
New Bit-Parallel Indel-Distance Algorithm

Heikki Hyyrö1, Yoan Pinzon2 � , and Ayumi Shinohara1,3

1 PRESTO, Japan Science and Technology Agency (JST), Japan
helmu@cs.uta.fi

2 Department of Computer Science, King’s College, London, UK
pinzon@dcs.kcl.ac.uk

3 Department of Informatics, Kyushu University 33, Fukuoka 812-8581, Japan
ayumi@i.kyushu-u.ac.jp

Abstract. The task of approximate string matching is to find all loca-
tions at which a pattern string p of length m matches a substring of a text
string t of length n with at most k differences. It is common to use Lev-
enshtein distance [5], which allows the differences to be single-character
insertions, deletions, substitutions. Recently, in [3], the IndelMYE, In-
delWM and IndelBYN algorithms where introduced as modified version
of the bit-parallel algorithms of Myers [6], Wu&Manber [10] and Baeza-
Yates&Navarro [1], respectively. These modified versions where made
to support the indel distance (only single-character insertions and/or
deletions are allowed). In this paper we present an improved version of
IndelMYE that makes a better use of the bit-operations and runs 24.5
percent faster in practice. In the end we present a complete set of exper-
imental results to support our findings.

1 Introduction

The approximate string matching problem is to find all locations in a text of
length n that contain a substring that is similar to a query pattern string p of
length m. Here we assume that the strings consist of characters over a finite
alphabet. In practice the strings could for example be English words, DNA se-
quences, source code, music notation, and so on. The most common similarity
measure between two strings is known as Levenshtein distance [5]. It is defined as
the minimum number of single-character insertions, deletions and substitutions
needed in order to transform one of the strings into the other. In a comprehen-
sive survey by Navarro [7], the O(k�m/w�n) algorithm of Wu and Manber (WM)
[10], the O(�(k + 2)(m− k)/w�n) algorithm of Baeza-Yates and Navarro (BYN)
[1], and the O(�m/w�n) algorithm of Myers (MYE) [6] were identified as the
most practical verification capable approximate string matching algorithms un-
der Levenshtein distance. Here w denotes the computer word size. Each of these
algorithms is based on so-called bit-parallelism. Bit-parallel algorithms make use

� Part of this work was done while visiting Kyushu University. Supported by PRESTO,
Japan Science and Technology Agency (JST).

S.E. Nikoletseas (Ed.): WEA 2005, LNCS 3503, pp. 380–390, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

,

New Bit-Parallel Indel-Distance Algorithm 381

of the fact that a single computer instruction operates on bit-vectors of w bits,
where typically w = 32 or 64 in the current computers. The idea is to achieve
gain in time and/or space by encoding several data-items of an algorithm into
w bits so that they can be processed in parallel within a single instruction (thus
the name bit-parallelism).

In [3] the three above-mentioned bit-parallel algorithms were extended to
support the indel distance. In this paper we improve the running time of one
of those algorithms, namely, IndelMYE. IndelMYE is a modify version of My-
ers algorithm [6] that supports the indel distance instead of the more general
Levenshtein distance. The new version (called IndelNew) is able to compute the
horizontal differences of adjacent cell in the dynamic programming matrix more
efficiently. Hence, the total number of bit-operations decreases from 26 to 21. We
run extensive experiments and show that the new algorithms has a very steady
performance in all cases, achieving and speedup of up to 24.5 percent compare
with its previous version.

This paper is organised as follows. In Section 2 we present some preliminar-
ies. In Sections 3 we explain the main bit-parallel ideas used to create the new
algorithm presented in Section 4. In Section 5 we present extensive experimen-
tal results for the three bit-parallel variants presented in [3] and two dynamic
programming algorithms. Finally, in Section 6 we give our conclusions.

2 Preliminaries

We will use the following notation with strings. We assume that strings are
sequences of characters from a finite character set Σ. The alphabet size, i.e.
the number of distinct characters in Σ, is denoted by σ. The ith character of a
string s is denoted by si, and si..j denotes the substring of s that begins at its
ith position and end at its jth position. The length of string s is denoted by |s|.
The first character has index 1, and so s = s1...|s|. A length-zero empty string is
denoted by ε.

Given two strings s and u, we denote by ed(s, u) the edit distance between
s and u. That is, ed(s, u) is defined as the minimum number of single-character
insertions, deletions and/or substitutions needed in order to transform s into u
(or vice versa). In similar fashion, id(s, u) denotes the indel distance between
s and u: the minimum number of single-character insertions and/or deletions
needed in transforming s into u (or vice versa).

The problem of approximate searching under indel distance can be stated
more formally as follows: given a length-m pattern string p1..m, a length-n
text string t1..n, and an error threshold k, find all text indices j for which
id(p, tj−h..j) ≤ k for some 1 ≤ h < j. Fig. 1 gives an example with p ="ACGC",
t ="GAAGCGACTGCAAACTCA", and k = 1. Fig. 1(b) shows that under indel dis-
tance t contains two approximate matches to p at ending positions 5 and 11.
In the case of regular edit distance, which allows also substitutions, there is an
additional approximate occurrence that ends at position 17 (see Fig. 1(a)). Note
that Fig. 1 shows a minimal alignment for each occurrence. For strings s and u,

382 H. Hyyrö, Y. Pinzon, and A. Shinohara

the characters of s and u that correspond to each other in a minimal transforma-
tion of s into u are vertically aligned with each other. In case of indel distance
and transforming s into u, si corresponds to uj if si and uj are matched, si

corresponds to ε if si is deleted, and ε corresponds to uj if uj is inserted to s. In
case of Levenshtein distance, si corresponds to uj also if si is substituted by uj .

G A C TG G A C T G C A AA C C T

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

A

A GC C

�

A G CC�A G CC

(a)

G A C TG G A C T G C A AA C C T

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

A

A GC C

�

�A G CC

(b)

Fig. 1. Example of approximate string matching with k = 1 difference under (a) Leven-

shtein distance and (b) indel distance. Grey boxes show the matches and corresponding

alignments. In the alignments we show a straight line between corresponding characters

that match, and a cross otherwise. Hence the number of crosses is equal to the number

of differences

We will use the following notation in describing bit-operations: ’&’ denotes
bitwise “AND”, ’|’ denotes bitwise “OR”, ’∧’ denotes bitwise “XOR”, ’∼’ de-
notes bit complementation, and ’<<’ and ’>>’ denote shifting the bit-vector
left and right, respectively, using zero filling in both directions. The ith bit of
the bit vector V is referred to as V [i] and bit-positions are assumed to grow
from right to left. In addition we use superscript to denote bit-repetition. As
an example let V = 1001110 be a bit vector. Then V [1] = V [5] = V [6] = 0,
V [2] = V [3] = V [4] = V [7] = 1, and we could also write V = 102130. Fig. 2
shows a simple high-level scheme for bit-parallel algorithms. In the subsequent
sections we will only show the sub-procedures for preprocessing and updating
the bit-vectors.

Algo-BitParallelSearch(p1 . . . pm, t1 . . . tn, k)
1. � Preprocess bit-vectors
2. Algo-PreprocessingPhase()
3. For j ∈ 1 . . . n Do
4. � Update bit-vectors at text character j and check if a match was found
5. Algo-UpdatingPhase()

Fig. 2. A high-level template for bit-parallel approximate string matching algorithms

New Bit-Parallel Indel-Distance Algorithm 383

3 Bit-Parallel Dynamic Programming

During the last decade, algorithms based on bit-parallelism have emerged as the
fastest approximate string matching algorithms in practice for the Levenshtein
edit distance [5]. The first of these was the O(kn(m/w)) algorithm of Wu &
Manber [10], where w is the computer word size. Later Wright [9] presented an
O(mn logσ /w)) algorithm, where σ is the alphabet size. Then Baeza-Yates &
Navarro followed with their O((km/w)n) algorithm. Finally Myers [6] achieved
an O((m/w)n) algorithm, which is an optimal speedup from the basic O(m/n)
dynamic programming algorithm. With the exception of the algorithm of Wright,
the bit-parallel algorithms dominate the other verification capable algorithms
with moderate pattern lengths [7].

The O(�m/w�n) algorithm of Myers [6] is based on a bit-parallelization of
the dynamic programming matrix D. The O(k�m/w�n) algorithm of Wu and
Manber [10] and the O(�(k + 2)(m − k)/w�n) algorithm of Baeza-Yates and
Navarro [1] simulate a non-deterministic finite automaton (NFA) by using bit-
vectors.

For typical edit distances, their dynamic programming recurrence confines
the range of possible differences between two neighboring cell-values in D to
be small. Fig. 3 shows the possible difference values for some common dis-
tances. For both Levenshtein and indel distance, {-1,0,1} is the possible range
of values for vertical differences D[i, j] − D[i − 1, j] and horizontal differences
D[i, j] − D[i, j − 1]. The range of diagonal differences D[i, j] − D[i − 1, j − 1]
is {0,1} in the case of Levenshtein distance, but {0,1,2} in the case of indel
distance.

D[i-1,j-1]

D[i,j-1] D[i,j]

D[i-1,j]

-1
0
1

1
0

-1, 0, 1

-1, 0, 1

-1
0
1

-1
0
1

-1, 0, 1

-1, 0, 1

-1
0
1

0
1

0, 1

0, 1

0
11

0

2
1

0

D[i-1,j-1]

D[i,j-1] D[i,j]

D[i-1,j] D[i-1,j-1]

D[i,j-1] D[i,j]

D[i-1,j]

(a) edit distance (b) indel distance (c) lcs distance

Fig. 3. Differences between adjacent cells. White/grey boxes indicate that one/two

bit-vectors are needed to represent the differences

The bit-parallel dynamic programming algorithm of Myers (MYE) makes use
of the preceding observation. In MYE the values of matrix D are expressed im-
plicitly by recording the differences between neighboring cells. And moreover,
this is done efficiently by using bit-vectors. In [4], a slightly simpler variant of

384 H. Hyyrö, Y. Pinzon, and A. Shinohara

MYE, the following length-m bit-vectors Zdj , Nhj , Phj , Nvj , and Pvj encode
the vertical, horizontal and diagonal differences at the current position j of the
text:

— Zdj [i] = 1 iff D[i, j] − D[i − 1, j − 1] = 0
— Phj [i] = 1 iff D[i, j] − D[i, j − 1] = 1
— Nhj [i] = 1 iff D[i, j] − D[i, j − 1] = −1
— Pvj [i] = 1 iff D[i, j] − D[i − 1, j] = 1
— Nvj [i] = 1 iff D[i, j] − D[i − 1, j] = −1

The crux of MYE is that these difference vectors can be computed efficiently.
The basic idea is that, given the vertical difference D[i − 1, j] − D[i − 1, j − 1]
(left vertical difference in Fig. 4), the diagonal difference D[i, j]−D[i− 1, j − 1]
fixes the value of the horizontal difference D[i, j]−D[i, j−1]. And subsequently,
in symmetric fashion, the diagonal difference also fixes the vertical difference
D[i, j] − D[i − 1, j] after the previous horizontal difference D[i, j] − D[i, j − 1]
is known. These observations determine the order in which MYE computes the
difference vectors. The overall scheme is as follows. The algorithm maintains
only the value of interest, D[m, j], explicitly during the computation. The initial
value D[m, 0] = m and the initial vectors Pv0 = 1m and Nv0 = 0m are known
from the dynamic programming boundary values. When arriving at text position
j > 0, MYE first computes the diagonal vector Zdj by using Pvj−1, Nvj−1

and M(tj), where for each character λ, M(λ) is a precomputed length-m match
vector where M(λ)i = 1 iff pi = λ. Then the horizontal vectors Phj and Nhj are
computed by using Zdj , Pvj−1 and Nvj−1. Finally the vertical vectors Pvj and
Nvj are computed by using Zdj , Nhj and Phj . The value D[m, j] is maintained
incrementally during the process by setting D[m, j] = D[m, j − 1] + (Phh[m] −
Nhh[m]) at text position j. A match of the pattern with at most k errors is found
at position j whenever D[m, j] ≤ k. Fig. 5 shows the complete MYE algorithm.

At each text position j, MYE makes a constant number of operations on
bit-vectors of length-m. This gives the algorithm an overall time complexity
O(�m/w�n) in the general case where we need �m/w� length-w bit-vectors in
order to represent a length-m bit-vector. This excluded the cost of preprocessing
the M(λ) vectors, which is O(�m/w�σ+m). The space complexity is dominated
by the M(λ) vectors and is O(�m/w�σ). The difference vectors require O(�m/w�)
space during the computation if we overwrite previously computed vectors as
soon as they are no longer needed.

4 IndelNew Algorithm

In this section we will present IndelNew, our faster version for IndelMYE which
at the same time was a modification of MYE to use indel distance instead of
Levenshtein distance.

As we noted before, indel distance allows also the diagonal difference D[i, j]−
D[i−1, j−1] = 2. Fig. 4 is helpful in observing how this complicates the compu-

New Bit-Parallel Indel-Distance Algorithm 385

-1

0

1

-1 0 1

match mismatch match mismatch match mismatch

x

x x-1

x-1 x

x x

x-1

x

x x-1

x x

x x

x x+1

x x

x

x

x x-1

x+1 x

x x

x+1 x+1

x x

x+1

x

x x+1

x-1

x

x x+1

x x+1

x x+1

x

x

x x+1

x+1 x+2

x x+1

x+1

B

C

D

E F

G H

I

J

K

L

M

A

x

x x

x-1

x

x x-1

x+1

x

x x-1

x-1

x

x x-1

x

xx-1

x x+1

horizontal differences

v
e
r
t
i
c
a
l
d
i
f
f
e
r
e
n
c
e
s

x

x x-1

x-1

x

x x-1

x

x

x x-1

x+1

x

x x

x-1

x

x x

x

x

x x

x+1

x+1

x x

x+1 x

x x+1

x+1

A

B

C

D

E

G

H K

(1)

(2)

(3)

(4)

(5)

x+1

x x

x
F (6)

(7)

(8)

xx-1

x x+1

I (9)

x

x x+1

x
J (10)

(11)

x+1

x x+1

x
L (12)

x+2

x x+1

x+1
M (13)

Fig. 4. The 13 possible cases when computing a D-cell

tation of the difference vectors. It shows the 13 different cases that can occur in a
2×2 submatrix D[i−1..i, j−1..j] of D. The cases are composed by considering all
18 possible combinations between the left/uppermost vertical/horizontal differ-
ences (D[i, j−1]−D[i−1, j−1]/D[i−1, j]−D[i−1, j−1]) and a match/mismatch
between the characters pi and tj , some cases occur more that once so only 13 of
them are unique.

We note that M is the only case where the diagonal difference is +2, and fur-
ther that M is also the only case that is different between indel and Levenshtein
distances: in all other cases the value D[i, j] is the same regardless of whether
substitutions are allowed or not. And since the diagonal, horizontal and verti-
cal differences in the case M have only positive values, IndelNew can compute
the 0/-1 difference vectors Zdj , Nhj , and Nvj exactly as MYE. In the case of
Levenshtein distance, the value D[i, j] would be x + 1 in case M, and hence the
corresponding low/rightmost differences D[i, j]−D[i, j−1] and D[i, j]−D[i−1, j]
would be zero. This enables MYE to handle the case M implicitly, as it com-
putes only the -1/+1 difference vectors. But IndelNew needs to explicitly deal
with the case M when computing the +1 difference vectors Phj and Pvj , un-
less these vectors are computed implicitly/indirectly. The latter approach was
employed in IndelMYE algorithm [3] by using vertical and horizontal zero dif-
ference vectors Zvj and Zhj , where Zvj [i] = 1 iff D[i, j] − D[i − 1, j] = 0, and
Zhj [i] = 1 iff D[i, j]−D[i, j−1] = 0. Then, solutions where found for computing
Zvj and Zhj , and the positive difference vectors were then computed simply as
Phj = ∼ (Zhj | Nhj) and Pvj = ∼ (Zvj | Nvj). For IndelNew we propose
the following more efficient solution for computing Phj and Pvj directly. The
discussion assumes that 0 < i ≤ m and 0 < j ≤ n.

386 H. Hyyrö, Y. Pinzon, and A. Shinohara

MYE-PreprocessingPhase
1. For λ ∈ Σ Do M(λ) ← 0m

2. For i ∈ 1 . . . m Do M(pi) ← M(pi) | 0m−i10i−1

3. Pv0 ← 1m, Nv0 ← 0m, currDist ← m

MYE-UpdatingPhase
1. Zdj ← (((M(tj) & Pvj−1) + Pvj−1)

∧ Pvj−1) | M(tj) | Nvj−1

2. Nhj ← Pvj−1 & Zdj

3. Phj ← Nvj−1 | ∼ (Pvj−1 | Zdj)
4. Nvj ← (Phj << 1) & Zdj

5. Pvj ← (Nhj << 1) | ∼ ((Phj << 1) | Zdj)
6. If Phj & 10m−1 �= 0m Then currDist ← currDist + 1
7. If Nhj & 10m−1 �= 0m Then currDist ← currDist − 1
8. If currDist ≤ k Then Report a match at position j

Fig. 5. MYE algorithm. Variable currDist keeps track of the value D[m, j]. The al-

gorithm representations could be optimized to reuse the value Phj << 1 so that it is

computed only once

Computing Phj. We may observe from Fig. 4 that Phj [i] = 1 in the six
cases A, D, I, F, L, and M. Cases A, D, and I arise from the negative vertical
difference in column j − 1, i.e. Nvj−1[i] = 1. Cases F and L arise from a zero
vertical difference in column j − 1, i.e. Nvj−1[i] = 1 and Pvj−1[i] = 0, together
with a positive diagonal difference, i.e. Zdj [i] = 0. Hence the formula

Nvj−1 | (∼ Nvj−1 & ∼ Pvj−1 & ∼ Zdj) = Nvj−1 | ∼ (Pvj−1 | Zdj)

covers the first five cases for the complete vectors, and this is enough for MYE
under Levenshtein distance. Case M arises from having a positive difference in
column j − 1, a positive horizontal difference in row i − 1, and a non-zero di-
agonal difference. This translates into the formula Pvj−1 & (Phj << 1) & ∼
Zdj , which contains a slightly problematic self-reference to Phj . We solve it as
follows.

The self-reference states that case M can be true on row i only if one of the
other five cases has happened above i. Let X be an auxiliary length-m bit-vector
that covers the five cases, that is,

X = Nvj−1 | ∼ (Pvj−1 | Zdj).

Let Y be another auxiliary bit-vector so that

Y = Pvj−1 & ∼ Zdj .

Now each set bit Phj [i] = 1 can be assigned to a distinct region Phj [a..b] =
1b−a+1 of consecutive set bits in such manner, that 1 ≤ a ≤ i ≤ b ≤ m, X[a] = 1,
Y [a + 1..b] = 1b−a if a < b, and Y [b + 1] = 0 if b < m. Moreover, the conditions
Y [a + 1..b] = 1b−a and X[a] = 1 are sufficient to imply that Phj [a..b] = 1b−1+1.
If we now shift the bit region Y [a + 1..b] one step right to overlap the positions

New Bit-Parallel Indel-Distance Algorithm 387

a . . . b − 1 and then perform an arithmetic addition Y [a..b] + X[a..b], the result
is that the bits Y [a..b − 1] will change from 1 to 0 and the bit Y [b] from 0 to 1.
These changed bits can be set to 1, and thus to be correct values for Phj [a..b],
by performing XOR. Hence we have the formula

Phj = (X + Y) ∧ Y,

where Y has already been shifted one step right. We further note that if Nhj =
Pvj−1 & Zdj has already been computed, we may set Y = Pvj−1 & ∼ Zdj =
Pvj−1 − Nhj in the beginning.

Computing Pvj. This step is diagonally symmetric with the case of Phj . After
similar observations from Fig. 4 as before, the six relevant cases are seen to be
A, B, C, F, H, and M, and the first five of these are covered by the formula
(Nhj << 1) | ∼ ((Phj << 1) | Zdj). This time, case M has the formula
(Phj << 1) & Pvj−1 & ∼ Zdj , which is straighforward to compute. As with
the auxiliary variable Y , we may again use the fact that Pvj−1 & ∼ Zdj =
Pvj−1 − Nhj . Then the complete formula for Pvj becomes

Pvj = (Nhj << 1) | ∼ ((Phj << 1) | Zdj) | ((Phj << 1) & (Pvj−1 − Nhj)).

Fig. 7 shows the complete algorithm IndelNew for computing the difference
vectors Zdj , Nhj , Phj , Nvj , and Pvj at text position j under indel distance.
Obviously IndelNew has the same asymptotical time and space complexities
as IndelMYE. Fig. 6 shows the complete algorithm IndelMYE as presented in
[3]. IndelNew algorithm is able to compute the positive vectors directly. In-
delMYE main drawback is the way the horizontal solution is computed. All
in all, the total number of bit-operations is 26 for IndelMYE versus 21 for
IndelNew, so we have a more efficient implementation for a bit-parallel indel
algorithm.

IndelMYE-UpdatingPhase
1. D′ ← (((KTj &Pv) + Pv) ∧Pv) | KTj | Nv
2. X ← (Pv & (∼ D′)) >> 1
3. Y ← (Zv & D′) | ((Pv & (∼ D′)) & 0m−11)
4. Zh′ ← (X ′ + Y ′) ∧ X ′

5. Nh′ ← Pv & D′

6. Ph′ ← ∼ (Zh′ | Nh′)
7. Zv′ ← (((Zh′ << 1) | 0m−11) & D′) | ((Ph′ << 1) & Zv & (∼ D′))
8. Nv′ ← (Ph′ << 1) & D′

9. Pv′ ← ∼ (Zv′ | Nv′)
10. If Ph′ & 10m−1 �= 0m Then currDist ← currDist + 1
11. If Nh′ & 10m−1 �= 0m Then currDist ← currDist − 1
12. If currDist ≤ k Then Report a match at position j

Fig. 6. IndelMYE algorithm as presented in [3]

388 H. Hyyrö, Y. Pinzon, and A. Shinohara

IndelNew-UpdatingPhase
1. Zdj ← (((M(tj) & Pvj−1) + Pvj−1)

∧ Pvj−1) | M(tj) | Nvj−1

2. Nhj ← Pvj−1 & Zdj

3. X ← Nvj−1 | ∼ (Pvj−1 | Zdj)
4. Y ← (Pvj−1 − Nhj) >> 1
5. Phj ← (X + Y) ∧ Y
6. Nvj ← (Phj << 1) & Zdj

7. Pvj ← (Nhj << 1) | ∼ ((Phj << 1) | Zdj) | ((Phj << 1) & (Pvj−1 − Nhj))
8. If Phj & 10m−1 �= 0m Then currDist ← currDist + 1
9. If Nhj & 10m−1 �= 0m Then currDist ← currDist − 1
10. If currDist ≤ k Then Report a match at position j

Fig. 7. IndelNew algorithm. The value Pvj−1 − Nhj could be reused

5 Experiments

We compare IndelNew against several other approximate string matching algo-
rithms for indel distance. They are: IndelWM (our own implementation), In-
delMYE (our own implementation), IndelBYN (a modification of the original
code by Baeza-Yates and Navarro), and IndelUKK (our own implementation of
the cutoff version of Ukkonen [8]). We also implemented a plain dynamic pro-
gramming algorithm (without bit-parallelism) but it was too slow for the pattern
lengths we used, therefore we removed it from the final test.

The computer used for testing was a 3.2Ghz AMD Athlon64 with 1.5 GB
RAM running Windows XP. The computer word size was w=32. All code was
compiled with MS Visual C++ 6.0 and optimization switched on. We tested on
three different ≈ 20MB texts. The first was composed by repeating the yeast
genome twice. The second was built from a sample of Wall Street Journal articles
taken from the TREC collection. The third text was random with alphabet size
σ = 120. The tested pattern lengths were m = 8, 16 and 32, and we tested
over k=1 . . . m−2. The patterns were selected randomly from the text, and each
(m, k) combination was timed by taking the average time over searching for 100
patterns.

Fig. 8 shows the results. It can be seen that IndelWM is competitive with
low k, being always the best when k=1. The performance of IndelBYN depends
highly on the effectiveness of its “cutoff” mechanism, which in turns depends
on the alphabet size σ. With DNA its performance becomes poor quite quickly
when k grows (except when m=8 as then Rd always fits into a single computer
word. But IndelBYN is always the best when k > 1 with random text and
moderately large alphabet size σ = 120. As expected due to its independence on
k, IndelMYE/IndelNew has a very steady performance in all cases. But IndelNew
was 24.5 percent faster that IndelMYE. Hence, IndelNew is the fastest in those
cases where k is moderately large.

New Bit-Parallel Indel-Distance Algorithm 389

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4

tim
e

(s
ec

)
 D

N
A

m = 16

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4

m = 32

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4

m = 64

 0
 0.2
 0.4
 0.6

 0.8
 1

 1.2
 1.4

tim
e

(s
ec

)
 W

S
J

 0
 0.2
 0.4
 0.6

 0.8
 1

 1.2
 1.4

IndelUKK

 0
 0.2
 0.4
 0.6

 0.8
 1

 1.2
 1.4

IndelMYE

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4

 1 3 5 7 9 11 13

tim
e

(s
ec

)
 r

an
d1

20

k

IndelNew

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4

 1 5 9 13 17 21 25 29

k

IndelWM

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4

 1 9 17 25 33 41 49 57

k

IndelBYN

Fig. 8. The average time for searching for a pattern in a ≈ 0 MB text. The first row

is for DNA (a duplicated yeast genome), the second row for a sample of Wall Street

Journal articles taken from TREC-collection, and the third row for random text with

alphabet size σ = 120

6 Conclusions

We have presented a new algorithms based on bit-parallelism that solve the
problem of approximate string matching problem with k differences under indel
edit distance measure, namely, IndelNew. IndelNew is a more thought version
of the early IndelMYE version in [3]. In practice, we showed that the speedup
gain by the new version was higher (24.5 percent) than the improvement in the
number of bit-operations (about 19 percent – 26 → 21). IndelNew showed a very
steady performance in all cases due to its independence on k. It is the fastest in
those cases where k is moderately large and the cutoff scheme of IndelBYN does
not work well.

We plan to use some of the ideas presented in [2] to search several text
segments in parallel by encoding several copies of the pattern (or its prefixes)
into a single bit-vector. This is left as a future work.

4.

390 H. Hyyrö, Y. Pinzon, and A. Shinohara

References

1. R. Baeza-Yates and G. Navarro. Faster approximate string matching. Algorithmica,
23(2):127–158, 1999.

2. H. Hyyrö, K. Fredriksson and G. Navarro. Increased Bit-Parallelism for Approxi-
mate String Matching in Proc. 3rd Workshop on Efficient and ExperimentalAlgo-
rithms (WEA 2004), LNCS 3059, 285–298, 2004.

3. H. Hyyrö, Y. Pinzon and A. Shinohara. Fast Bit-Vector Algorithms for Approx-
imate String Matching under Indel Distance in Proc. 31st Annual Conference on
Current Trends in Theory and Practice of Informatics (SOFSEM 2005), LNCS
3381, 380–384, 2005.

4. H. Hyyrö. Explaining and extending the bit-parallel approximate string matching
algorithm of Myers. Technical Report A-2001-10, Dept. of Computer and Infor-
mation Sciences, University of Tampere, Tampere, Finland, 2001.

5. V. I. Levenshtein. Binary codes capable of correcting spurious insertions and
deletions of ones (original in Russian). Russian Problemy Peredachi Informatsii 1,
12–25, 1965.

6. G. Myers. A fast bit-vector algorithm for approximate string matching based on
dynamic progamming. Journal of the ACM, 46(3):395–415, 1999.

7. G. Navarro. A guided tour to approximate string matching. ACM Computing
Surveys, 33(1):31–88, 2001.

8. Esko Ukkonen. Finding approximate patterns in strings. Journal of Algorithms,
6:132–137, 1985.

9. A. Wright. Approximate string matching using within-word parallelism. Software
Practice and Experience, 24(4):337–362, April 1994.

10. S. Wu and U. Manber. Fast text searching allowing errors. Comm. of the ACM,
35(10):83–91, October 1992.

	Introduction
	Preliminaries
	Bit-Parallel Dynamic Programming
	IndelNew Algorithm
	Experiments
	Conclusions

