamic Time Warping for Time Series. In: Proc. the Second SIAM Int’l Conf. Data Mining, pp. 148–156 (2002)

    Google Scholar 

  3. Sankoff, D., Kruskal, J.: Time Warps, String Edits, and Macromolecules. CLSI Publications (1999)

    Google Scholar 

  4. Das, G., Lin, K., Mannila, H., Renganathan, G., Smyth, P.: Rule Discovery from Time Series. Knowledge Discovery and Data Mining, 16–22 (1998)

    Google Scholar 

  5. Keogh, E., Lin, J., Truppel, W.: Clustering of Time Series Subsequences is Meaningless: Implications for Previous and Future Research. In: Proc. the IEEE ICDM 2003, pp. 115–122 (2003)

    Google Scholar 

  6. Chan, K.P., Fu, A.W.: Efficient Time Series Matching by Wavelets. In: Proc. the IEEE ICDM 1999, pp. 126–133 (2003)

    Google Scholar 

  7. Kawagoe, K., Ueda, T.: A Similarity Search Method of Time Series Data with Combination of Fourier and Wavelet Transforms. In: Proc. the IEEE TIME 2002, pp. 86–92 (2002)

    Google Scholar 

  8. Witkin, A.P.: Scale-space filtering. In: Proc. the Eighth IJCAI, pp. 1019–1022 (1983)

    Google Scholar 

  9. Lindeberg, T.: Scale-Space for Discrete Signals. IEEE Trans. PAMI 12(3), 234–254 (1990)

    Google Scholar 

  10. Dudek, G., Tostsos, J.K.: Shape Representation and Recognition from Multiscale Curvature. Comp. Vis. Img Understanding 68(2), 170–189 (1997)

    Article  Google Scholar 

  11. Babaud, J., Witkin, A.P., Baudin, M., Duda, O.: Uniqueness of the Gaussian kernel for scale-space filtering. IEEE Trans. PAMI 8(1), 26–33 (1986)

    MATH  Google Scholar 

  12. Mokhtarian, F., Mackworth, A.K.: Scale-based Description and Recognition of planar Curves and Two Dimensional Shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-8(1), 24–43 (1986)

    Google Scholar 

  13. Ueda, N., Suzuki, S.: A Matching Algorithm of Deformed Planar Curves Using Multiscale Convex/Concave Structures. IEICE Transactions on Information and Systems J73-D-II(7), 992–1000 (1990), http://lisp.vse.cz/challenge/ecmlpkdd2002/

  14. Lowe, D.G.: Organization of Smooth Image Curves at Multiple Scales. International Journal of Computer Vision 3, 119–130 (1980)

    Article  Google Scholar 

  15. http://lisp.vse.cz/challenge/

  16. Saito, N.: Local Feature Extraction and Its Application using a Library of Bases. Ph.D. Thesis, Yale University (1994)

    Google Scholar 

  17. Geurts, P.: Pattern Extraction for Time-Series Classification. In: Proceedings of PAKDD 2001, pp. 115–127 (2001)

    Google Scholar 

  18. Keogh, E., Kasetty, S.: On the Need for Time Series Data Mining Benchmarks: A Survey and Empirical Demonstration. Data Mining And Knowledge Discovery 7, 349–371 (2003)

    Article  MathSciNet  Google Scholar 

  19. Everitt, B.S., Landau, S., Leese, M.: Cluster Analysis. 4th Edn. Arnold Publishers (2001)

    Google Scholar 

  20. Tsumoto, S., Hirano, S., Takabayashi, K.: Development of the Active Mining System in Medicine Based on Rough Sets. Journal of Japan Society of Artificial Intelligence (2005) (in press)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hirano, S., Tsumoto, S. (2005). Clustering Time-Series Medical Databases Based on the Improved Multiscale Matching. In: Hacid, MS., Murray, N.V., Raś, Z.W., Tsumoto, S. (eds) Foundations of Intelligent Systems. ISMIS 2005. Lecture Notes in Computer Science(), vol 3488. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11425274_63

Download citation

  • DOI: https://doi.org/10.1007/11425274_63

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25878-0

  • Online ISBN: 978-3-540-31949-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics