BDDsin aBranch & Cut Framework*

Bernd Becker!, Markus Behle2, Friedrich Eisenbrand?, and Ralf Wimmer!

1 Albert-Ludwigs-Universitit, Georges-Kéhler-Allee 51, 79110 Freiburg im Breisgau,
Germany, { becker, wi mrer} @ nf ormati k. uni -frei burg. de
2 Max-Planck-Institut fiir Informatik, Stuhlsatzenhausweg 85, 66123 Saarbriicken, Germany,
{behl e, ei sen} @rpi - sb. npg. de

Abstract. Branch & Cut is today’s state-of-the-art method to solve 0/1-integer
linear programs. Important for the success of this method is the generation of
strong valid inequalities, which tighten the linear programming relaxation of 0/1-
IPs and thus allow for early pruning of parts of the search tree.

In this paper we present a novel approach to generate valid inequalities for 0/1-
IPs which is based on Binary Decision Diagrams (BDDs). BDDs are a data-
structure which represents 0/1-vectors as paths of a certain acyclic graph. They
have been successfully applied in computational logic, hardware verification and
synthesis.

We implemented our BDD cutting plane generator in a branch-and-cut frame-
work and tested it on several instances of the MAX-ONES problem and randomly
generated 0/1-1Ps. Our computational results show that we have developed com-
petitive code for these problems, on which state-of-the-art MIP-solvers fall short.

1 Introduction

Many industrial optimization problems can be formulated as an integer program. For-
mally, an integer program deals with the maximization of a linear objective function
c(Da(1)+ - -+ ¢(n)x(n), where the variables (1), ..., z(n) have to be integers and
have to satisfy m given linear inequalities a;1z(1)+- - - a;pz(n) < b;for1 <i <m.A
special case of integer programming is 0/1 integer programming (0/1-IP), which arises
if the variables are additionally restricted to attain values in {0, 1}. It is a particularly
important special case, since most combinatorial optimization problems are modeled
with decision variables and thus are 0/1-IPs.

The most successful method for 0/1-1P, which is applied by all competitive com-
mercial codes is branch-and-cut. This variant of branch-and-bound relies on the fact
that the linear relaxation of a given 0/1-IP can be efficiently solved. The linear relax-
ation is the linear program which is obtained from the 0/1-IP by relaxing the condition
x(#) € {0,1} to the condition 0 < z(i) < 1 foreach i € {1,...,n}. The value of
the linear programming relaxation can then be used as an upper bound in a branch-and-
bound approach to solve the 0/1-IP. In branch-and-cut, one additionally applies cut-
ting planes [8, 26] to improve the quality of the linear programming relaxation. Cutting

* This work was partly supported by the German Research Council (DFG) as part of the Tran-
sregional Collaborative Research Center “Automatic Verification and Analysis of Complex
Systems” (SFB/TR 14 AVACS). See ww. avacs. or g for more information.



planes are inequalities which are valid for all feasible integer points, but not necessarily
valid for the rational points which are feasible for the linear programming relaxation.
Thus the incorporation of cutting planes improves the tightness of the linear relaxation
and helps to prune parts of the branch-and-bound tree.

In theory a cutting plane can be easily infered from a fractional optimal solution to
the linear programming relaxation. The strength of the cutting plane is however crucial
for the performance of the branch-and-cut process. Classes of strong valid inequali-
ties are for example knapsack-cover inequalities [2, 6, 11, 29], clique inequalities [21]
the flow-cover inequalities [23, 24] or the mixed integer rounding cuts [21]. Knapsack-
cover and flow-cover inequalities in particular are inequalities which are valid for the
0/1-points which satisfy one single constraint of the 0/1-IP. Up to now there is no
satisfactory method available which generates valid inequalities for the 0/1-solutions
of two or more inequalities. This paper aims at a method for this algorithmic problem
which is based on Binary Decision Diagrams, a datastructure which is widely used in
computational logic, hardware verification and logic synthesis.

A Binary Decision Diagram (BDD) represents a set of 0/1-vectors in a compact
way, see Fig. 1. We provide a short definition of BDDs as they are used in this paper. A
BDD for a set of variables z(1),- - - , z(n) is a directed acyclic graph G = (V, A) with
alabeling ¢ : V.— {z(1),...,z(n)} and a parity function par : A — {0,1}. The
graph has one node with in-degree zero, called the root and one node with out-degree
zero, called leaf 1. Each path from root to leaf 1 contains exactly n edges and each
x(i), 1 < i < nis the label of a starting node of an edge on this path, thus the BDD
is called complete. All nodes labelled with () lie on the same level, which means, we
have an ordered BDD (OBDD). A path ey, . . ., e,, from the root to the leaf represents a
variable assignment, where the label of the starting node of e; is assigned to the value
par(e;). In this way, the BDD represents a set of vectors in {0, 1}".

@ @ z(1) z(2) z(3)
0 0 1
0 1 0]
1 0 O
1 1 0
1 1 1
(a) BDD (b) Represented 0/1-points

Fig. 1. A simple BDD represented as a directed graph. Edges with parity 0 are dashed.

BDDs were first proposed by Lee in 1959 [20]. Bryant [3] presented efficient algo-
rithms for the synthesis of BDDs. After that, BDDs became very popular in the area of



hardware verification, and computational logics, see e.g. [28]. Lai et. al. [19, 18] have
developed a branch-and-bound algorithm for 0/1-1P that uses an extension of BDDs
called EVBDDs. EVBDDs represent functions f : {0,1}" — Z. So the EVBDDs
are used not only to represent the characteristic functions of the constraints but also
for the constraints themselves. In this approach however, one has to build an EVBDD
for the conjunction of all the constraints of the 0/1-1P. In many cases this leads to an
explosion in memory requirement.

We incorporate BDDs into a cutting plane engine and apply it in an integer pro-
gramming solver. We use BDDs to represent the feasible solutions of a small subset of
the given constraints and derive valid inequalities for the polytope which is described
by these solutions. Thereby we avoid the explosion of the size of the BDD which hap-
pens if the BDD represents all the constraints. The separation problem is solved with
a sequence of shortest path problems with Lagrangean relaxation techniques. For this
we use a standard BDD-package and apply our own efficient implementation of an
acyclic shortest path algorithm on the BDD-datastructure. We apply our cutting plane
framework to the MAX-ONES problem and to randomly generated 0/1-1Ps. Our compu-
tational results show that we could develop competitive code to solve hard 0/1-integer
programming problems, on which state-of-the-art commercial branch-and-cut codes fall
short.

Currently there is active and promising research in the field of combining techniques
from computational logic and constraint programming with integer programming, see
e.g. [5, 13]. We contribute further to this development by using BDDs sucessfully and
for the first time in a cutting plane engine.

1.1 Preliminaries from Polyhedral Theory

Before we proceed we review some terminology from polyhedral theory, see e.g. [21,
26]. A polyhedron P is a set of vectors of the form P = {x € R" | Az < b}, for some
matrix A € IR"*™ and some vector b € IR". The polyhedron is rational if both A and
b can be chosen to be rational. If P is bounded, then P is called a polytope. An integral
0/1-polytope is a polytope that is the convex hull of a set of 0/1-vectors .S C {0,1}".
The integer hull P; of a polytope P is the convex hull of the integral vectors in P.
The dimension dim(P) of P is the dimension of its affine hull and P C IR" is full-
dimensional if dim(P) = n.

An inequality ¢”z < § is valid for P if it is satisfied by all points in P. If ¢T2 < §
is valid and § = max{c’z | z € P}, itdefinesaface F = {x € P | ¢T'x = 6} of P.
The face F'is a facet of P, if dim(F) = dim(P) — 1.

2 Using BDDsto Generate Cutting Planes
Suppose we have to solve a 0/1-integer programming problem,

max{c’z: Az <b, z € {0,1}"} @))

where A € Z™*", b€ Z™ and c € Z". Our idea is now to choose a subset A’z < v/
of the constraints in Az < b and to build the BDD which represents all 0/1-points



which satisfy A’z < b'. We next distinguish between two 0/1-polytopes P; and Pgpp.
The polytope P = conv{z € {0,1}" | Az < b} is the convex hull of the feasible
0/1-points of the 0/1-1P. The polytope Pzpp = conv{z € {0,1}" | A’z < V'} isthe
convex hull of the 0/1-points which are feasible for A’x < V'. Clearly Pgpp 2 P
We are now interested in an efficient handling of the constraints which define Pgpp. In
a branch-and-cut framework, we want to decide whether our current optimal solution
x* to the linear programming relaxation lies in Pgpp. If not, we want to compute an
inequality which is valid for Pgpp but not valid for 2*. This is the so-called separation
problem for Pgpp.

BDD-SEP
Given z* € Q" and a BDD (G, ¢, par), decide, whether z* € Pgpp and
if not, compute a valid inequality for Pspp which is not valid for z*.

2.1 Polynomial Time Solvability of BDD-SEP

In the 1980’s, several authors[9, 17, 22] showed that the linear optimization problem
over polyhedra and the separation problem over polyhedra are polynomial time equiva-
lent. This equivalence of separation and optimization is a central result in combinatorial
optimization. It implies that one can solve the separation problem for Pgpp in polyno-
mial time, if one can solve the optimization problem for Pgpp in polynomial time.

BDD-OPT
Given c € Q" and aBDD (G, ¢, par), compute a 0/1-point which is rep-
resented by (G, ¢, par) and is maximal w.r.t. the linear objective function

CTJJ.

BDD-OPT is easily shown to be the following longest path problem on G with edge
weights w : £ — IR, where

w(e) = {c(z) if par(e) = 1 and ¢(head(e)) = x(7), @

0 otherwise.

It is very easy to see that the optimal solutions to BDD-OPT are exactly the 0/1-
points which are represented by a longest path from root to leaf 1. Since G is acyclic,
the longest path problem can be solved in linear time. Using the equivalence of sepa-
ration and optimization, we can thus conclude that BDD-SEP can, in theory, also be
efficiently solved.

Theorem 1. The problems BDD-SEP and BDD-OPT can be solved in polynomial
time.

2.2 Separation with the Subgradient Method

The point * ¢ Pgpp if and only if there exists a A € IR™ such that

)\TLL'* > 5)\. (3)



The value ¢, is the length of the longest path from root to leaf 1 w.r.t. the edge weights

(4)

A(@) if par(e) = 1 and £(head(e)) = x(i),
wy(e) = .
0 otherwise.

Since G is acyclic, §, can be computed in linear time. If (3) does not hold, we update A
as in the subgradient method to solve the Lagrangean relaxation, see e.g. [26, p. 367ff.].
In words, Alg. 1 does the following. The first guess for a normalvector of a separating

Algorithm 1 Subgradient separation routine
1) k=1
2 A®.=¢
(3) Compute a longest path p*) from root to leaf 1 w.r.t. the edge lengths w, ).
(4) 1FXTz* > § then return the separating hyperplane \™z < &,
5y t® .= %
6) AP = AB 4 W (zr — g )
(7)) k:i=k+1;
(8) GOTO (3)

hyperplane is the objective function vector ¢, which is why X is initialized with this
vector. Let ") be the normalvector in the k-th iteration such that A" z* < §, ) =
A(k)Txp(k>. After the update one has A\(*+1)7 (z* — Tpk)) = ABT (g T,m) +
t®)|z* —z 00 || 2. IF£*) > 0 is small enough then there exists a longest path w.r.t. wy ),

which is also a longest path W.r.t. wy 1. Then A\E+D 25 5 o > AW x5 0
It is known, see [26], that for any t*) with limj,_o, t*) = 0 and 3"7 | t*) = oo the
subgradient method terminates. This is the case for t(*) = 1/k.

Geometrically, step 6 can be interpreted as a rotation of the hyperplane AW <y
in the direction of the vector x* — x,,u). Although Alg. 1 cannot be guaranteed to run
in polynomial time, we observed that it outperforms linear programming methods for
BDD-SEP by far. This is why we implemented this method in our BDD cut-separator.

3 Heuristicsfor Strengthening Inequalitieswith BDDs

The inequalities generated with the subgradient method naturally define faces of Pgpp
with a low dimension. We want to increase their dimension in order to increase the
“quality” of the hyperplanes, i.e., we are interested in facets of Pgpp. Using facet-
defining inequalities in branch-and-cut has led to an enourmous progress in solving
large-scale optimization problems, see e.g. [16]. The standard way to turn a separating
hyperplane into a facet-defining inequality, see e.g. [10], turned out to be too expen-
sive. Therefore, we developed some heuristics to strengthen inequalities which do not
guarantee to produce facets, but can be efficiently implemented.



In the following let ¢z < 6 be a valid inequality for Pgpp. The right hand side
can be setto § = max{c’z | # € Pgpp }. We compute the maximum in linear time via
optimizing over Pgpp With edge weights set to w,. as in (2). Note that with this method
every inequality can be made tight at at least one vertex of the BDD-polytope.

3.1 Increasing the Number of Tight Vertices

By increasing the number of vertices of Pgpp that are tight at ¢” = < 6, chances are
high to also increase the dimension of the induced face. In the following we try to
strengthen an inequality along the unit vectors. Remember that every path in the BDD-
graph from the root to leaf 1 corresponds to a vertex of Pgpp. W.1.0.g. assume that for
all i € {1,...,n} the variable x(7) lies in level i.

Giveni € {1,...,n} we want to find a new c(¢) so that the number of longest paths
w.r.t. the edge weights w,. increases. For that we compute the sets of all longest paths,
that use a 0-edge resp. 1-edge in level i. Be «q resp. «; their costs. If aig # a setting
(i) := ¢(i) + g — g and & := g increases the number of shortest paths.

The strengthened ¢ depends on the order of the indices which we took to strengthen
it. Different permutations of {1, ..., n} can lead to different strengthened hyperplanes.
For the computation of ¢(i) we look at each edge of G once. As we strengthen every
coefficient of ¢ the total running time is O(n|AJ). If we do not consider permutations of
the indices but take the canonical order {1, ..., n} we only have to use each edge three
times, so the running time can be reduced to O(|AJ).

In a branch-and-cut framework it may occur that a hyperplane separating a given x*
does not separate =* after strengthening for an index 4. In this case we do not change

().

3.2 Improving Coefficients

In the following we adapted a strategy known for lifting cover inequalities for the
knapsack problem, see e.g. [21]. W.l.0.g. assume that ¢ > 0 holds. If there exists a
c(i) < O replace 6 := 6 — ¢(4) and ¢(i) := —c(¢). For simplicity reasons assume
we want to strengthen ¢(1) which means, as we have = > 0, increasing its value.
Rewriting the inequality to ¢(1)z(1) < § — >, c(i)x(i) shows that we can set
c(1) :== 6 — max{> 1 ,c(i)z(i) | © € Pgpp,x(l) = 1}. Again we use the fact
that we can optimize over Pgpp in linear time. Different permutations of indices again
lead to different strengthened inequalities.

4 Computational Results

The cuts that we developed in this paper can be used for any 0/1-integer program, even
for those, where nothing is known about their structure. We investigated the practical
strength of our theory by doing computational experiments. Our results with MAX-
ONES problems and randomly generated 1Ps show, that one can achieve a considerable
speedup on hard and small 0/1-IPs. We report on some techniques that we developed
to build BDDs fast and to keep their sizes small.



4.1 Heuristics for the Variable Order of the BDD

It is well-known that the variable order used in a BDD has a great influence on its
size [28]. Before we start to build BDDs for any subset A’z < ¥, we choose an appro-
priate variable order, which considers all constraints A x < b.

Experiments have shown that heuristics that do not take the structure of the problem
into account will produce bad variable orders. We adapted an algorithm for partition-
ing the outputs of circuits that was presented in [12]. It proceeds as follows: First the
constraint set A x < b is partitioned into subsets with a similar support. Then, for every
subset a partial variable order is computed. These partial orders are merged into one
total order using a technique called interleaving [7].

For the partitioning of the constraints generate a new initially empty block. Delete
that constraint from the set of constraints that has the largest support and insert it into
the new block. This constraint is called the leader of the block. Then all constraints
satisfying a certain criterion are moved to the new block. We iterate until the set of
constraints becomes empty.

The two citeria we used are:

1. Add a constraint if its support is a subset of the support of the leader (WOG).
2. Add a constraint if its support is a subset of the supports of all constraints already
contained in the block (BOG).

For the partial orders we used a simple heuristics. For every variable z(j) we com-
puted h; = > ]a;;| and sorted the variables in every block according to decreasing
h; value. Before we apply the interleaving algorithm we sort the blocks increasingly by
the number of variables contained in them.

Besides this algorithm that computes an inital variable order, we use sifting [25] to
improve the order dynamically while we build the BDDs.

4.2 Building a BDD for a Subset of Constraints

We mainly use the following two operations for BDDs: computing the BDD for the
characteristic function of a single constraint and the conjunction of two BDDs. Both
BDD algorithms work recursively. The top-most variable is set to 0 and 1 and the al-
gorithm is called recursively on the two branches. Figure 2 shows an example of a
conjunction of two BDDs.

4.3 Decreasing the Size of the BDD

Let a”xz < b be a constraint of the 0/1-IP, that has not been used to build the BDD.
We set the edge weights in the BDD-graph to w,, as in (2) and optimize over it. A point
xp € Pppp satifies the constraint aTz < bifand only if the costs of its corresponding
path p are less or equal b. For a given node, consider the costs of all paths that cross it.
If the minimum of these costs is greater than b, we can delete that node together with its
incident edges, since we are only interested in those points of the BDD-polytope, that
satisfy the given constraint.

This algorithm runs in linear time in the number of nodes of the BDD and it can be
applied while the BDD is built.



(a) First Operand (b) Second Operand (c) Result

Fig. 2. Conjunction of BDDs: The first operand is the BDD of the characteristic function of the
constraint 2z(1) — z(2) 4+ 3z(3) < 2, the second of —z(1) + z(3) > 0.

4.4 Implementation

To evaluate the effectiveness, we implemented our methods in C++. For building BDDs
we used the CUDD 2.4.0 package [27].

Before we build a BDD for the first time, we use our WOG-heuristics for finding
a good variable order on the initial 0/1-1P. In terms of finding a variable order which
decreases the size of the BDDs, WOG seems to be slightly better than BOG. If the
number of nodes exceeds a given limit while building the BDD, we turn on sifting
occasionally. 60.000 turned out to be a good node limit for sifting. If the size of the
BDD gets too large, which means, more than 1 million nodes, we stop building it.

The BDDs that we use in our implementation differ from those that we use for
theory. In practice we work on reduced BDDs. There are no redundant nodes but long
edges that cross levels so that not every path from the root to the leaf 1 contains exactly
n edges. This reduces memory and time consumption. On the BDD-datastructure used
in CUDD we implemented an efficient version of an acyclic shortest path algorithm.

Our separation routine is called in a node of the branch-and-bound tree. To simplify
building the BDD, we fix the variables according to the fixation in the branching that
led us to this node. In addition to that we restrict the constraints that will be used for
building the BDD to some of those of the 0/1-1P that are tight at the LP solution in the
current node. The BDD is a compact representation of all 0/1-points that are feasible
for the given constraints and possibly given fixations. If there are no fixations, the BDD
gives an overapproximation of all 0/1-points that are feasible for the 0/1-1P. If some
variables were fixed while building the BDD, the generated cuts are only valid for that
face of Pgpp, which corresponds to the given fixations. To make these cuts valid for
Pgpp We lift them by sequentially solving LPs (see e.g. [21]).

We embedded our separation routines in the cutcallback function of the CPLEX 9.0
Branch & Cut framework [15]. Algorithm 2 sketches our separation routine.

Due to numerical problems the subgradient method sometimes does not terminate.
We investigated the steplength of the rotation ¢(*) and increased the denominator by 1



Algorithm 2 Separation via BDDs as cutcallback function
(1) Restriction: Fix some variables according to the branching decisions.
(2) Build the BDD for some of the constraints that are tight at the LP solution.
(3) Solve the separation problem with the subgradient method.
(4) Strengthen the cuts.
(5) Lift the strengthened cuts into the original full space and return them.

not in every but in every s’th iteration where s = 5 showed to be a good value for most
of the cases. If we cannot find a separating hyperplane after 2000 iterations we stop.
To make the hyperplanes integer, we multiply them with an adequate integer value and
round them. After that we compute a new right-hand-side via a shortest path computa-
tion. In almost all of the cases the resulting integer hyperplanes are still separating the
current LP solution from the 0/1-IP.

45 Benchmarks

MAX-ONES Satisfiability problems notoriously produce hard to solve IPs [1]. There-
fore we investigated SAT instances and converted them to MAX-ONES problems. A
given SAT-instance over n boolean variables and a set of clauses C, . . ., C}, can easily
be transformed into a 0/1-IP representing a MAX-ONES problem by converting each
clause to a linear constraint of the form 3, z(i) + >_,;(1 — z(j)) > 1 and adding the
objective function max Y., «(i). From a SAT competition held in 1992 [4], we took
the hfo instances. The 5cnf instances are competition benchmarks of SAT-02 [14], and
the remaining instances are competition benchmarks from SAT-03 [14].

Randomly Generated IPs Additionally we are interested in how our code performs
on problems with less or without any structure. We randomly generated 0/1-1Ps the
following way: an entry in the matrix A, the right-hand-side b and the objective function
¢ gets a nonzero value with probability p. This value is randomly chosen from the
integers with absolute value less or equal c,,.«. The instances that we generated are
available on request.

4.6 Results

Our experiments have been performed on a PC Intel Xeon CPU 3.06 GHz with 4 GByte
RAM on GNU/Linux (kernel 2.6) operating system. Every investigated problem was
solved to optimality or proved to be infeasible. On the one hand we run CPLEX 9.0
with the default values, i.e. it did presolving and used all types of built-in separation
cuts. On the other hand we used the CPLEX Branch & Cut framework with our separa-
tion routines (bcBDD), but switched off presolve and all built-in cuts. We switched off
presolve since we sometimes encountered problems working on the presolved model.
We also tried to switch off presolve for the benchmarks made with CPLEX standalone.
It showed, that presolving the randomly generated IPs does not really influence the run-
ning time but switching off presolve for the MAX-ONES instances increased CPLEX
running times.



For the MAX-ONES instances we found out, that generating nearly all of our cuts in
the root node is the most promising strategy. Using too few constraints to build the BDD
resulted in weaker cutting planes. In practice it showed that 70% of the constraints, that
are tight at the current LP solution, is a good threshold for generating cuts with an
adequate quality while building the BDD does not consume too much time.

For randomly generated IPs building the BDDs is harder as the constraints have no
structure. We generated our cuts deeper in the branch-and-bound tree and lifted them.
Furthermore we only used 20% of the constraints, that belong to the basis of the LP
solution in the current branch-and-bound node.

Table 1. Results for the SAT-02 / SAT-03 instances

Name |#Var. |#Constr.|solvable| CPLEX (s) |bcBDD(s)|Speedup (%)
Scnf 3800 _50f1] 50 | 760 | yes 5550| 3521 36.66
5cnf_3900_060 | 60 936 no 5000.01| 3519.79 29.60
5cnf 3900 070 | 70 | 1092 yes 4523.13| 3524.89 22.07
5cnf_4000_50f1| 50 800 no 183.55 180.21 1.82
5cnf_4000_50f7| 50 800 no 252.49 240.19 4.87
5cnf_4000 _50t1| 50 800 yes 24.21 12.81 47.09
5cnf 4000 50t3| 50 | 800 | yes 106.74|  89.66 16.00
5cnf_4000_50t8| 50 800 yes 125.63 109.32 12.98
5cnf_4000_60t5| 60 960 yes 3905.54| 3458.66 11.44
5cnf_4100_50f1| 50 820 no 291.00| 206.07 29.19
5cnf_4100_50f2| 50 820 no 237.47 171.19 27.91
5cnf_4100_50f3| 50 820 no 253.30 153.63 39.35
5cnf_4100_50f5| 50 820 no 259.19| 166.43 35.79
5cnf_4100_50f7| 50 820 no 380.19 257.91 32.16
5cnf_4100 _50t1| 50 820 no 242.31 134.71 44 .41
icosahedron 30 | 192 no 184.35| 186.81 -1.39
marg2x5 35 120 no 22.52 23.51 -4.40
marg2x6 42 144 no 207.22| 237.38 -14.55
marg2x7 49 168 no 3371.32| 3330.37 121
marg3x3add4 37 160 no 453.39| 414.66 8.54
urghlc2x4 35 | 216 no 492.38| 464.90 5.58
urgh2x3 31 240 no 465.25| 413.98 11.02

In all tables the running times are the total user times given in seconds. We com-
puted the speedup as 1 minus the ratio of our running time divided by the CPLEX
running time. The values for the hfo instances are average values taken over 20 differ-
ent instances of each type. The standard deviation is in brackets. For 109 of the 120
hfo-instances we obtain faster running times compared to CPLEX default MIP-solver.
The average of the overall speedup for the hfo-instances is 18.31% with a standard de-
viation of 14.44%. For the randomly generated IPs we achieved an average speedup of
34.23%.



Table 2. Results for the hfo instances

Name|#Var. [#Constr. solvable| CPLEX(s)

|bcBDD(s)

|Speedup(%)

hfo5 | 55 | 1163 | no 3615.93 (770.64)] 2510.11 (437.74) 27.32 (21.36)
hfo5 | 55 | 1163 yes 1917.11 (1108.12)| 1399.99 (764.53) 22.88 (17.60)
hfo6 | 40 | 1745 | no 966.84 (77.72)| 771.48 (58.14) 19.97 (5.94)
hfo6 | 40 | 1745 | yes 520.44 (256.00)| 417.65 (222.52) 21.71 (19.69)
hfo7 | 32 | 2807 no 662.65 (60.98)| 557.29 (23.68) 15.33 (7.47)
hfo7 | 32 | 2807 | yes 346.32 (193.71)| 302.31 (156.45) 8.93 (10.37)
hfo8 | 27 | 4831 no 690.39 (36.73)] 592.29 (19.20) 14.02 (4.66)
hfo8 | 27 | 4831 | yes 352.31 (211.31)| 297.77 (171.71) 16.29 (11.10)
Table 3. Results for the random IP instances
Name |#Var. [#Constr.|solvable| p |cmax| CPLEX(s)|bcBDD(s)|Speedup (%)
rand50_00| 50 40 no (0.6 15 28.30 17.05 39.75
rand50_01| 50 50 yes |0.6| 13 49.17 17.17 65.08
rand50_02| 55 50 no (0.6| 15 41.53 33.43 19.50
rand55_00| 55 55 no |0.7| 17 137.50 108.69 20.95
rand55_01| 55 55 yes |0.7| 17 85.20 78.61 7.73
rand60_00| 60 60 no 0.6/ 13 151.65 85.60 43.55
rand60_01| 60 60 no |0.6] 13 104.58 92.49 11.56
rand60_02| 60 60 no [0.6| 13 237.59 173.62 26.92
rand60_03| 60 60 no 0.6/ 13 191.10| 134.90 29.41
rand60_04| 60 60 no |0.6| 13 155.90 106.82 31.48
rand60_05| 60 60 no 0.6/ 13 285.83| 155.83 45.48
rand60_06| 60 60 no 0.6/ 13 678.75| 406.58 40.10
rand60_07| 60 60 yes 10.6| 13 84.33 56.26 33.29
rand60_08| 60 60 no 0.6/ 13 79.10 78.04 1.34
rand70_00| 70 70 no (0.6| 12 511.62| 280.85 45.11
rand80_00| 80 80 yes [0.6| 4 89.47 31.30 65.02
rand90_00| 90 90 yes (04| 4 192.36 85.45 55.58
References

1. G. Andreello, A. Caprara, and M. Fischetti. Embedding cuts in a branch & cut framework:

A computational study with {0, %}-cuts. Submitted to INFORMS Journal on Computing,
2003.

. E. Balas. Facets of the knapsack polytope. Mathematical Programming, 8:146-164, 1975.

. R. E. Bryant. Graph-based algorithms for Boolean function manipulation. IEEE Transac-
tions on Computers, C-35:677-691, 1986.

. M. Buro and H. Kleine Biining. Report on a SAT competition. Bulletin of the European
Association for Theoretical Computer Science, 49:143-151, 1993.

. G. Codato and M. Fischetti. Combinatorial benders’ cuts. In D. Bienstock and G. Nemhauser,
editors, Integer Programming and Combinatorial Optimization, IPCO X Proceedings, Lec-
ture Notes in Computer Science, pages 178-195. Springer, 2004.

. H. Crowder, E. J. Johnson, and M. Padberg. Solving large-scale 0-1 linear programming
problems. Operations Research, 31(5):803-834, 1983.



10.

11.

12.

13.

14.

15.
16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

26.
27.

28.

29.

H. Fujii, G. Ootomo, and C. Hori. Interleaving based variable ordering methods for ordered
binary decision diagrams. In Proceedings of the IEEE/ACM International Conference on
Computer-Aided Design, pages 38 — 41, 1993.

R. E. Gomory. Outline of an algorithm for integer solutions to linear programs. Bulletin of
the American Mathematical Society, 64:275-278, 1958.

M. Grétschel, L. Lovasz, and A. Schrijver. The ellipsoid method and its consequences in
combinatorial optimization. Combinatorica, 1(2):169-197, 1981.

M. Grotschel, L. Lovasz, and A. Schrijver. Geometric Algorithms and Combinatorial Opti-
mization, volume 2 of Algorithms and Combinatorics. Springer, 1988.

P. L. Hammer, E. Johnson, and U. N. Peled. Facets of regular 0-1 polytopes. Mathematical
Programming, 8:179-206, 1975.

M. Herbstritt, T. Kmieciak, and B. Becker. On the impact of structural circuit partitioning
on SAT-based combinational circuit verification. In Proceedings of 5th IEEE International
Workshop on Microprocessor Test and Verification, Austin, USA, 2004.

J. N. Hooker. Planning and scheduling by logic-based benders decomposition. Working
paper, 2004.

H. H. Hoos and T. Stiitzle. SATLIB: An online resource for research on SAT. In I. P. Gent
and T. Walsh, editors, Satisfiability in the year 2000, pages 283-292. 10S Press, 2000.
ILOG. CPLEX 9.0 User’s Manual and Reference Manual. S.A., 2003.

M. Jinger, G. Reinelt, and G. Rinaldi. The traveling salesman problem. In Handbook on
Operations Research and Management Science, volume 7, pages 225-330. Elsevier, 1995.
R. M. Karp and C. H. Papadimitriou. On linear characterizations of combinatorial optimiza-
tion problems. In 21st Annual Symposium on Foundations of Computer Science, pages 1-9.
IEEE, New York, 1980.

Y. T. Lai, M. Pedram, and S. B. K. Vrudhula. FGILP: an integer linear program solver
based on function graphs. In Proceedings of the IEEE/ACM International Conference on
Computer-Aided Design, pages 685-689, 1993.

Y. T. Lai, M. Pedram, and S. B. K. Vrudhula. EVBDD-based algorithms for integer lin-
ear programming, spectral transformation, and functional decomposition. IEEE Trans. on
Computer-Aided Design, 13(8):959-975, 1994.

C. Y. Lee. Representation of switching circuits by binary-decision programs. The Bell
Systems Technical Journal, 38:985 — 999, 1959.

G. L. Nemhauser and L. A. Wolsey. Integer and Combinatorial Optimization. John Wiley,
1988.

M. W. Padberg and M. R. Rao. The russian method for linear programming I11: Bounded
integer programming. Technical Report 81-39, New York University, Graduate School of
Business and Administration, 1981.

M. W. Padberg, T. J. Van Roy, and L. A. Wolsey. Valid linear inequalities for fixed charge
problems. Operations Research, 33(4):842-861, 1985.

M. W. Padberg and L. A. Wolsey. Fractional covers for forests and matchings. Mathematical
Programming, 29(1):1-14, 1984.

R. Rudell. Dynamic variable ordering for ordered binary decision diagrams. In Proceedings
of the IEEE/ACM International Conference on Computer-Aided Design, pages 42-47, 1993.
A. Schrijver. Theory of Linear and Integer Programming. John Wiley, 1986.

F. Somenzi. CU Decision Diagram Package Release 2.4.0. Department of Electrical and
Computer Engineering, University of Colorado at Boulder, 2004.

I. Wegener. Branching programs and binary decision diagrams. SIAM Monographs on
Discrete Mathematics and Applications. SIAM, Philadelphia, PA, 2000.

L. A. Wolsey. Faces for a linear inequality in 0-1 variables. Mathematical Programming,
8:165-178, 1975.



