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Abstract. This work is motivated by the long-standing open problem
of designing a polynomial-time algorithm that with high probability con-
structs an asymptotically maximum independent set in a random graph.
We present the results of an experimental investigation of the compara-
tive performance of several efficient heuristics for constructing maximal
independent sets. Among the algorithms that we evaluate are the well
known randomized heuristic, the greedy heuristic, and a modification of
the latter which breaks ties in a novel way. All algorithms deliver on-
line upper bounds on the size of the maximum independent set for the
specific input-graph. In our experiments, we consider random graphs pa-
rameterized by the number of vertices n and the average vertex degree
d. Our results provide strong experimental evidence in support of the
following conjectures:
1. for d = c ·n (c is a constant), the greedy and random algorithms are

asymptotically equivalent;
2. for fixed d, the greedy algorithms are asymptotically superior to the

random algorithm;
3. for graphs with d ≤ 3, the approximation ratio of the modified greedy

algorithm is asymptotically < 1.005.
We also consider random 3-regular graphs, for which non-trivial lower
and upper bounds on the size of a maximum independent set are known.
Our experiments suggest that the lower bound is asymptotically tight.

? This research was partially supported by NSF grants 0324947 and 0346341



1 Introduction.

The problem of constructing a maximum independent set (MIS) in a
graph is a classical NP-hard computational problem [9], which arises in
many applications. It is also NP-hard to approximate the size of the
maximum independent set [11]. For general graphs, the best approxima-
tion algorithm for the independence number has an approximation ratio
of O(n/(log n)2) [4]; for bounded-degree graphs, the best ratio known is
O(∆/ log log ∆) ([8]). The problem is 2-approximable on random graphs
with fixed edge probability p (the average degre d is (n − 1)p). Here
we consider random graphs in the Erdös-Rényi, or G(n, p)-model [2, 5]:
given n vertices, each of the

(n
2

)

edges is generated independently with
probability p. Let α(n, p) be a random variable denoting the size of a
maximum independent set in a G(n, p) graph. For fixed p, it is known
that the standard randomized algorithm Random (described below) out-
puts an independent set of size 1 ∼ log1/(1−p) n, with probability → 1
(w.p.1). The 2-approximability of MIS on G(n, p) with fixed p follows
from the results by Bollobás and Erdös ([3]) and Matula ([12]), where
they show that for a G(n, p) graph with fixed p, α(n, p) ∼ 2 log1/(1−p) n,
w.p.1. For c > 0, no polynomial algorithm for MIS on a G(n, p) is known
to find, w.p.1, an independent set of size ∼ (1+ c) log1/(1−p) n. Frieze and
McDiamard [6, page 11] pose the following research problem:

Construct a polynomial algorithm that finds an independent set
of size ∼ (1

2 + c)α(n, p) with high probability, or show that no
such algorithm exists, modulo some reasonable conjecture on the
computational complexity hierarchy (e.g. P 6= NP ).

Two well-known algorithms for MIS are Random and Greedy, which are
instantiations of the following general sequential algorithm:

1: Sequential algorithm for MIS:
2: I = ∅ (the independent set);
3: while G 6= ∅ do
4: select a vertex v ∈ G;
5: I ← I ∪ {v};
6: G← G \ {N(v) ∪ v}

In Random, the vertex selected in step 4 is random, whereas in Greedy it is
a minimum degree vertex (ties are broken randomly). Random is generally

1 We use the notation f(n) ∼ g(n) if lim
n→∞

f(n)/g(n) = 1.



easier to analyze mathematically ([2]), but it under-performs Greedy on
most graph domains. It is not known whether Greedy is asymptotically
better than, worse than, or equivalent to Random on G(n, p) graphs.
It is not known whether there are any polynomial-time algorithms that
perform asymptotically better than Random. The difficulty encountered
by existing analysis techniques in attempting to analyze deterministic
algorithms, e.g. Greedy, on random objects is that during execution, the
algorithm destroys the randomness in an analytically unpredictable way.
This difficulty already surfaces when one analyzes Greedy on random
graphs with average degree 3. The only results that carry through the
analysis of Greedy are those for finding matchings in random graphs ([10],
[1]) and for 3-regular random graphs ([7]). However, it is not known how
Greedy performs on random d-regular graphs with d ≥ 4; on random
graphs with the average vertex degree d, for any d > 0; or on random
graphs with a fixed edge-probability p > 0 (d = p(n− 1)).

In this paper, we present the results of a comparative experimental
investigation of the performance of several fast polynomial heuristics for
constructing maximum independent sets in random graphs. The proce-
dures that we tested include Random, Greedy, and a modification of the
latter, Greedym, which breaks the ties in a novel way. All three heuristics
deliver, on-line, upper bounds on the size of the maximum independent
set in the input-graph. The input domain of all experiments is the set
of random graphs with a given number n of vertices and a given average
vertex degree d. Based on the experiments, we formulate the following
conjectures:

– for d = c ·n (c is a constant), Random and the greedy algorithms are
asymptotically equivalent, i.e., the independent sets they construct
are asymptotically of the same size;

– for fixed d, Greedy and Greedym are asymptotically superior to Ran-
dom;

– for d ≤ 3, the approximation ratio of Greedym is asymptotically <
1.005 w.p.1.

We also tested our algorithms on random 3-regular graphs for whichnon-
trivial lower and upper bounds on the MIS exist ([7]). The results suggest
that the lower bound is asymptotically tight.

We will use standard graph theory notation as described in [13]. For
a graph G, the independence number α(G) is the maximal size of an
independent set in G. For v ∈ V (G), αv(G) denotes the maximal size of
an independent set containing v. Vertex v is correct if αv(G) = α(G).



N(v) is the neighborhood of v, the set of vertices adjacent to v; deg(v), the
degree of v, is the size of the neighborhood, |N(v)|; deg(G) = maxv deg(v).
For a subset of the vertices, T ⊆ V (G), N(T ), the neighborhood of T , is
the union of the neighborhoods of the vertices in T .

Let A be a sequential algorithm for MIS, which constructs an in-
dependent set by repeatedly selecting vertices, e.g. Random, or Greedy.
When A is applied to G, suppose that the sequence of vertices selected is
{v1, v2, . . . , vk} (k is the size of the independent set). Let Gi be the sub-
graph obtained from G by removing N({v1, . . . , vi−1}). The dynamic
degree deg(vi) is the degree of vi in Gi (the dynamic degree depends on
the algorithm A); deg(G), the dynamic degree of G, is maxi{deg(vi)}.
Let I` denote the vertices in the output independent set whose dynamic
degrees are ` (` ≥ 0); thus, I = ∪`≥0I`.

2 On-line upper bounds.

A key feature of our algorithms is that we bound the approximation ratio
of the output independent set, for the specific input graph. Our bounds
are based on the following observations.

Lemma 1 Let v ∈ V (G). If deg(v) = 0, then αv(G) = α(G), otherwise
αv(G) ≥ α(G) − deg(v) + 1. If αv(G) < α(G), then every MIS of G
contains at least α(G) − αv(G) + 1 vertices from N(v).

Lemma 2 For a sequential algorithm A which selects vertices {v1, . . . , vk},
α(G) ≤ |I0|+

∑k
i=1 deg(vi).

The lemmas imply that selecting any vertex of dynamic degree 0 or 1
is correct, and each vertex of dynamic degree 2 gives an error of size at
most 1. Our experiments show that for G(n, p) graphs with average de-
gree ≤ 6, Greedy selects a small number of vertices of dynamic degree
2, and the probability that Greedy selects a vertex of dynamic degree
≥ 3 is asymptotically 0. The general problem of determining whether a
given degree two vertex belongs to an MIS is NP-complete. We present
polynomial-time sufficient conditions for a degree two vertex to be cor-
rect. These conditions are incorporated in Greedym, an enhancement over
Greedy in which ties between dynamic degree 2 vertices may be broken
optimally to yield a correct vertex. Since we can always remove any ver-
tex with dynamic degree 0 or 1, we assume that the dynamic degrees of
all vertices are at least 2.

A straight path is a path containing only degree two vertices. An
interval is a straight path which is not a proper subpath of another



straight path. A straight path is even (resp. odd) if its length is even
(resp. odd). (The smallest interval consisting of one vertex is even and
has length 0.) The end-points of an interval are the first and last vertices
of the interval. A connector is a vertex of degree > 2 adjacent to the
end-points of an interval. A leaf-interval (or leaf) is an interval with
length > 0 whose end-points are adjacent to the same connector. A loop-
interval (or loop) is an interval whose end-points are adjacent.

Define a bi-partite graph Q = (I ∪ C;F ) as follows: the vertex set is
I ∪ C, where I is the set of intervals and C is the set of connectors; the
edge (p, c) is in the edge set F iff p is an interval in I and c is a connector
adjacent to at least one end-point of p. The even (resp. odd) subgraphs
Qev (resp Qodd) are the induced subgraphs after removing the even (resp.
odd) intervals from Q. We now give sufficient conditions for a degree 2
vertex to be correct (proofs are postponed to a full version of the paper).

Theorem 1 If v is an end-point of a loop or leaf, then v is a correct.

Theorem 2 Let C be a connected component of Qev and v an end-point
of an interval in C. Then v is correct if one of the following hold:

1. C contains a cycle;
2. two connectors from C are adjacent in G;
3. there is an odd interval whose connectors are both vertices in C.

2.1 Greedym: Modifying the Greedy Algorithm

Theorem 2 indicates how we can modify Greedy to obtain a better algo-
rithm. If a degree 2 vertex v is encountered, we may try to determine if it
is correct. If it is correct, then we may safely take v. A polynomial-time
scan through all degree 2 vertices can be used to find a correct degree
two vertex if one exists. If no degree 2 vertex is found, then the degree 2
vertex that is a member of the longest path is selected, resulting in a mis-
take of at most 1 for all the vertices selected in the path. Thus, Greedym

differs from Greedy (described in the introduction) only in how it breaks
ties among dynamic degree 2 vertices.

2.2 Efficiently Generating Random Graphs

For dense graphs (fixed edge probability p), the expected size of the input
is Ω(n2). Thus, one cannot significantly improve upon the algorithm that
checks each of the

(n
2

)

pairs to generate
(n

2

)

p of edges independently with
probability p.



When p = o(1), generating the edges by examining all pairs of vertices
is excessive since only O(n2p) edges need be generated. It is therefore
more efficient to first generate the number of edges M , and then select
the specific edges. For sparse graphs, with p = d/(n − 1), this approach
yields considerable computational savings.

Specifically, the number of edges in the graph M is a binomial ran-
dom variable B(p,

(n
2

)

). The following code can be used to generate M
efficiently,

1: x = 0; y = 0; N =
(n

2

)

; c = ln(1− p);
2: if c = 0 then
3: return 0;
4: while TRUE do
5: Generate a uniform random variate u ∈ [0, 1];
6: y ← y + b ln u/c c + 1;
7: if y ≤ N then
8: x← x + 1;
9: else

10: BREAK;
11: return x;

The runtime of the algorithm is O(x), where x is the output value for M .
Since the expected value of M is

(n
2

)

p = O(n) (sparse graphs), we see
that generating M is quite efficient.

Given M , it is now a simple matter to uniformly pick M edges from
the available

(n
2

)

edges. The following algorithm accomplishes this task,

1: Let S = ∅ be the set of selected edges;
2: while |S| < M do
3: Generate a uniform integer random variate u ∈ [1,

(n
2

)

];
4: if edge u 6∈ S then
5: S ← S ∪ u;

The probability that a sampled edge is not placed in S is O(1/n) for
sparse graphs. Therefore in M = O(n) samples, O(1) edges are rejected.
Thus, O(2M) samples should suffice. If the set S is stored in a data
structure that allows for efficient searching in time O(log |S|), for example
a balanced binary search tree, then the entire algorithm has expected run
time O(M log M).



3 Experimental Results

The experiments described here involve running Random, Greedy, and
Greedym on randomly generated graphs from different domains: G(n, p)
for a fixed p; G(n, p) for p = d/(n − 1), where d is an integer in [1,10];
and 3-regular graphs. All our experiments are reproducible, since we use
a seeded pseudo-random number generator. The machines used to run
the experiments range in size and power from Sun Ultra 10 workstations
with 256MB RAM running Solaris, to Intel IA64 based workstations with
16GB RAM running Linux.

3.1 Greedy vs. Random For Fixed Edge Probability

It is not known whether Greedy outperforms Random on G(n, p) graphs
for fixed p – no theoretical or experimental evidence to the contrary is
available. We present experimental data comparing Random to Greedy on
G(n, p) graphs for fixed p. We show the results for p = 0.1 and n up to
100,000 (other values of p gave similar results).

For each n, we generated 1000 graphs, and compared the average
independent set size found by Greedy to that found by Random. Let g(n, p)
(resp. r(n, p)) be the average independent set size found by Greedy (resp.
Random). We are interested in the ratio R(n, p) = g(n, p)/r(n, p), which
is plotted in Figure 1(a). Figure 1(a) shows that R(n, p) is not a monotone
function (as was expected initially) but a unimodular function with the
maximum near n = 1000.

Although Greedy consistently finds a larger independent set than
Random, and R(100, 000, 0.1) > 1.15, the analysis of R(n, 0.1) suggests
that indeed R(n, 0.1) → 1, as n → ∞. We analyze the experimental
data for R(n, 0.1) by fitting a curve of the form R(n, p) = c0 + c1f(n),
where f(n)→ 0. We have tried many functional forms for f(n) (yielding
similar results), but the functional forms f(n) = 1/ log n and f(n) =
log log n/ log n are suggested by the theoretical analysis of Random, and
so we only show the results for these two functional forms. For n ≥ nL,
we can obtain the optimal least squares fit for c0, denoted c0(nL). As
nL gets larger, c0(nL) should converge to the true value of c0. We show
the convergence of R(n, 0.1) as a function of n and the convergence of
c0(nL) in Figure 1. From Figure 1(b) it appears that c0 converges to 1
for f(n) = 1/ log n. f(n) = log log n/ log n does not give a reasonable
value for c0 as it is below 1. Thus the data indicates that c0 → 1 and that
f(n) = 1/ log n. In particular, this indicates that Greedy only outperforms
Random by a constant number of vertices.
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Fig. 1. (a) R(n, p) for p = 0.1, n ≤ 50000. Also shown is the fit to 1/ log n for n ≥
10, 000. (b) Convergence of c0(nL) for f(n) ∈ {1/ log n, log log n/ log n}.

3.2 Greedy vs. Random For Fixed Average Degree

Frieze and Suen [7] show that for random 3-regular graphs, Greedy con-
structs an independent set of the size at least (6 log 3

2 − 2)n ≈ 0.432791n
w.p.1., which is asymptotically larger than the independent set constructed
by Random (the asymptotics for Random can be found in [2]). The data
in Table 1 show that the lower bound on the performance of Greedy is
tight. Each entry is an average over 1000 randomly generated graphs.

n Random Greedy

1,000 0.3749 n 0.4320 n

5,000 0.3751 n 0.4324 n

10,000 0.3750 n 0.4326 n

50,000 0.3750 n 0.4327 n

Table 1. Size of independent sets found in 3-Regular graphs

Our experiments on random graphs with fixed average degree show
a similar performance gain for Greedy over Random. Figure 2 shows the
ratio R(n, p) for d = 1, 2, 3, 4, 5, 6; and n ∈ [1000, 50, 000]; each data
point is an average over 1000 graphs. The main conclusion: on average,
Greedy outperforms Random by a multiplicative constant which is in-
creasing in d for small d.
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3.3 Dynamic Degrees

We now consider the dynamic degrees of the vertices in the independent
sets found by Greedy and Random. The dynamic degrees allow us to
establish non-trivial upper bounds on the independence number of the
input-graph. The dynamic degree distributions with respect to Greedy
for random average degree 3 graphs are shown in Table 2. Tables Tables
3, 4 and 5 give the corresponding distributions for average degrees 4,
5 and 6 respectively. These statistics (averaged over 1000 graphs) were

n I0/n I1/n I2/n

1000 0.076 0.442 0.013

5000 0.073 0.449 0.009

10000 0.073 0.451 0.009

50000 0.072 0.452 0.008

100000 0.072 0.452 0.008

Table 2. Distribution of dynamic de-
grees for graphs with average degree 3

n I0/n I1/n I2/n

1000 0.025 0.363 0.083

5000 0.023 0.368 0.081

10000 0.023 0.368 0.080

50000 0.022 0.369 0.080

Table 3. Distribution of dynamic de-
grees for graphs with average degree 4

collected from the same data used in the previous section. Although there



are a few vertices of dynamic degree 3 for average degree and 6 graphs, it
is clear that the number of such vertices is approaching zero as the graph
size increases.

n I0/n I1/n I2/n

1000 0.010 0.255 0.160

5000 0.008 0.260 0.157

10000 0.008 0.260 0.157

50000 0.008 0.262 0.156

Table 4. Distribution of dynamic de-
grees for graphs with average degree 5

n I0/n I1/n I2/n I3/n

1000 0.004 0.161 0.224 0.0002

5000 0.003 0.165 0.222 0.0000

10000 0.003 0.166 0.222 0.0000

50000 0.003 0.166 0.221 0.0000

Table 5. Distribution of dynamic de-
grees for graphs with average degree 6

Using the data collected above we are able to evaluate the accuracy of
Greedy using the bound in Lemma 2. Table 6 shows the approximation
ratio for Greedy on average degree graphs with up to 50,000 vertices.
The ratio shown is the average upper bound on the size of independent
set derived from the dynamic degrees over the average size found by the
Greedy algorithm.

Average Approximation Ratio
Degree n = 1000 n = 5000 n = 10000 n = 50000

1 1.0000784 1.0000195 1.0000077 1.0000014

2 1.0006551 1.0001155 1.0000603 1.0000111

3 1.0249426 1.0174993 1.0161715 1.0150454

4 1.1767924 1.1709950 1.1708517 1.1694409

5 1.3761916 1.3700855 1.3695010 1.3674423

6 1.5764024 1.5693010 1.5685679 1.5670232

Table 6. Accuracy of Greedy on random graphs with a fixed average degree

Our interpretation of the data presented in Table 6 is that Greedy is
very near optimal for graphs with average degree 1 and 2, and probably
3 as well (asymptotically).

3.4 Greedym for Average Degree 3.

Greedym is similar to Greedy except that the ties between dynamic degree
2 vertices are broken by incorporating the sufficient conditions in Theorem



2. Thus, not only will the independent set found be larger, but the bound
obtained in Lemma 2 can be improved by subtracting the number of
dynamic degree two vertices that are correct. The approximation ratios
in Table 7 uses this improved upper bound from Greedym. As before, each
entry is based on an average over 1000 random graphs.

n Random Greedy Greedym

1000 1.183317 1.021652 1.013076

5000 1.170949 1.012581 1.006536

10000 1.171350 1.012373 1.006349

50000 1.166931 1.009917 1.004922

100000 1.166914 1.009740 1.004830

Table 7. Approximation ratios for Random, Greedy, and Greedym ; average degree = 3.

4 Conclusions.

The main objective of this research is the development of a database of
experimental results to aid the theoretical investigation of the problem of
constructing large independent sets in random graphs. Our experiments
support a conclusion that traditional randomized algorithms are not op-
timal on a variety of random graphs domains, and may give clues as to
what results may hold and how to prove them.

Specifically, for sparse random graphs, the greedy algorithm asymp-
totically outperforms the randomized algorithm by a constant factor. Up
to average degree 3, the modified greedy algorithm which breaks the ties
among dynamic degree 2 vertices appears to be asymptotically optimal
or near optimal (approximation ratio < 1.005).

For dense graphs, with fixed edge probability p, our results indicate
that the greedy and randomized heuristics are asymptotically equivalent.
In particular, the ratio of Greedy to Random appears to have the depen-
dence Ratio = 1 + c1/ log n. Since the asymptotics of Random are well
known on this random graph domain, Random = log1/(1−p) n + o(log n),
our results indicate that Greedy is asymptotically only a constant better
than Random.

Our results indicate that for sparse graphs, the modified greedy algo-
rithm is asymptotically superior to the randomized algorithm. However,
for fixed edge probability p the greedy and randomized algorithms are



asymptotically equivalent. An interesting open question raised by our re-
sults is to determine the threshold p(n) for the edge probability below
which the greedy algorithm is superior to the randomized algorithm, and
above which the two are equivalent.
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