
From Static Code Distribution to More
Shrinkage for the Multiterminal Cut

Bram De Wachter!, Alexandre Genon!, and Thierry Massart

Université Libre de Bruxelles
Département d’Informatique, Bld du Triomphe, B-1050 Bruxelles

{bdewacht,agenon,tmassart}@ulb.ac.be

Abstract. We present the problem of statically distributing instructions
of a common programming language, a problem which we prove equiv-
alent to the multiterminal cut problem. We design efficient shrinkage
techniques which allow to reduce the size of an instance in such a way
that optimal solutions are preserved. We design and evaluate a fast local
heuristics that yields remarkably good results compared to a well known
2− 2

k
approximation algorithm. The use of the shrinkage criterion allows

us to increase the size of the instances solved exactly, or to augments the
precision of any particular heuristics.

1 Introduction

We present the problem of automatic distribution of a programming language,
motivated by our research in automatic distributed industrial control systems
[16]. This problem consists in distributing a program code among different sites,
minimizing the total communications between these sites during its execution.
We show that this problem is NP-hard. Furthermore, we show that it is equiv-
alent to the multiterminal cut presented in [6], and therefore concentrate on
finding new ways to attack the problem described in terms of multiterminal cut.

The key concept used in this paper is based on shrinkage, a notion presented
by Dahlhaus et al. in [6] where an instance I is transformed into a smaller
instance I ′ in such a way that all optimal solutions in I ′ can be easily transformed
into optimal solutions for I.

In this paper, we generalize the shrinkage criterion of Dahlhaus et al. which
is based on st cuts, to all nodes in the instance graph and prove its correctness.
Then, we present an implementation of a fast local heuristics taking advantage
of this new shrinkage operation. The heuristics combines both the new shrinkage
based reduction and an unshackle operation which operates on graphs where no
more shrinkage is possible.

We also introduce maximum size minimum st cuts, and prove (theorems 5,
6 and 7) some unexpected properties on the structure of these cuts. We ex-
ploit these results to obtain a more efficient implementation for our shrinkage
algorithm, and prove (theorem 8) that the procedure of Goldberg and Tarjan,
presented in [9] for max-flow/min-cut actually computes these cuts. A practical
evaluation is presented showing that our heuristics yields generally better results

! Work supported by the Region de Bruxelles Capitale, grant no. RBC-BR 227/3298.



than the approximation algorithm designed by Dahlhaus et al. To the best of
our knowledge, we perform the first experimental study of the approximation
algorithm of [6].

2 Optimal static code distribution is hard

Our problem consists in finding, at compile time, an optimal distribution of an
imperative regular program. Such a program contains instructions (assignments,
loops and tests), a set of static global internal variables and a set of static
global I/O variables. The distributed environment in which the program runs is
composed of several sites, each of which contains some of the global I/O variables.
A correct distribution is an assignment of all variables and all instructions to the
set of sites such that the following distribution constraints are satisfied : (1) the
I/O variables are on the predefined sites, (2) each variable and instruction is
on exactly one site, (3) each instruction using a variable is on the site of that
variable.

The assignment of instructions to sites influences the performance of the pro-
gram during execution: each time control flows from an instruction assigned to
one site to an instruction assigned to another site, the executed distribution en-
vironment must synchronize (e.g. by sending a message over a network) in order
to continue the execution on the other site. The optimal distribution is such that
the expected number of (synchronization) messages exchanged during execution
is minimum. In order to evaluate this performance criterion, we suppose that
a realistic control flow frequency function W is given, expressing the expected
number of times control flows from one instruction to another.

x=1;
while (y<k) { // k times

if (z>2) w=1; // 1/2
else x=3; // 1/2
s=0;
y++;

}
q=2;

I/O q : site1;
I/O s : site2;

(a) (b) (c)

Fig. 1. The distribution problem

A graphical presentation of the optimal distribution problem can be found
in figure 1. The program of figure 1(a) can be graphically modeled by its control



flow graph (figure 1(b)) where the nodes are its instructions and edges model
the control flow between instructions with weights defined by W . The graph of
figure 1(c) is the undirected graph where all nodes using the same variables are
merged. We say that this graph is the result of the merging of x=1 and x=3 and
of the merging of y>k and y++ in the first graph. More formally, when two nodes
n and n′ are merged, n and n′ are replaced by one new node n′′, and all edges
{v, n} and {u, n′} are changed to {v, n′′} and {u, n′′}. Note that when more
than one edge exists between two nodes, all of the edges between those nodes
can be replaced by a single edge weighted by the sum of the weights of these
edges. Remark that both representations of figure 1 are equivalent with respect
to the optimal distribution problem. The merging operation is sometimes called
contraction if an edge exists between two merged nodes, since that edge would
disappear from the graph. We now give a formal definition of the multiterminal
cut problem on weighted undirected graphs.

Definition 1 (Multiterminal cut problem). Given a weighted undirected
graph G(V, E, w) : E ⊆ {{u, v}|u, v ∈ V ∧ u $= v} 1, w : E %→ N and a set of
terminals T = {s1, ..., sk} ⊆ V , find a partition of V into V1, ..., Vk such that
si ∈ Vi ∀i ∈ [1, k] and

∑

v∈Vi,v′∈Vj ,i#=j w(v, v′) is minimized.

We know that the multiterminal cut problem is NP-Hard [6] for fixed k > 2,
even when all weights are equal to 1. As shown in appendix A, optimal distribu-
tion is an np-hard problem. The following theorems, proved in appendix A, state
that the optimal distribution problem and the multiterminal cut are equivalent.

Theorem 1. There exists a polynomial time reduction from the optimal distri-
bution problem to the multiterminal cut.

Theorem 2. There exists a polynomial time reduction from multiterminal cut
on unweighted graphs to the optimal distribution problem.

With these two theorems, we can conclude that the optimal distribution
problem is polynomially equivalent to the multiterminal cut. Thus, to solve the
optimal distribution problem, we can concentrate on the multiterminal cut in
the program’s control flow graph.

3 Related Works

The multiterminal cut problem has first been studied by Dahlhaus et al. in [6]. In
this paper, the authors prove that this problem is NP-hard for k > 2 even when k
is fixed where k is the number of terminals. The problem is polynomially solvable
when k = 2, a well known result proved by Ford and Fulkerson [7], and in the case
of planar graphs. The authors also present a 2− 2

k polynomial time approximation
algorithm that relies on isolating cuts, a technique that is detailed further on.
Moreover, they proved that this problem is MAX SNP-hard, i.e. there is no
polynomial time approximation scheme unless P=NP. In [1], Calinescu, Karloff,

1 For technical reasons looping edges (v, v) will be omitted in all graphs considered
here. Note that their presence does not change the problem.



and Rabani, presented a linear programming relaxation. Using this technique
and a well chosen rounding procedure, they obtain an approximation factor
of 1.5 − 1

k . This factor was lowered to 1.3438 by Karger et al. in [12] who give
better approximations when k ≥ 14. These improvements were found by studying
carefully the integrality gap and giving a more precise rounding procedure. A
polyhedral approach [2, 14, 4] and a non-linear formulation [5] have also been
studied for the multiterminal cut problem.

Shrinkage has also been studied by Högstedt and Kimelman in [10]. In this pa-
per, the authors give some optimality-preserving heuristics that allow to reduce
the size of the input graph by contracting some edges. The shrinkage technique
presented here generalizes some of their criteria (such as independent nets and
articulation points).

In this paper, we consider the multiterminal cut problem on undirected
graphs, but work has also been done on directed graphs. Naor and Zosin pre-
sented a 2-approximation algorithm for this problem in [13]. On the other hand,
Costa, Letocart and Roupin proved in [3] that multiterminal cuts on acyclic
graphs could be computed in polynomial time using a simple flow algorithm. A
generalization of multiterminal cut is minimum multicut where a list of pairs of
terminals is given and we must find a set of edges such that these pairs of ter-
minals are disconnected. Garg et al. [8] give a O(log k)-approximation algorithm
for this minimum multicut. A survey on multiterminal cuts and its variations
can be found in [3].

The applications that rely on the multiterminal cut fall mainly into two do-
mains : the domain of parallel computation and the partitioning of distributed
applications. The problems encountered in parallel computation are concerned
with the allocation of tasks on different processors. The total load must be
partitioned in roughly equal sized pieces, characterized by some load balanc-
ing criterion, and this subject to some interconnection criterion that must be
minimized ([11] and [15]). These problems can be formulated using the strongly
related k-cut problem, which asks to partition the graph in k subsets such that
crossing edges are minimized. Since this problem has no fixed terminals, it is
polynomially solvable, for any fixed k ≥ 3 [6] and is thus considerably easier
than the problem addressed here.

For the distributed applications, the problem is similar, only that it is the
several application’s components that must be distributed among different pro-
cessors. Several criteria are studied, such as the inter object communication load
of [10]. However, we are not aware of other works that are based on the static
distribution of the instructions where the control flow is used to minimize the
expected communications load. Because of this fine grain distribution, the scale
of our problem is considerably larger than the studies on the partitioning of
objects or functions as is the case in classical distributed systems. Therefore, we
believe that the results of the heuristics presented here are applicable on these
smaller instances as well.

4 A generalized global criterion

In [6] the authors design a 2− 2
k approximation algorithm based on the isolation

heuristics which uses st cuts. An st cut (multiterminal cut with k = 2) divides



the graph into two sets (C, C) where s ∈ C and t ∈ C. The heuristics consists
in finding an optimal isolating cut for each of the k terminals {s1, ..., sk} and
taking the union of the k−1 smallest of these cuts. An optimal isolating cut is a
minimum st cut where s=si and t is the node resulting of the merging of sj #=i.
We now introduce the original shrinkage theorem proved by Dahlhaus et al :

Theorem 3 (Shrinkage). Given graph G(V, E, w) with terminals T = {s1,
..., sk} ⊆ V . Let G′

i be the graph where all terminals in T \ {si} are merged
into t, and (C, C) the st cut between si and t, then there exists an optimal
multiterminal cut (V1, ..., Vk) of G such that ∃! : C ⊆ V".

Theorem 3 allows us to shrink (i.e. to merge) all nodes in C into one node.
Shrinkage is clearly an interesting way to attack the multiterminal cut problem.
Indeed, we can apply theorem 3 to all terminal nodes in order to shrink the graph.
And if one can obtain a relatively small instance, then there may be hope to
find the optimal solution by exhaustive search. It can also be used independently
of any other algorithm designed to approximate the multiterminal cut problem.
We extend theorem 3 to handle more shrinkage as follows :

Fig. 2. Theorem 4

Theorem 4 (More shrinkage). Given graph G(V, E, w) with terminals T =
{s1, ..., sk} ⊆ V . Let v ∈ V , and G′

v be the graph where all terminals in T \ {v}
are merged into t, and (C, C) the minimum st cut between v and t in G′

v then
there exists an optimal multiterminal cut of G (V1, ..., Vk) such that ∃! : C ⊆ V".

Proof. Outline (a detailed proof can be found in appendix B). Figure 2 illustrates
the proof for l = 1. Proof by contradiction. Take any minimum multiterminal
cut C∗ = (V1, V2, ..., Vk) and suppose that v ∈ V1 but C $⊆ V1. Take C∗′

=
(V1∪C, V2 \C, ..., Vk \C). Then we can show that the weight of C∗′

≤ the weight
of C∗ by using the weights of the edges between C and C and between C ∩ V1

and C ∩ V1 : since (C, C) is a minimum st cut, the border of V1 can be extended
to V1 ∪ C without increasing the multiterminal cut’s weight. !

Theorem 3 differs from this theorem because we can apply the former only
on terminal nodes, while the latter can be applied to all nodes in the graph,
resulting in more shrinkage and therefore smaller graphs.

We now explain how to use theorem 4 to shrink an instance of the multi-
terminal cut problem. Let s ∈ V , we compute the st cut were t is the result



of the merging of all terminals in T \ s. The nodes that are in the same par-
tition as s are merged together, with theorem 4 assuring that this preserves
opimality. A chain of graphs G1, ..., Gl can therefore be calculated where each
graph is the result of the optimal merging with respect to its predecessor, and
where Gl can not be reduced any further. To compute these st cuts, one can use
the algorithm of Goldberg and Tarjan [9], with complexity O(nm log n2

m ) (where
n = |V |, m = |E|). With the results contained in the next section, we can show
that when this well known algorithm is used, then l ≤ n, resulting in a total
complexity in O(n2m log n2

m
).

Once a graph cannot be reduced any further, two options remain, either
search exhaustively and find an optimal solution, or unshackle the graph. Un-
shackling means contracting one or more edges that likely connect nodes from
the same partition in the optimal cut. Note that if an edge is picked that is
in every optimal multiterminal cut, this operation will not preserve optimality.
Once the graph is unshackled, the resulting graph may be ready for further opti-
mal reductions. In the following section, we study an implementation using the
shrinkage technique combined with a fast local unshackling heuristics.

5 A fast local heuristics

Fig. 3. Optimal and non optimal reductions

As said in previous section, we can use the shrinkage technique in combina-
tion with an unshackling heuristics. Figure 3 gives a graphical overview of this
technique and figure 4 presents an implementation. We first perform shrinkage
until the graph cannot be reduced any further. Then, we use an unshackling
heuristics to contract one edge from this graph. The shrinkage technique may
thereupon be reused on this unshackled graph. This process is repeated until the
graph contains only terminal nodes. While the resulting multiterminal cut may
not be optimal, due to the unshackling heuristics, we will see that this tech-
nique generally computes a fairly good multiterminal cut and is quite efficient,
provided that the unshackling is easy to compute.

5.1 Definition and complexity

Definition 2 (max-min-st cut). Given graph G(V, E, w) and two different
nodes s, t ∈ V . Define min-ST(s, t) as the set of cuts separating s and t with



reduce();
while(non-terminals exist) {

unshackle(); // Contract 1 edge
reduce();

}

Fig. 4. Unshackling heuristics

minimum weight. We define the set max-min-st (s, t) as the set of nodes left
connected to s by the cut (C, C) ∈ min-ST(s, t) such that |C| is maximal. We
can easily extend these definitions for sets of nodes. For a set T , max-min-st
(s, T ) is equivalent to max-min-st (s, t) in the graph G where all nodes in T
have been merged into the new node t.

We now prove some interesting properties related to maximum size minimum
cuts. Theorems 5, 6 and 7 give some remarkable insights on the structure of these
cuts, which leads to a more efficient implementation of our heuristics. We use
the following notation :
w(A, B) =

∑

{(x,y)|x∈A,y∈B} w(x, y), and let w(X) = w(X, X), where X = V \X .

Theorem 5. Given graph G(V, E, w) and two nodes s, t ∈ V ,
max-min-st(s, t) is uniquely defined, i.e. there is only one maximal size mini-
mum st cut for any couple (s, t).

Proof. Outline (a full proof can be found in appendix B). By contradiction :
suppose S and S′(S $= S′) both satisfy the definition of max-min-st(s, t). Let
I = S ∩ S′ and T = V \ (S ∪ S′), it is easy to see that S (resp. S′) $= I, else S
(resp. S′) would not be a maximal size minimum st cut. First, since S is a min
st cut we start from w(I) ≥ w(S) to prove that w(S \ I, I) ≥ w(S \ I, T ). Next,
we compute w(S ∪ S′), note that S ∪ S′ is also an st cut for (s, t). We show
that w(S ∪ S′) = w(S \ I, T ) + w(S′, T ) ≤ w(S′). Finally, observe that S ∪ S′ is
therefore a minimum st cut for (s, t) with larger cardinality than S or S′. !

Theorem 6. For any three nodes s, s′, t of V , if s′ ∈ max-min-st(s, t), then
max-min-st (s′, t) ⊆ max-min-st (s, t).

Proof. By contradiction : let S = max-min-st(s, t), S′ = max-min-st(s′, t) and
suppose that S′ $⊆ S. We have that |S ∪ S′| > |S|. Let I = S ∩ S′ and T =
V \ (S ∪ S′), we define the following :

A ≡ w(S \ I, T ) B ≡ w(I, T ) C ≡ w(S′ \ I, T )
D ≡ w(I, S \ I) E ≡ w(I, S′ \ I) F ≡ w(S \ I, S′ \ I)

=⇒
w(S ∪ S′) = A + B + C w(S) = A + B + E + F
w(S′) = B + C + D + F w(I) = B + D + E

From the definition of S and S′ we have w(S ∪ S′) > w(S) (as S ! S ∪ S′) and
w(I) ≥ w(S′), which implies that C > E + F and E ≥ C + F . This leads to a
contradiction. !

Theorem 7. Given graph G(V, E, w) and three distinct nodes s, s′, t ∈ V . Let
S = max-min-st(s, t), S′ = max-min-st(s′, t), I = S ∩ S′, and T = V \



(S ∪ S′). If I $= ∅ and S $= I and S′ $= I, then w(I, S \ I) = w(I, S′ \ I).
Moreover, we have that w(I, V \ (S ∪ S′)) = 0. The same results hold when S =
max-min-st(s, {t∪s′}), S′ = max-min-st(s′, t) or S = max-min-st(s, {t∪s′}),
S′ = max-min-st(s′, {s ∪ t}).

Proof. By contradiction : let’s reuse the equations from proof of theorem 6, to
compute w(S \ I) and w(S) :

w(S \ I) = A + D + F w(S) = A + B + E + F

As S is the max-min-st cut(s, t), we have A + B + E + F ≤ A + D + F and
B + E ≤ D. By applying a similar reasoning with S′ and S′ \ I, we can prove
that B + D ≤ E. In conclusion, we have E = D(⇒ w(I, S \ I) = w(I, S′ \ I))
and B(≡ w(I, T )) = 0. The two other propositions are proved likewise. !

Theorems 5, 6 and 7 allow us to efficiently calculate the reduction phases of
our unshackling heuristics. We know that the order in which we calculate the cuts
has no effect on the outcome of the algorithm. Moreover, we can calculate the
max-min-st cut for a given node n and immediately merge all nodes on the same
side of n in the cut, thus reducing the number of nodes before calculating the
next max-min-st cut for the remaining unmodified nodes. After the calculation
and merging of all max-min-st cuts, we have for all nodes in the reduced graph
and terminals s1, . . . , sk, max-min-st cut (s,∪isi \{s}) = {s}. The only missing
link is how to calculate max-min-st:

Theorem 8. The algorithm of Goldberg and Tarjan [9] calculating the maxi-

mum flow in O(nm log(n2

m
))-time also calculates max-min-st

Proof. By contradiction. As for prerequisites, the reader is expected to be famil-
iar with [9], where the authors prove that it is possible to calculate a minimum

st cut (Sg, Sg) with s ∈ Sg ∧ t ∈ Sg in O(nm log(n2

m ))-time. We will use their
notations to prove that the min st cut calculated by their algorithm is in fact
the unique minimum st cut of maximal size.
Let g(v, w) : E %→ R+ be the preflow function (here we may suppose that the
algorithm terminated and that the preflow is a legal flow). Gg is used to indicate
the residual graph and c(v, w) : E %→ R+ indicates the capacities of the edges in
E. In addition, (Sg, Sg) is defined as the partition of V such that Sg contains
all nodes from which t is reachable in Gg and Sg = V \ Sg.
We use the following lemma by Golberg and Tarjan from [9]:

When the first stage terminates, (Sg, Sg) is a cut such that every pair
v, w with v ∈ Sg and w ∈ Sg satisfies g(v, w) = c(v, w).

Suppose that there exists another minimum cut (C′, C′) such that |C′| > |Sg|
which is maximal in size.
Remark that Sg ⊆ C′ because of theorem 6 and s ∈ C′ ∩ Sg.
Let I = C′ ∩ Sg. Note that I $= ∅ since |C′| > |Sg|. We split the boundaries
between Sg, I and Sg in three sets :

– Old Boundary: O ⊆ E = (v, w) : v ∈ Sg \ I ∧ w ∈ I



– New Boundary: N ⊆ E = (v, w) : v ∈ I ∧ w ∈ Sg \ I

– Common Boundary: C ⊆ E = (v, w) : v ∈ Sg \ I ∧ w ∈ Sg \ I

By definition of (Sg, Sg), we know that g(O) = c(O). We also know that since
(C′, C′) and (Sg, Sg) are both minimum cuts : w(O) + w(C) = w(N) + w(C) ⇒
w(O) = w(N). Remark that since g is a legal flow, the flow entering I must be
equal to the flow getting out of I, which means that g(O) = g(N).

The combination of these tree equations leads to a contradiction: since the
edges in N are saturated, t is not reachable from any n ∈ I in Gg which means
that I = ∅. !

Finally, we can prove that the worst execution time for the unshackling
heuristics stays within the complexity of the reduction algorithm :

Theorem 9. The unshackling algorithm from figure 4 can be implemented with
worst case complexity O(n2m log(n2

m )) if the complexity of unshackle() is in

O(nm log(n2

m
)).

Proof. Consider an irreducible graph in which one and only one edge {v1, v2} is
contracted. Before contraction, ∀v ∈ V : max-min-st (v, T ) = {v}. It is easy to
see (proof by contradiction) that after contraction ∀v ∈ V \{v1, v2} : max-min-st
(v, T ) = {v}, i.e. the contraction only affects the resulting node from the contrac-
tion, which means that after each contraction only one max-min-st cut has to be
calculated. Since at most n contractions are possible, the number of max-min-st
calculations needed can be bounded by 2n (n for the initial reduction and n for
all subsequent reductions). The worst case complexity is therefore as stated, if

the complexity of unshackle() is O(nm log(n2

m
)). !

5.2 Results

It remains to define the way we will unshackle the graph. We tried several local
procedures, among which :

– Greedy : take an edge with maximal weight.
– Error-reduction : take an edge where the expected error is small
– Balanced weight : take an edge {n1, n2} such that

∑

{{n1,n′}∈E} w(n1, n
′) +

∑

{{n2,n′}∈E} w(n2, n
′) is maximal

– Max-unshackle : take an edge that has high reduction rate

Surprisingly, we found that balanced weight works much better than the others.
Unfortunately, we discovered that none of these heuristics have a fixed approxi-
mation bound, however, since our calculations include the ones from the k − 2

k
approximation algorithm, we can compare the results and take the better of
both, resulting in the same bound without any extra cost. In order to compare
both heuristics, this has not been done in the following experiments.

Two sets of experiments were conducted : figures 5(a), 5(b) show the results
on random graphs, while 5(c) shows the results on graphs obtained from auto
generated programs.



 0

 5

 10

 15

 20

 25

 30

 35

Error %

 1  1.5  2  2.5  3  3.5 Degree

414/1111 Instances (37.26% where H94 or H04 != OPT)
H94/OPT (100% non opt)

H04/OPT (64.73% non opt)
Mean H94 (6.83%)
Mean H04 (3.59%)

(a) Unshackling heuristics on random graphs

 0

 0.5

 1

 1.5

 2

Error %

 2  3  4  5  6  7  8  9  10 Terminals

414/1111 Instances (37.26% where H94 or H04 != OPT)
H94/OPT
H04/OPT

(b) Unshackling heuristics on random graphs

-20

-15

-10

-5

 0

 5

 10

 15

 20

 25

 30

Gain %

 0.5  1  1.5  2  2.5  3 Degree

Grammar Graphs
H94/H04

(c) Unshackling heuristics on grammar graphs

Fig. 5. Results for the unshackling heuristics



In figure 5(a) we compare the results of our heuristics (indicated by H04)
with the approximation algorithm (called H94) from Dahlhaus et al. 1111 exper-
iments where conducted on sufficiently small graphs (ranging from 20-40 nodes),
allowing us to compare with the optimal solution. For 411 hard cases (37%), one
of the heuristics failed to find the optimal. We can see that for increasing mean
degree (X-axis), the error rate (Y-axis, in percent w.r.t. the optimal) for both
algorithms drops rapidly, caused by the randomness in the graph. For sparse
graphs however, error rates can be as high as 35%. The mean error rate for
H04, for these hard cases, is 3.6% while it raises to 6.8% for H94. Remark that
the failure rate for H94 is 100% of the hard cases, while our algorithm failed
in 65% of these cases. In these experiments, there was no instance where H04
performed worse compared to H94.

Figure 5(b) shows the mean error rate (Y-axis, in % w.r.t. the optimal so-
lution) for the experiments of figure 5(a), with increasing number of terminals
(X-axis). We can clearly see the gain of our algorithm.

Figure 5(c) shows results for 25.000 grammar graphs of moderate size (600
nodes, 3 to 10 terminals), where the two algorithms are compared to each other.
X-axis gives the mean degree. We can observe a difference of as high as +35%
(Y-axis) for some cases, meaning that our algorithm improves the other by the
same amount. For only 2 instances, our algorithm performed worse (1.3% worse
and 14% worse).

6 Conclusions

In this paper, we studied the problem of optimal code distribution of an imper-
ative regular program, a problem equivalent to the multiterminal cut problem.

We presented a criterion that allows to perform shrinkage on a given graph
such that optimal solutions for the multiterminal cut problem on the resulting
graph are optimal solutions for the original graph. This criterion is a general-
ization of the criterion of Dahlhaus et al. presented in [6]. Using this shrinkage
criterion, we designed a heuristics that, in practice, finds near optimal solutions
for the multiterminal cut problem. In our search for an efficient implementation
for our shrinkage algorithm, we defined maximum size minimum cuts for wich
we prove some interesting structural properties.

Future works We hope that structural properties can lead to a more thorough
understanding of the combinatorial structure of optimal solutions for the mul-
titerminal cut. Furthermore, we are currently searching other unshackling pro-
cedures that could be combined with our shrinkage technique. Moreover, we
are trying to determine why the balanced weight unshackling performs well in
practice.

We are also considering the use of our shrinkage technique in the branch and
bound context. We are currently integrating our shrinkage technique into the
CPLEX solver in order to speed up the general branch and bound phase of the
mixed integer optimizer.



References

1. Gruia Calinescu, Howard Karloff, and Yuval Rabani. An improved approx-
imation algorithm for multiway cut. J. Comput. Syst. Sci., 60(3):564–574,
2000.

2. Sunil Chopra and Jonathan H. Owen. Extended formulations for the a-cut
problem. Math. Program., 73:7–30, 1996.

3. M. Costa, L. Letocart, and F. Roupin. Minimal multicut and maximal
integer multiflow: a survey. European Journal of Operational Research,
162(1):55–69, 2005.

4. W.H. Cunningham. The optimal multiterminal cut problem. DIMACS series
in discrete mathematics and theoretical computer science, 5:105–120, 1991.

5. R. Vohra D. Bertsimas, C. Teo. Nonlinear formulations and improved ran-
domized approximation algorithms for multicut problems. In Proc. 4th con-
ference on integer programming and combinatorial optimization, volume 920
of LNCS, pages 29–39, 1995.

6. Elias Dahlhaus, David S. Johnson, Christos H. Papadimitriou, P. D. Sey-
mour, and Mihalis Yannakakis. The complexity of multiterminal cuts. SIAM
J. Comput., 23(4):864–894, 1994.

7. L.R. Ford and D.R. Fulkerson. Flows in Networks. Princeton University
Press, Princeton, NJ, 1962.

8. Naveen Garg, Vijay V. Vazirani, and Mihalis Yannakakis. Multiway cuts
in directed and node weighted graphs. In Proceedings of the 21st Interna-
tional Colloquium on Automata, Languages and Programming, pages 487–
498. Springer-Verlag, 1994.

9. Andrew V. Goldberg and Robert E. Tarjan. A new approach to the
maximum-flow problem. Journal of the ACM (JACM), 35(4):921–940, Oc-
tober 1988. ISSN:0004-5411.

10. K. Hogstedt and D. Kimelman. Graph cutting algorithms for distributed
applications partitioning. SIGMETRICS Performance Evaluation Review,
28(4):27–29, 2001.

11. Lisa Hollermann, Tsan sheng Hsu, Dian Rae Lopez, and Keith Vertanen.
Scheduling problems in a practical allocation model. J. Comb. Optim.,
1(2):129–149, 1997.

12. David R. Karger, Philip Klein, Cliff Stein, Mikkel Thorup, and Neal E.
Young. Rounding algorithms for a geometric embedding of minimum mul-
tiway cut. In STOC ’99: Proceedings of the thirty-first annual ACM sympo-
sium on Theory of computing, pages 668–678, 1999.

13. J. Naor and L. Zosin. A 2-approximation algorithm for the directed multiway
cut problem. SIAM J. Comput., 31(2):477–482, 2001.

14. M.R. Rao S. Chopra. On the multiway cut polyhedron. Networks, 21:51–89,
1991.

15. Tsan sheng Hsu, Joseph C. Lee, Dian Rae Lopez, and William A. Royce.
Task allocation on a network of processors. IEEE Trans. Computers,
49(12):1339–1353, 2000.

16. Bram De Wachter, Thierry Massart, and Cédric Meuter. dsl : An environ-
ment with automatic code distribution for industrial control systems. In
Principles of Distributed Systems, 7th International Conference, OPODIS
2003, volume 3144 of LNCS, pages 132–145. Springer, 2004.



A From optimal distribution to multiterminal cut

In order to show that both problems are equivalent, we need to formally de-
fine the optimal distribution problem. Let W be a realistic control flow fre-
quency function. Although calculating such a function is undecidable in gen-
eral, profiling tools and monitoring can result in good approximations. Note
that a realistic control flow frequency function W for common languages will
be such that W(i, i′) = W(i′, i′′) if i, i′ and i′′ are sequential instructions,
W(i, i′) = kW(i′′, i′′′) if i, i′ is in a loop that is executed k times relative to
the instructions i′′, i′′′ outside the loop, and W(i, i′) = 1

p
W(i′′, i′′′), p ∈ [0, 1] if

i, i′ is in a conditional IF branch with respect to instructions i′′, i′′′ outside the
IF. We suppose that p ∈ Q so that every weight can be multiplied by a common
factor to obtain an equivalent instance of the problem with natural weights.

Definition 3 (The optimal distribution problem). Given a certain pro-
gram P (variables V , instructions I, flow estimation W), a set of I/O variables
V ⊆ V , a set of sites S, and an assignment of the I/O variables to the sites
C : V %→ S, find a total assignment C : V %→ S, respecting the distribution
constraints, such that

∑

{i,j∈I|C(i) #=C(j)} W(i, j) is minimum.

We now recall the definition of multiterminal cut :

Definition 4 (Multiterminal cut problem). Given a weighted undirected
graph G(V, E, w) : E ⊆ {{u, v}|u, v ∈ V ∧ u $= v} 2, w : E %→ N and a set of
terminals T = {s1, ..., sk} ⊆ V , find a partition of V into V1, ..., Vk such that
si ∈ Vi ∀i ∈ [1, k] and

∑

v∈Vi,v′∈Vj ,i#=j w(v, v′) is minimized.

We know that the multiterminal cut problem is NP-Hard [6] for fixed k > 2,
even when all weights are equal to 1. We now show that both problems are
equivalent.

Theorem 10. There exists a polynomial-time reduction from the optimal
distribution problem to the multiterminal cut.

Proof. Take the control flow graph G of the optimal distribution problem weighted
by W , and merge all instructions using the same variables into one node. This
way, we only have at most one node using a given variable. Let G′ be this new
graph, and let T = {s1, s2, . . . , sk} be the set of nodes of G′ using a I/O vari-
able. It is easy to see that G′, T is an instance of the multiterminal cut and that
an optimal solution to this instance is an optimal distribution of the original
program. Indeed, starting from a multiterminal cut V1, . . . , Vk, we can build an
optimal partition P1, . . . , Pk such that Pi is the set of instructions such that their
nodes in the control flow graph is in Vi. Note that G′, T can be computed from
G in polynomial time. !

The first theorem states that we can easily solve the optimal distribution
problem using multiterminal cut. From this theorem, we can deduce the following
corollary :

2 For technical reasons looping edges (v, v) will be omitted in all graphs considered
here. Note that their presence does not change the problem.



Corollary 1. Let P be a program, and Gf its control flow graph after merging, it
is equivalent to solve the optimal distribution on P or to solve the multiterminal
cut on Gf .

Proof. If we have an optimal distribution P1, . . . , Pk of P , then we can easily
compute a multiterminal cut V1, . . . , Vk for Gf by taking the same partition. The
constraint that every node of Gf is in only one Si is respected because of the
constraints on correct distributions. Moreover, it is easy to see that V1, . . . , Vk

is optimal an multiterminal cut. The other direction is a direct consequence of
theorem 10. !

Next lemma states that, starting from an unweighted graph, we can build a
program such that the control flow graph, after merging, is equal to the original
graph (except for a constant factor 2 between the weights on the edges).

Lemma 1. Let G(V, E) be an unweighted graph, then there exists a program P
such that the control flow graph Gf = (Vf , Ef , wf ) of P , after merging, is such
that V = Vf , E = Ef , and ∀{v, v′} ∈ E, wf ({v, v′}) = 2.

Proof. Let G(V, E), we can build a program P such that, after having merged
nodes using the same variables in the control flow graph, the resulting graph Gf

is equal to G. Moreover, this program contains only a list of assignments. We
define the set of global variables as XV = {xv| v ∈ V }, i.e. there is a bijective
mapping between the set V and the set of global variables XV . We show the
construction of P by induction on the size of V . The case where V = {v} (i.e.
|V | = 1) is obvious, we only have one instruction i ≡ xv ← 1.
Suppose therefore that |V | = n, and let P be the corresponding program using
instructions {xu ← 1|u ∈ V }. We now build a program P ′ for the graph G′ =
(V ′ = V ∪ {v}, E′ = E ∪ {{v, v1}, . . . {v, v"}}. For this, we modify P as follows :
For all j ∈ [1, !] (i.e. for all new edges), let xvj

be the global variable correspond-
ing to vj , and let i ≡ xvj

← 1 be an instruction of P . In P ′, we replace i by :
i; xv ← 1; i. Note that P ′ is still a list of assignments. Let G′

f be the control flow
graph of P ′, after merging, we have that G′

f contains all edges of E′. And, if we
set W such that it assigns 1 between two consecutive instructions (which is the
case for common programming languages), then all edge weights in G′

f will be
equal to 2. !

Note that the number of assignments of P is polynomial in the size of G.
Since all edges in Gf have weights equal to 2, it is easy to see that G and Gf

have the same optimal solution for the multiterminal cut.

Theorem 11. There exists a polynomial time reduction from multiterminal cut
on unweighted graphs to the optimal distribution problem.

Proof. Let G(V, E), T be an unweighted instance of multiterminal cut, by lemma 1,
we can build a program P which has its control flow graph Gf after merging
equal to G (except for the constant factor of 2 on the weights). From corollary 1,
we know that it is equivalent to solve the multiterminal cut on Gf than to solve
the optimal distribution on P .



We know that multiterminal cut on unweighted graphs is NP-hard. Thus, we
can state the following corollary.

Corollary 2. The optimal distribution problem is NP-hard, even when the pro-
gram contains only a sequence of instructions.

Corollary 3. The optimal distribution problem is polynomially equivalent to the
multiterminal cut problem on arbitrary graphs.

This results from theorems 10 and 11. Arbitrary weights 2ω can be obtained in
the construction of theorem 11 using the while construct as follows : replace the
sequence i; xv ← 1; i with i; xv ← w; while( xv > 1 ) { i; xv ← xv − 1 } i.



B Proofs

Theorem 4 (More shrinkage). Given graph G(V, E, w) with terminals T =
{s1, ..., sk} ⊆ V . Let v ∈ V , and G′

v be the graph where all terminals in T \ {v}
are merged into t, and (C, C) the minimum st cut between v and t in G′

v then
there exists an optimal multiterminal cut of G (V1, ..., Vk) such that ∃! : C ⊆ V".

Proof. Suppose a minimum multiterminal cut C∗ and, without any loss of gen-
erality, l = 1(i.e.v ∈ V1). We define a partition C∗′

of V in V ′
1 , ..., V ′

k as follows :

V ′
1 = V1 ∪ C (1)

V ′
j #=1 = Vj \ (Vj ∩ C) = Vj \ C (2)

We show that C∗′

is a multiterminal cut with weight less than (or equal to)
the weight of C∗, proving the existence of a multiterminal cut described in the
theorem. It is easy to verify that C∗′

is a multiterminal cut , since

– V ′
i ∩ V ′

j #=i = ∅

– ∪iV
′
i = V

– ∀i : si ∈ V ′
i

– ∀i : si is isolated from sj #=i

Let us show that C∗′

has weight less than (or equal to) the weight of C∗. Let
A, B ⊆ V, A∩B = ∅, we note w(A, B) =

∑

{(x,y)|x∈A,y∈B} w(x, y). Furthermore,

let w(X) = w(X, X), where X = V \ X . Using these notations, we have the
following rules :

w(X, Y ) = w(Y, X) (3)

w(X, Y ∪ Z) = w(X, Y ) + w(X, Z) − w(x, Y ∩ Z) (4)

w(X, Y ∪ Z) = w(X, Y ) + w(X, Z) if Y ∩ Z = ∅ (5)

w(X, Y \ Z) = w(X, Y ) − w(X, Y ∩ Z) (6)

The weights of the two multiterminal cuts C∗′

and C∗ can be expressed in terms
of their partitions (resp. V ′

i and Vi) as follows :

w(C∗′

) =
∑

j #=1

w(V ′
1 , V ′

j ) +
∑

i#=1,j>i

w(V ′
i , V ′

j ) (7)

w(C∗) =
∑

j #=1

w(V1, Vj) +
∑

i#=1,j>i

w(Vi, Vj) (8)



In addition, we use two st cuts for proving w(C∗′

) ≤ w(C∗) :

w(C) = w(C, V \ C) = w(C, (∪jVj) \ C) (9)

=
∑

j

w(C, Vj \ C) by (4), (5)

= w(C, V1 \ C) +
∑

j #=1

w(C, Vj \ C) (10)

w(C ∩ V1) = w(C ∩ V1, V \ (C ∩ V1)) (11)

= w(C ∩ V1, (∪jVj) \ (C ∩ V1) (12)

=
∑

j

w(C ∩ V1, Vj \ (C ∩ V1)) by (4), (5)

= w(C ∩ V1, V1 \ C) +
∑

j #=1

w(C ∩ V1, Vj) (13)

In order to calculate w(C∗′

) − w(C∗), we will express all terms of C∗′

in terms
of C∗ :

w(V ′
1 , V ′

j #=1) = w(V1 ∪ C, Vj \ C) by (1), (2)

= w(Vj \ C, V1) + w(Vj \ C, C)

− w(Vj \ C, V1 ∩ C)
by (3), (4)

= w(V1, Vj) − w(V1, Vj ∩ C) + w(Vj \ C, C)

− w(V1 ∩ C, Vj) + w(V1 ∩ C, Vj ∩ C)
by (3), (6) (14)

w(V ′
i#=1 , V

′
j>i) = w(Vi \ C, Vj \ C) by (2)

= w(Vi \ C, Vj) − w(Vi \ C, Vj ∩ C) by (6)

= w(Vj , Vi) − w(Vj , Vi ∩ C)

− w(Vj ∩ C, Vi) + w(Vj ∩ C, Vi ∩ C)
by (3), (6) (15)

Using equations (14) and (15) in (7), we can express the difference between C∗′

and C∗ using (10) and (13) :
w(C∗′

) − w(C∗) =

w(C) − w(C ∩ V1) (16)

+
∑

j #=1

(−w(V1, Vj ∩ C) + w(V1 ∩ C, Vj ∩ C)) (17)

+
∑

i#=1,j>i

(−w(Vj , Vi ∩ C) − w(Vj ∩ C, Vi) + w(Vi ∩ C, Vj ∩ C)) (18)

− w(V1 \ C, C) + w(V1 ∩ C, V1 \ C) (19)

which proves the theorem since

– (16) ≤ 0 because C is a minimum cut (remark that C∩V1 is a st cut between
v and t)



– (17) ≤ 0 because (V1 ∩ C) ⊆ V1

– (18) ≤ 0 because (Vi ∩ C) ⊆ Vi and w(X, Y ) ≥ 0
– (19) ≤ 0 because (V1 ∩ C) ⊆ C !

Theorem 5. Given graph G(V, E, w) and two nodes s, t ∈ V ,
max-min-st(s, t) is uniquely defined, i.e. there is only one maximal size mini-
mum st cut for any couple (s, t)

Proof. By contradiction. Suppose S and S′(S $= S′) both satisfy the definition
of max-min-st(s, t) Let I = S ∩ S′ and T = V \ (S ∪ S′), it is easy to see that
S (resp. S′) $= I, else S (resp. S′) would not be a maximal size minimum st cut.
As S is a min st cut, we have :

w(I) ≥ w(S)

⇐⇒ w(S \ I, I) + w(S′ \ I, I) + w(I, T ) ≥ w(S, S′ \ I) + w(S, T )

⇐⇒ w(S \ I, I) + w(S′ \ I, I) + w(I, T ) ≥ w(S, S′ \ I) + w(S \ I, T )

+ w(I, T )

⇐⇒ w(S \ I, I) + w(S′ \ I, I) ≥ w(S, S′ \ I) + w(S \ I, T )

As I ⊆ S, we have that

w(S′ \ I, I) (= w(I, S′ \ I)) ≤ w(S, S′ \ I)

Therefore, we must have

w(S \ I, I) ≥ w(S \ I, T ) (20)

Now, let’s compute w(S ∪ S′), note that S ∪ S′ is also a st cut for (s, t).

w(S ∪ S′) = w(S \ I, T ) + w(S′ \ I, T ) + w(I, T )

≤ w(S \ I, I) + w(S′ \ I, T ) + w(I, T )
︸ ︷︷ ︸

=w(S′,T )

by 20

≤ w(S \ I, I) + w(S′, T )

≤ w(S \ I, S′) + w(S′, T ) since I ⊆ S′

≤ w(S′)

Thus, S ∪ S′ is a minimum st cut for (s, t). But we have S′ ! S ∪ S′, therefore
S, S′ $∈ max-min-st(s, t) and we have a contradiction. !


