Incorporating Elements from the Prometheus Agent-
Oriented Methodology in the OPEN Process Framework:

B. Henderson-Sellers, Q.-N. N. Tran and J. Debenham

Faculty of Information Technology
University of Technology, Sydney
PO Box 123, Broadway
NSW 2007, Australia
{brian@it.uts.edu.au; numitran @yahoo.com; debenham @it.uts.edu.au}

Abstract. As part of an extensive research programme to combine the benefits
of method engineering and existing object-oriented frameworks (notably the
OPF) to create a highly supportive methodological environment for the
construction of agent-oriented information systems, we have analysed-here-
contributions to the OPF repository of process components from the
Prometheus “agent-oriented methodology. We have identified three new
Tasks, together with two new subtasks for a pre-existing Task and one
additional Technigue. Prometheus has also supplied the OPF with four new
‘Work Products but no additional Roles or Stages.

1 Introduction

The increasing interest in agents and agent-oriented methodologies requires the
construction of high quality software applications. There are an increasing number of
stand-alone methodologies but none of these supports all methodology elements
across the full lifecycle, instead focussing solely on agent-specific issues such as
social interaction, autonomy and reasoning processes. There is also debate as to
whether an agent-oriented methodology should be seen as a new mindset requiring a
brand new approach or whether it can be considered as extending the object-oriented
paradigm and methodology. While the former view has been advocated by e.g.
Tropos [1], we have already shown [2,3] that this view can be accommodated within
an object-oriented framework approach and it is this view that is taken in this paper.
Object-oriented (O0) methodologies do not take into account agency concepts.
Recently there has been interest in identifying how an object-oriented methodology
might be extended or enhanced to support these newer ideas. Several proposals have
been made. For instance, Gaia [4] takes as its basis the Fusion methodology [5];
ADELFE [6] starts with RUP [7] (although the citation is actually to the Unified
Software Development Process [8]).Such methodologies have a specific and restricted
focus, for instance to a particular lifecycle stage e.g. Tropos [1] focusses on early
requirements engineering. Outside their stated scope, however, they have little or no
application. Here, we focus on a comprehensive software development approach and
seek a methodological environment that has the capacity to be flexible enough to

370

support new ideas as they appear and become accepted as well as the old, well-
established ones [9]. Merging of methodologies has been addressed from an informal
viewpoint [10); however, a more rigorous and highly promising approach to offer
such support is that of method engineering [11,12].

This paper reports on part of an extensive research programme to combine the
benefits of method engineering and existing object-oriented frameworks (notably the
OPEN Process Framework or OPF [13,14]) to create a highly supportive environment
for the construction of agent-oriented information systems. By starting with a
repository of OO method fragments, the research questions relate to the ideatification
of new (or extended) process components necessary to support various flavours of
agent-oriented applications development. To do this, we are examining each of the
extant AO methodologies in turn to see what must be added to the OPF repository so
that that particular AO methodology can be (re)created from the elements in the
extended OPF. In this paper, we focus on the Prometheus AO methodology [15,16] to
complement our previous analysis of, inter alia, Tropos [3], Gaia [17) and MaSE
[18].

In Section 2, we outline the ideas of method engineering (ME) followed by a brief
summary in Section 3 of our selected OO situational method engineering approach —
that based on the OPF [14]. In Section 4, we describe the basics of Prometheus and
then-in Section 5 describe the elements of Prometheus not currently supported in the
OPF and which we therefore propose for addition to the OPF repository.

2 Method Engineering

Method engineering [11] is a rational approach to the construction, either fully or
partially, of methods (a.k.a. methodologies) from method fragments (often called
method chunks [19] or process components? [14]), typically stored in a repository.
The method itself is constructed by selection of appropriate method fragments
followed by their configuration in such a way as to satisfy the requirements for the
method [20] and create a meaningful overall method [21]. A method that is targetted
at a particular project or environment is known as a situated or situational method and
the means of its derivation known as situational method engineering (SME) [12].

Ideally, a method engineering approach to process construction will utilize a
process metamodel from which current and future method fragments can be generated
by the instantiation rule. These generated fragments will be consistent with the rules
of the metamodel, a rule for instance that might state that a producer (usually a
person) can utilize a work unit (such as a task) in order to product some kind of work
product (e.g. documentation, code). Such rules also automatically impose some
granularity constraints as noted in [21]. A second set of rules and guidelines is needed
to assist in process construction [22], an approach that can also potentially be
automated [23,24]. Here, we call a combination of metamodel and generated process
components (stored in a repository) a process framework

A methodology is a combination of a process and a set of products. We focus on the process
" o

portion. Thus, the words “method”, “methodology”, “‘process” are taken here as synonyms.
371

mailto:Ibrian@it.uts.edu.au;
mailto:numilran@yahoo.com;

3 The OPEN Process Framework

The OPEN (Object-oriented Process, Environment, and Notation) Process Framework’
(OPF) [14] combines a process metamodel and a repository of process components
(Figure 1). Elements from the repository are selected and put together to form a
specific process or situational method. Process elements are related to other process
elements with a possibility value known as a deontic value [13]. Deontic matrices can
be defined for (1)} Process/Activity, (2) Activity/Task, (3) Task/Technique, (4)
Producer/Task, (5) Task/Work Product, (6) Producer/Work Product and (7) Work
Product/Language. Deontic values have one of five values ranging from mandatory
through optional to forbidden. This gives a high degree of flexibility to the process
engineer who can allocate different deontic values for any specific pair of process
components depending upon the context i.e. the specific project, skills set of the
development team etc. Allocating these deontic values is the responsibility of the
process engineer, perhaps assisted by an automated tool along the lines recently
proposed [23]. This deontic approach to process construction is one of OPEN's
strengths that make it suitable for a wide range of project types.

‘When used on a specific project, this is known as a process instance. A company-
customized OPEN version is then “owned” by the organization — it is the:r own
internal standard, yet retains Comnat.lblll[y with the global OPEN user cc .

QPEN Process Framework

‘| Repository of Predefined
*1 Process Components

’ Process Metamodel

instance of

Methodology/Process

instance of

tep 1:
Methodolagist selects
Process Components and
constructs Methodology

Step 2:
Project Manager creates.
Pracess Instance by C
allocating specific resources

Fig. 1. The OPF defines a framework consisting of a metamodel and a repository of
process components, Construction guidelines are used to create a site-specific or
project-specific methodology/process, which can then be enacted (as a “process
instance™) on a specific project (after [25])

3.1 The OPF Metamodel

The OPF metamodel defines five main high level classes of process components:
372

Work Product: “is anything of value that is produced during the development
process” [14]. Work Products are the result of producers (people) executing Work
Units and are used either as input to other Work Units or delivered to a client.
Pragmatically, they also include externally-supplied (e.g. by user) pre-existing
artifacts used as inputs to Work Units.

Producer: “is responsible for creating, evaluating, iterating and maintaining Work
Products” [14].

Work Unit: a functionally cohesive operation that is performed by a Producer.
There are three major classes of Work Unit: Activity, Task and Technique.

I a medium for de ing a Work Product.

Stage: an identified and managed duration within the process or a point in time at
which some achievement is recognized.

Each of these metaclasses has many subclasses in the detailed metamodel (see
Appendix G of [14]). From each of these subclasses one or more process component
instances are generated and stored in the OPF repository (Figure 1)

3.2 Process C in the Repository

Initially, the OPF repository ¢ ined about 30 pred d i of Activity, 160
instances of Task and 200 instances of Techniques (the three main kinds of Work
Unit) as well as multiple instances of Role, Stage, Language etc. Some of these are
orthogonal to all others in their group and some overlap. Consequently, during
process construction both association and integration strategies [20] are needed. For
example, there are several Techniques in the repository for finding objects e.g. textual
analysis, use cases simulations, CRC card techni

The Work Units in the OPF are perhaps the most obvious during the initial stages
of process construction. At the highest abstraction level are Activities which describe
what needs to be undertaken. The overall software development process is often
configured using half a dozen or so of these Activities so they are often (but not
always) the first to be identified. Tasks are then added which give more detail but still
focus on “what” needs to be done rather than “how” it is do be done. Tasks can be
readily tracked and project managed. They are typically allocated to a small team over
a period of a few days. Scheduling comes from the planmng Activities and Tasks
combined with the project bodied in the appropriate Tasks.
Accomplishment of Tasks is by the use of appropriate Techniques. This set of process
components is diverse since there are often parallel Techniques for any given Task.

Work Products, including models, dc ion and metrics, are also important in
any software development process ~ although a methodology that is driven by the
desire to produce d often fails b it delivers the Work Products for
their own sake. Care must therefore be taken in selection of appropriate process
components for Work Products.

Producers bring in the human element (although some producers may be other
software or indeed hardware). Producers play various roles within the methodology.
It is important to identify these roles rather than the people playing them. A large
number of these are described in the OPF repository although it is a volatile set in
comparison with, say, the instances of the WorkUnit class.

373

Since its first publication in 1997, several additions have been made to the OPF
repository to enhance its support for
. Web development [26,27]
. Component-based development [28]
. Organizational transition [29,30]
. Usage-centered design [25]
As well as some initial work on agent extensions [3,31].
In Section 5 of this paper, we extend the OPF repository even further, to offer
additional support for agent orientation (AO) by extracting new process components
from the Prometheus AO methodology [15,16].

4 Major Elements of Prometheus

Prometheus [15,16] is an agent-oriented methodology with three design phases ending
in an implementation phase. First is the systems specification phase in which the basic
functionality of the system is identified, using percepts (inputs), actions (outputs) and
any necessary shared data storage. This is followed by the architectural design stage
which uses as input the outputs of the previous phase. Here, the agents and their
interactions are identified. Finally, there is the detailed design phase in which the
internal details of each agent are addressed.

Prometheus reuses as much as possible from object technology. In particular, it uses
UML sequence diagrams (as Prometheus’s interaction diagrams) and UML use cases
form the basis for the Prometheus variant named scenario.

Within each of these three major Prometheus phases, we have identified a number
of tasks, together with advice on appropriate techniques and work products generated
or d. These are detailed in the following subsections, together with a brief
comment on the stages (Prometheus phases) and languages recommended for use with
the Prometheus approach to building agent-oriented software applications.

4.1 Tasks Characterizing Prometheus

e ‘Identifying Percepts and Actions’: “Percepts” are raw data obtained from the
environment, while “actions” are agents’ mechanisms for affecting the
environment. This task determines how agents interact with their environment.

o ‘Identifying System Goals and Functionality’: This task aims to determine what
the target system should do in a broad sense. Each goal is associated with a (set
of) functionality. Each functionality is described in terms of various attributes
(see Functionality Descriptor Work Product in Section 4.3 for more details).

e ‘Specifying Use Case Scenarios’: This task aims to give a more holistic view of
the system processing (as compared to Functionality Specification which
focusses on particular aspects of the system). This task also helps to identify
further functionality which may otherwise be missed.

o ‘Identifying Agent Types and Instances’: Agent types are identified from
functionality (by grouping closely-related functionality into one agent type). For
each agent type, the designer needs to determine the number of agent instances,

374

the lifetime of each instance, agent initialisation, agent demise, data
used/produced and the events with which the agent will deal.

‘Identifying Events’: Events are derived from percepts. These events are things
that the agent will notice, which will cause it to react in some way.

‘Identifying and Specifying Shared Data Objects’: If multiple agents write to
the same shared data objects, this will require significant additional care for
synchronization. At this step, the designer should also decide the appropriate
data-sharing mechanism (e.g. having one agent managing the shared data object,
or having each agent storing its own version of the information). This step also
helps to evaluate design, as a good design will minimize shared data objects.
‘Specifying Agent Interaction’: This task involves developing Interaction
Diagrams to show the major sequences of interactions between agent types, and
secondly, Interaction Protocols to elaborate each interaction (as shown in
Interaction Diagrams) to show all potential variations.

‘Designing Agent Internal Structure’: This task involves a progressive
refinement process in order to define the structure of each agent type by defining
and then elaborating agent capabilities. These are refined in turn until all
capabilities have been defined. At the bottom level, capabilities are defined in
terms of plans, internal events and data.

4.2 Techniques Recommended by Prometheus

For ‘Identifying Percepts and Actions’: no specific techniques for identifying
Percepts and Actions are identified in the Prometheus documentation.

For ‘Identifying System Goals and Functionality’: Functionality should be kept
as narrow as possible, dealing with a single aspect or sub-goal of the system. If
functionalities are too broad, they are likely to be less adequately specified
leading to potential misunderstanding. Each functionality should be linked to
some System Goal, while each goal should result in one or more functionality,
although there may not be a one-to-one mapping. The identification of
functionality can be performed in conjunction with Use Case Scenarios
specification: typically some functionalities are defined, these being used to
specify use case scenarios, which in turn identify more functionalities.

For ‘Specifying Use Case Scenarios’: The central part of a use case scenario is a
sequence of steps describing the scenario. Each step should be annotated with the
name of the functionality responsible and data read/written, These annotations
allow for cross checking with the functionality description. The final set of use
cases should provide a good overview of how the system will work.

For ‘Identifying Agent Types and I i ies are gned to
agents based on the criteria of strong coherence and loose coupling.
Specifically, they are grouped to a single agent if they are related, use the same
data and interact frequently with each other. Reasons against groupings include
when functionalities are unrelated, exist on' different hardware platforms or
when there exist security, privacy and modifiability issues. A simple heuristics
test of whether a suitable name for an agent type can be found is useful for
evaluating coherence. A coherent agent should be able to be described by a
single term without any conjunctions. Data Coupling Diagrams and Agent

375

Acquaintance Diagrams can be used to determine and evaluate the potential
agent groupings. A design with an Acquaintance Diagram where each agent is
linked to every other agent is undesirable.

For “Identifying Events’: Events should be generated as a result of percepts from
the environment, either directly or after processing. The designer should look for
changes between the current and previous percepts, or between believed states of
world and percepts. Events can be externally generated (from percepts) or
internally generated (from messages sent from one agent to another).

For ‘Identifying and Specifying Shared Data Objects’: Often what at first
appears to be a shared data object can be reconceptualised to be a data source
managed by a single agent, with information provided to other agents when
needed. Alternatively, each agent may have its own version of the information,
without there being any need for a single centralized data object, Data objects can

+ 1

be specified using traditional OO techniques or d design
For ‘Specifying Agent Interaction’: Interaction Diagrams and Interaction
Protocols need to be developed. Interaction diagrams are borrowed directly from
0O design, showing interaction between agents rather than objects. Designers
can directly use the use case scenarios developed earlier to build corresponding
Interaction Diagrams. Wherever there is a step in the use case that involves
functionality from a new agent, there must be some interaction from a previously
involved agent to the newly participating agent. Also, each major environmental
event should have an associated Interaction Diagram. Interaction Protocols are
generalizations of Interaction Diagrams. They define precisely which interaction
sequences are valid within the system. Since protocols must show all variations,
they are often larger than the corresponding Interaction diagram.,

For ‘Designing Agent Internal Structure’: Functionality (identified from the
task ‘Identifying System Goals and Functionality’) provides a good initial set of
capabilities. Sometimes functionality is required in multiple places - akin to
library routines. Such functionality should also be extracted into a capability
which can then be included in other capabilities or agents. Each capability is
composed of input/output events, data read/written, plans and sub-capabilities.

4.3 Work Products Advocated by Prometheus

Functionality Descriptor: This is a textual template which describes each
functionality in terms of name, description, percepts, actions, data used/produced
and a brief discussion of interactions with other functionality.

Use Case Descriptor: This is a textual template which describes the sequence of
steps involved in each use case scenario. Each step is either an incoming
event/percept, message, action or activity (activity is anything within the
functionality, e.g. some kind of computation). All of these elements can be
derived from Functionality Descriptors.

Agent Class Descriptor: This is a textual template that describes each agent in
terms of functionality included, data used/produced, incoming events, actions,
lifetime, initialisation, demise and other agents with which it interacts.

376

Agent Acquail Diagram: This d type (Figure 2) shows undirected
communication links between agent types. It is developed during the ‘Identifying
Agent Types and Instances’ task to assist ‘Agent Type Identification’.

[f User Agent l—-——(f Planner]

[E DB Searcher]

Fig. 2. Example of an Agent acquaintance diagram

(% web Searcher

System Overview Diagram: This diagram provides a general understanding of
how the system functions as whole. It shows agents, events, shared data objects
and interactions between a; ents (Figure 3).

Leaming

Suggestion
[seaeh Onter

Fig. 3. Example of System Overview diagram

Agent Interaction Model: including Interaction Diagrams and Interaction
Protocols - both diagrams expressed with AUML Sequence Diagrams (Figure 4).

Agent Overview Diagram: This diagram provides the top level view of the agent
internals. It shows the top level capabilities of the agent, events or task flows
between these capabilities, as well as data internal to the agent (Figure 5). Further
levels of details will be provided by Capability Diagrams.

Capability Diagram: Each Capability Diagram describes an agent’s capability in
details. At the bottom level, this diagram contains plans, internal events (which
connect plans) and data used/produced by plans. Capability Diagrams are similar
in style to System Overview (Figure 3) and Agent Overview Diagram (Figure 5),
although plans are constrained to have a single incoming event.

377

User {User Agent] Planner

(if status=new)

[Profile Info [Planner] Web
Response. Searcher |
Query on n..m Sub-query

Searcl der b
)
: Fail é
Integrated e
Furmslm:d results if 100 many hits
n::u s Refinement
Iback Learning Refined Hits
Thanks Suggestion

Fig. 4. Example of Interaction and protocol diagrams

User Profile
Management
Capabilit;

Process User
Feedback
Capabilit

Fig. 5. Example of Agent Overview diagram (for User Agent)

e Plan, Event, Data Descriptor: Each Plan Descriptor defines a plan in terms of
triggering events, messages, actions, and plan steps. Each Event Descriptor
defines an event in terms of the event’s purpose, together with data that the event
carries. Each Data Descriptor defines a data object in terms of its fields and
methods. All three descriptors are expressed as textual templates.

4.4 Stages used in Prometheus

Cycle: Prometheus uses an iterative process over software engineering phases, thus
fitting the “Iterative, Incremental, Parallel Life Cycle” model of OPEN.

Phases: Prometheus covers System Specification, Architectural Design, and
Detailed Design. Outputs of these phases can be directly fed into implementation and
testing. In the context of OPEN, Pr supports “Initi " and
“Construction”.

378

4.5 Languages

For modelling, Prometheus proposes its own set of notation, except for the Interaction
Model, which employs the AUML Sequence Diagram [32]. For an implementation
language, it is noted that Prometheus models can be implemented in any
programming language although exemplar implementations have been undertaken
using the JACK Development Platform.

5 Adding support to the OPF derived from Prometheus

In this section, we outline the various Tasks, Techniques and Work Products that are
proposed in this paper as additions and modifications to the OPEN repository in order
to incorporate agency concerns as identified in Prometheus. These new process
components are identified from the literature and proposed here for inclusion into the
OPF process component repository.

In total, three new Tasks are identified, together with two new subtasks for a pre-
existing Task. An additional Technique, suitable for agent support, has also been
identified for inclusion in the OPF repository (and one that will need further extension
— not discussed in detail here). Prometheus supplies a total of 5 new Work Products
but no additional Roles or Stages.

Many of the tasks described in Prometheus are already incorporated into the
process component library of OPEN, albeit sometimes under a different name. First
we discuss the mappings to existing process components (Section 5.1) and then
identify new components for addition to the OPF repository (Sections 5.2 to 5.4).

5.1 Existing support and mappings between OPF and Prometheus

The Prometheus task of ‘Identifying Percepts and Actions’ maps to the Agent OPEN
Tasks: ‘Model the agent’s environment’. Useful techniques here might be ‘Context
Modelling’, ‘CRC Card Modelling” and ‘Event Modelling’. ‘Identifying Systems
Goals and Functionality’ in Prometheus is paralleled by the set of Requirements
Engineering tasks in OPEN that directly cover this Prometheus task (particularly
OPEN’s ‘Identify Client’s Vision’ and ‘Analyze Requirements’). The OPEN task:
‘Use Case Modeling’ corresponds directly to the Prometheus task of ‘Specify Use
Case Scenarios’.

The Prometheus task named ‘Identifying Agent Types and Instances’ leads to the
need for a new OPF Task which we name ‘Construct the Agent Model’ (see Section
5.2). Similarly, Prometheus’s ‘Identifying and Specifying Shared Data Objects’
identifies a gap which we fill with a new OPF Task: ‘Specify shared data objects’.
On the other hand, there is some high level support in Agent OPEN’s Task: ‘Model
the agent environment’ for both events and percepts. However, we recommend
supporting these more substantially through the introduction of two new subtasks (see
Section 5.2 for details).

For Prometheus’s ‘Specifying Agent Interaction’ there is a good mapping to
OPEN’s Task: ‘Construct the object model’/Technique: ‘Interaction modelling’ [14]

379

plus Task: ‘Determine agent interaction protocol’ [31]; whereas the Prometheus’s
‘Designing Agent Internal Structure’ requires the addition to the OPF repository of a
new task called ‘Design agent internal structure’. i

There are many existing OPF Techniques covering those required by Prometheus,
Techniques to support Prometheus’s ‘Identifying percepts and actions’ include
‘Context modelling’, ‘CRC card modelling’ and ‘Event modelling’. For ‘Identifying
System Goals and Functionality’, OPF already has ‘Hierarchical task analysis’. For
‘Specifying Use Case Scenarios’, OPF offers Technique: ‘Scenario development’.

For ‘Identifying Agent Types and Instances’ in Prometheus, the OPF has some
support, although inadequate in parts. While existing Techniques of ‘Cohesion
measurement’ and ‘Coupling measurement’ offer support, the existing Technique:
‘Intelligent agent identification’ covers only the need for agents and agent modelling
notation and significant extension will be required. OPEN also offers various
techniques for OO class identification/modelling (such as ‘Abstract Class
Identification’ and ‘Class Naming’), which can be extended/adapted for the
identification of agent classes. The extension should take into account the major
differences between OO classes and agent classes, for example, agent classes are
generally more coarse-grained than QO classes (thus, the ‘Granularity’ Technique in
the OPF repository should be extended to account for this difference).

For ‘Identifying Events’ in Prometheus, the OPEN Technique: ‘Event Modelling’ is
directly applicable. OPEN currently offers no i for the Prometheus task of
‘Identifying and Specifying Shared Data Objects’. Support for ‘Specifying Agent
Interactions’ is partial through the OPF Techniques of ‘Interaction modelling’ and
‘Collaboration analysis’. However, these need extension. The Agent OPEN [31]
Techniques of ‘Contract nets’” and ‘Market mechanisms’ may also be useful. Finally,
we need to propose a new Technique (Section 5.3) to support the Prometheus task of
‘Designing Agent Internal Structure’. This we name ‘Agent internal design’.

For work products, Prometheus uses a suite of diagrams that include both new
diagrams and extensions of existing (often UML) diagrams. We therefore propose the
addition of four new diagram types to the OPF process component tepository. Those
that can be classified as belonging to the suite of OPF Static Architecture Diagrams
are Agent Model; Agent Acquaintance Diagram; Agent Overview Diagram

The agent interaction model has two components: a standard Interaction Diagram
and a new Protocol Diagram. Other new diagrams are the Functionality Descriptor
and Capability Diagrams. The Capability Diagram is essentially the same as that
proposed in Tropos — a diagram already been incorporated into the OPF repository
[3]. The Agent Overview Diagram is essentially a Context Diagram so no new work
product is proposed here for the OPF repository. Finally, there is a close mapping
from the Prometheus Use Case Descriptor to the OPF Use Case Specification.

5.2 New Tasks

Although these tasks are a contribution to the OPF, commonly found in several AO
methods, we itemize them here since they are currently missing from the repository.

TASK NAME: Construct the agent model
Focus: Static architecture

380

Typical supportive techniques: Intelligent agent identification, Control architecture

Explanation: An analogue of the “object model” as the main description of the
static architecture needs to be constructed. This model shows the agents, their
interfaces and how they are connected both with other agents and other objects.

TASK NAME: Design agent internal structure

Focus: Internal structure of agents

Typical supportive techniques: Agent internal design, 3-layer BDI model, Reactive
reasoning

Explanation: Using an appropriate model for the internal agent architecture, such
as the BDI model, the internal structure of each agent needs to be determined. If a
hybrid architecture is used, then both ECA rules (event-condition-action rules) and I-
rules (inference rules) may be needed. If using a BDI architecture, then goals and
plans will be needed (see Agent OPEN Tasks: ‘Model goals' and ‘Model plans’: [3].
When using Prometheus, high level capabilities are identified and iteratively
decomposed, finally resulting in plans, internal events and data,

TASK NAME: Specify shared data objects

Focus: Data storage

Typical supportive techniques: appropriate database-focussed techniques

Explanation: Synchronization is required if several agents write to the same data
storage object. Appropriate data-sharing mechanisms are needed.

Finally, two subtasks are recommended for addition to the existing Task: Model the
Agent’s Environment

Subtask: Model Percepts. This task focuses on modelling the percept component of
the agent’s environment.

Subtask: Model Events. This task focuses on modelling the events that result from
changes in the environment which are then recognized by the agent itself as an input
1o its own internal reasoning.

5.3 New Technique

Although this is a contribution common to many AO methods, we itemize it here in
the context of it being currently missing from the OPF repository.

TECHNIQUE NAME: Agent internal design

Focus: Internal features of an agent

Typical tasks for which this is needed: Design agent internal structure

Technique description: The fine detail of an individual agent must be described in
terms of its attributes and operations (as for objects) but more importantly in terms of
its goals, plans, capabilities, responsibilities, events responded to and pre- and post-
conditions.

Technique usage: Document each of these internal characteristics (or features) of
every agent in the system. The detail should be sufficient for coding to take place
easily from these design specifications.

Deliverables: Capability diagram

381

5.4 New Work Products

Although these Work Products are not unique to Prometheus, they are currently
missing from the OPF repository and are therefore documented here.

NAME: Functionality Descriptor

OPF CLASSIFICATION: Requirements set of work products

RELATIONSHIP TO EXISTING WORK PRODUCT: None

BRIEF DESCRIPTION: This is a textual template describing the functionality in
terms of name, description, percepts, actions, data used/produced and a brief
discussion of interactions with other functionality.

NAME: Agent structure diagram

OPF CLASSIFICATION: Static Architecture diagrams

RELATIONSHIP TO EXISTING WORK PRODUCT: extension of static structure
diagram

BRIEF DESCRIPTION: This diagram describes the internal structure of an
individual agent. It needs to explain how inputs are received (events), thus linking to
the Functionality Descriptor, what goals and plans are possessed and how reasoning is
accomplished. If using a BDI model for the agent architecture, then.an extension to
the UML class notation might look like the proposal in Figure 6 in which the
additional boxes already supported in the UML are utilized here for agent, rather than
object, concepts.

with metamodel

Agent Neme
attributes
operations

responsibilitics Classifier

goals
beliefs
plans

Fig. 6. Proposal for extended UML notation for an individual agent plus the
underpinning metamodel fragment

NAME: Agent acquaintance diagram

OPF CLASSIFICATION: Static Architecture diagrams

RELATIONSHIP TO EXISTING WORK PRODUCT: modification of a
collaboration diagram

BRIEF DESCRIPTION: The agent acquaintance diagram is a simplified version of
a UML V1.4 collaboration diagram. It shows the agents and connectivity without
necessarily specifying directionality of connections.

NAME: Agent protocol diagram
OPF CLASSIFICATION: Dynamic Behaviour diagrams
RELATIONSHIP TO EXISTING WORK PRODUCT: None

382

BRIEF DESCRIPTION: Agent protocols are shown using a UML Sequence
Diagram. This diagram complements a standard sequence diagram to show agent
interactions. Together, these two diagrams constitute the Agent Interaction Model.

NAME: Agent overview diagram

OPF CLASSIFICATION: Static Architecture diagrams

RELATIONSHIP TO EXISTING WORK PRODUCT: extension of UML object
model

BRIEF DESCRIPTION: A high level diagram showing capabilities of the agents,
events between these capabilities and any internal data. This top level diagram forms
the basis for further expansion (addition of detail) into a number of Capability
Diagrams [1,3].

6 Summary and conclusions

As part of an extensive h prog to bine the benefits of method
engineering and existing object-oriented frameworks (notably the OPF) to create a
highly supportive methodological environment for the construction of agent-oriented
information systems, we have analysed here contributions from the Prometheus AO
methodology. We have identified three new Tasks, together with two new subtasks
for a pre-existing Task. One additional Technique has also been identified for
inclusion in the OPF repository plus one additional Technique that will need further
extension — not discussed in detail here. Prometheus has also supplied the OPF with
four new Work Products but no additional Roles or Stages.

As part of an ongoing projects, we are analysing individual AO methodologies to
identify missing fragments prior to undertaking a full integration across all AO
methodologies where we will identify any overlaps and omissions.

Acknowledgements

We wish to acknowledge financial support from the University of Technology,
Sydney under their Research Excellence Grants Scheme. This is Contribution
number 04/03 of the Centre for Object Technology Applications and Research.

References

1. Bresciani, P., Giorgini, P., Glunchlglla, F., Mylopolous, 1. and Perini, A., 2003, Tropos: an
agent-oriented software devel Agents and Multi-Agent
Systems, 8(3), 203-236

2. Henderson-Sellers, B., Giorgini, P. and Bresciani, P., 2003, i ial for
integrating the OPEN and Tropos metamodels, Procs. SERP 03 (eds B Al Ani, HR.
Arabnia, and Y.Mun), CSREA Press, Las Vegas, 992-995

3. Henderson-Sellers, B., Giorgini, P. and Bresciani, P., 2004, Enhancing Agent OPEN with
concepts used in the Tropos methodology, Procs. ESAW'03 (Engineering Societies in the
Agents World), London, October 29-31 (in press)

383

4. Wooldridge, M., Jennings, N.R. and Kinny, D., 2000, The Gaia methodology for agent-
oriented analysis and design, J. Autonomous Agents and Multi-Agent Systems, 3, 285-312

5. Coleman, D., Amold, P., Bodoff, S., Dollin, C. and Gilchrist, H., 1994, Object-Oriented
Development. The Fusion Method, Prentice Hall, Englewood Cliffs, NJ, USA, 313pp

6. Bernon, C., Gleizes, M.-P., Picard, G. And Glize, P., 2002, The ADELFE methodology for
an intranet system design, presented at AOIS2002, Toronto, 27-28 May

7. Kruchten, Ph., 1999, The Rational Unified Process. An Introduction, Addison-Wesley,
Reading, MA, USA

8. Jacobson, 1., Booch, G. and Rumbaugh, J., 1999, The Unified Software Development
Process, Addison-Wesley, Reading, MA, USA

9. van Slooten, K., Hodes, B., 1996, Characterizing IS development projects, in Procs. IFIP
TC8 Working Conf. on Method Engineering: Principles of method construction and tool
support (eds. S. Brinkkemper, K. Lyytinen, R. Welke) Chapman&Hall, Great Britain, 29-
44

10. Juan, T., Sterling, L., Martellis, M. And M di, V., 2003, Ct AOSE
methodologies by reusing AOSE features, Procs. AAMAS '03, ACM Press, 113-120.

11. Brinkkemper, S., 1996, Method engineering: engineering of information systems
development methods and tools, Inf. Software Technol., 38(4), 275-280.

12. Ter Hofstede, A.H.M. and Verhoef, T.F., 1997, On the feasibility of situational method
engineering, Information Systems, 22, 401-422

13. Graham, I, Henderson-Sellers, B. and Younessi, H., 1997, The OPEN Process
Specification, Addison-Wesley, UK.

14. Firesmith, D.G. and Henderson-Sellers, B., 2002, The OPEN Process Framework. AN
Introduction, Addison-Wesley, Harlow, Herts, UK

15. Padgham, L. and Winikoff, M., 2002, Prometheus: A Methodology for Developing
Intelligent Agents, In Procs. Third International Workshop on Agent-Oriented Software
Engineering, at AAMAS'02.

16. Padgham, L. and Winikoff, M., 2002, P: i AP ic M y for
Engineering Intelligent Agents. In Procs.Workshop on Agent-oriented Merhodologze: at
OOPSLA 2002, November 4, 2002, Seattle.

17. Hends Sellers, B., Det J. and Tran, Q.-N.N., 2004, Adding agent-oriented
concepts derived from GAIA to Agent OPEN, Procs, CAiSE2004, Springer-Verlag, Betlin,
Germany

18. Tran, Q.-N.N., Henderson-Sellers, B. and Debenham, J. 2004a, Incorporating the elements
of the MASE methodology into Agent OPEN, Procs. ICEIS2004 (eds. L. Seruca, J. Cordeiro,
S. Hammoudi and J. Filipe), INSTICC Press

19. Rolland, C. and Prakash, N., 1996, A proposal for context-specific method engineering,
Procs. IFIP WG8.1 Conf. on Method Engineering, 191-208, Atlanta, GA, USA

20. Ralyté, J. and Rolland, C., 2001, An assembly process model for method engineering, in
K.R. Dittrich, A. Geppert and M.C. Norrie (Eds.) Advanced Information Systems
Engineering), LNCS2068, Springer, Berlin, 267-283.

21. Brinkkemper, S., Saeki, M. and Harmsen, F., 1998, Assembly techniques for method
engineering. Proceedings of CAISE 1998, Springer Verlag, 381-400.

22. Rolland, C., Prakash, N. and Benjamen, A., 1999, A multi-model view of process
modelling, Requirements Eng. 1., 4(4), 169-187

23. Nguyen, V.P. and Henderson-Sellers, B., 2003, Towards automated support for method
engineering with the OPEN approach, Procs. 7th IASTED SEA Conference, ACTA Press,
Anaheim, USA, 691-696

24. Saeki, M., 2003, CAME: the first step to automated software engineering, Procs. OOPSLA
2003 Workshop on Process Engineering for Object-Oriented and Component-Based
Development, Centre for Object T)! Applications and R h, Sydney, Australia,
7-18

384

29.

°

3

S

31

32.

. Henderson-Sellers, B. and Hutchison, J., 2003, Usage-Centered Design (UCD) and the

OPEN Process Framework (OPF), Performance by Design. Procs. forUSE2003 (ed. L.L.
Constantine), Ampersand Press, Rowley, MA, USA, 171-196

. Haire, B., Henderson-Sellers, B. and Lowe, D., 2001, Suppomng web development in the

OPEN process: additional tasks, Procs. 25th Annual I ! Computer S and
Applications Conference. COMPSAC 2001, IEEE Computer Society Press, Los Alamitos,
CA, USA, 383-389.

. Henderson-Sellers, B., Haire, B. and Lowe, D., 2002, Using OPEN's deontic matrices for e-

business, Engineering Information Systems in the Internet Context (eds. C. Rolland, S.
Brinkkemper and M. Saeki), Kluwer Academic Publishers, Boston, USA, 9-30.

. Henderson-Sellers, B., 2001, An OPEN process for component-based development,

Chapter 18 in G.T. Heineman and W. Councill (Eds.) Component-Based Software
Engineering: Putting the Pieces Together, Addison-Wesley, Reading, MA, USA, 321-340
Henderson-Sellers, B. and Serour, M., 2000, Creating a process for transitioning to object
technology, Procs. Seventh Asia-Pacific Software Engineering Conference. APSEC 2000,
IEEE Computer Society Press, Los Alamitos, CA, USA, 436-440.

Serour, M., Henderson-Sellers, B., Hughes, J., Winder, D. and Chow, L., 2002,
Organizational transition to object technology: theory and practice, Object-Oriented
Information Systems (eds. Z. Bellahsne, D. Patel and C. Rolland), LNCS 2425, Springer-
Verlag, Berlin, 229-241.

Debent J. and F Sellers, B., 2003, Designing agent-based process systems -
extending the OPEN Process Framework, Chapter VIII in Intelligent Agent Software
Engineering (ed. V. Plekhanova), Idea Group Publishing, 160-190.

Odell, J., Van Dyke Parunak, H. and Bauer, B., 2000, Extending UML for agents. In G.
Wagner, Y. Lesperance and E. Yu (eds.), Procs. Agent-Oriented Information Systems
Workshop, 17th National Conference on Artificial Intelligence (pp. 3-17). Austin, TX,
USA.

385

