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Abstract. This paper presents a learning framework for blind source
separation (BSS), in which the BSS is formulated as generalized Eigen-
value (GE) problem. Compared to the typical information-theoretical
approaches, this new one has at least two merits: (1) the unknown un-
mixing matrix directly works out from the GE equation without time-
consuming iterative learning; (2) The correctness of the solution is guar-
anteed. We give out a general learning procedure under this framework.
The computer simulation shows validity of our method.

1 Introduction

At present, many authors engage in blind source separation (BSS) or indepen-
dent component analysis (ICA) research work, and a lot of studying literature
(for a review, see [1]) have been published. The most basic form of BSS can be
stated as follows: Suppose there are n channels of source signals with at most one
Gaussian source signal, denoted as s1(t), s2(t), ..., sn(t), which are statistically
independent each other. The sources are instantaneously and linearly mixed by
an unknown full-rank square matrix A and observed as:

x(t) = As(t), (1)

where s(t) = [s1(t), s2(t), ..., sn(t)]T ,x(t) = [x1(t), x2(t), ..., xn(t)]T , and T is a
transpose operation of a matrix. The objective of an ICA approach is to recover
s(t)′is up to a constant scale and any permutation of indices through a set of
observations x(t) by finding out a de-mixing matrix W such that

y(t) = Wx(t), (2)

where y(t) = [y1(t), y2(t), ..., yn(t)]T is a recovered signal of s(t).
In the literature, one approach initiated from the seminal work of Stone [6] is
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typical information-theoretic based approaches, e.g., INFOMAX [2], negentropy
[3], cumulant [4], and ML [5], the GE-based ones have at least two merits: (1) the
unknown un-mixing matrix directly works out from the GE equation without
time-consuming iterative learning; (2) The correctness of the solution can be
guaranteed.

In Stone’s paper [6], a metric named Temporal Predictability has been pre-
sented as a logarithm of a ratio of two prediction error terms. The numerator
is the summation of long-term prediction errors of a y’s component, while the
numerator is the summation of its short-term prediction errors. Essentially, his
work is based on the conjecture that, given any set of statistically independent
source signals, the temporal predictability of any signal mixture is less than (or
equal to) that of any of its component source signals . Unfortunately, although
a number of experiments have reported its success, some empirical studies have
found that this conjecture is not totally correct, as pointed out in our recent
paper [7]. Under the circumstances, we have proposed a new metric called Inde-
pendency Metric, through which a new BSS algorithm with global convergence
is presented [7].

In this paper, we further present a general BSS learning framework for-
mulated as GE problems. We have given out a generalized contrast function,
whereby a general BSS learning procedure is obtained with those algorithms in
[7, 8] as its particular examples. We have analyzed the global convergence prop-
erty of such a learning, and shown that it guarantees to acquire a correct BSS
solution.

2 Contrast Function Extracting Source Signals

In instantaneous linear mixture model Eq.(1), suppose there exist two operators
g and h, for any real number ki and kj , satisfying the following relationship:

g(kisi(t) + kjsj(t)) = k2
i g(si(t)) + k2

j g(sj(t)), ∀i, j ∈ {1, 2, ..., n}, i �= j. (3)

h(kisi(t) + kjsj(t)) = k2
i h(si(t)) + k2

j h(sj(t)), ∀i, j ∈ {1, 2, ..., n}, i �= j. (4)

g(kisi(t), kjsj(t)) = 0, h(kisi(t), kjsj(t)) = 0, ∀i, j ∈ {1, 2, ..., n}, i �= j. (5)

Hence, we have

g(x(t)) = A · diag([g(s1(t)), g(s2(t)), ..., g(sn(t))])AT . (6)

For the recovered signal y(t) given by Eq.(2), we can then obtain:

g(y(t)) = WA · diag([g(s1(t)), g(s2(t)), ..., g(sn(t))])(WA)T . (7)

We know that each component y of y is a linear mixture of n sources with:

y = wx, (8)



474 Hailin Liu and Yiuming Cheung

where w is a n-dimensional row vector. We then define a general form of contrast
function of BSS making use of generalized eigenvalue as

L(wx) =
g(wx)
h(wx)

=
wg(x)wT

wh(x)wT
, (9)

For the new redundancy reduction metric, similar to the proof in [7], we can
get the following theorem:

Theorem 1. For the source signals s1, s2, ..., sn, suppose there exist two oper-
ators g and h satisfying Eq.(4) and Eq.(5) so that L(si)’s are not equal each
other, i.e.,

g(si)
h(si)

�= g(sj)
h(sj)

, i �= j.

Denote
L(si0) = max{L(s1), L(s2), ..., L(sn)}. (10)

For any mixing signal y described in Eq.(8), we then have

L(y) ≤ L(si0). (11)

If and only if y = ksi0 , where k is any non-zero real number, then

L(y) = L(si0). (12)

In the above theorem, operators h and g may have various forms. For in-
stance, h(s(t)) = var(s(t)), g(s(t)) = var(

∫ t

0 s(τ)dτ) (used in [7]); h(s(t)) =
E(s2(t)), g(s(t)) =

∑t
i=0 E(s2(i)) ( used in [8]).

3 Globally Optimal Analysis of BSS Algorithm

3.1 Equivalent Form About Gradient of Contrast Function

Since L(sj)’s are not equal each other, without loss of generality, we assume that

L(s1) > L(s2) > ... > L(sn). (13)

According to Theorem 1 and Eq.(9), we therefore have

Q(w) = logL(wx) ≤ logL(s1). (14)

This implies that the source signal s1 can be extracted through solving fol-
lowing optimization problem:

max
w�=0

Q(w). (15)

The objective function in Eq.(15) can transform

Q(w) = logL(wx) = log
wg(x)wT

wh(x)wT
. (16)
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We let ‖z‖2 be a norm of vector z=(z1, z2, ..., zn), and ‖z‖2=
√

z2
1 + z2

2 + ... + z2
n.

In Eq.(16),

Q(w) = log((
w

‖w‖2
)g(x)(

w
‖w‖2

)T )/((
w

‖w‖2
)h(x)(

w
‖w‖2

)T ), (17)

Therefore, from Eq.(16) and (17), we obtain

max
w�=0

Q(w) = max
‖w‖2=1

Q(w) (18)

Since h(x) = Ah(s)AT , g(x) = Ag(s)AT , A is a nonsingular square matrix,
and both h(s) and g(s) are two diagonal matrices, we know that h(x) and g(x)
are real symmetrical and positive definite matrices. Therefore, Q(w) is a loga-
rithm of ratio of two positive definite quadratic forms, and it is continuous and
differentiable. Since the set {w|‖w‖2 = 1} is a closed set, according to Eq.(18),
we know that the objective function Q(w) in (15) exists global maximum and
global minimum. Since Q(w) is differentiable, all optimal solutions in (15) must
be stable point.

With some mathematical computations, we can finally obtain the gradient
of Q(w):

� Q(w) =
2g(x)wT

wg(x)wT
− 2h(x)wT

wh(x)wT
=

2
wg(x)wT

{g(x)w− wg(x)wT

wh(x)wT
h(x)wT }

=
2

wg(x)wT
{g(x)wT − L(wx)h(x)wT }. (19)

If and only if �Q(w) = 0, we obtain

g(x)wT = L(wx)h(x)wT . (20)

3.2 Generalized Eigenvalue Problem

Definition 1. Suppose that A is an n × n real symmetrical matrix and B is
an n× n real symmetrical and positive definite matrix, the following eigenvalue
problem:

Ax = λBx (21)

is called generalized eigenvalue problem; the number λ satisfying Eq.(20) is called
eigenvalue of matrix A relative to matrix B; the nonzero solution relative to λ
is called eigenvector belonging to λ.

Note that both g(x) and h(x) are real symmetrical and positive definite ma-
trices. Therefore, Eq.(20) is a generalized eigenvalue problem, where L(wx) is an
eigenvalue about the problem and wT is an eigenvector corresponding to eigen-
value L(wx). Furthermore, solving Eq.(15) actually becomes a problem solving
generalized eigenvalue vector. Suppose w0 is a stable point of Q(w) in (15) and
is also an eigenvector corresponding to eigenvalue L(wT

0 x) in Eq.(20). From
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Eq.(16), we then have Q(w0) = logL(w0x). If L(w0x) is the largest eigenvalue
in Eq.(20), w0 must be the global optimal solution in Eq.(15). Thus, through
solving an eigenvector corresponding to the largest eigenvalue in Eq.(20), we can
recover the source signals.

3.3 Method of Recovering All Source Signals

Theorem 2. Under the condition of Theorem 1, ŵx is a recovered signal of
source signals if and only if it is a stable point of optimization problem Eq.(15).

Proof: Sufficiency of the condition. Suppose that ŵ is a stable point of optimiza-
tion problem Eq.(15). From Eq.(20), we obtain

g(x)ŵT = L(ŵx)h(x)ŵT . (22)

Let wi = (

i
︷ ︸︸ ︷
0, . . . , 0, 1, 0, . . . , 0)A−1(i=1,2,. . . ,n), then all eigenvalues are L(w1x),

L(w2x), ..., L(wnx), in generalized eigenvalue problem Eq.(20). assume L(ŵx) =
L(wi1x) where 1 ≤ i1 ≤ n, and ŵ is an eigenvector corresponding to eigenvalue
L(wi1x). Because the linear uncorrelated eigenvector corresponding to eigen-
value is exclusive in Eq.(20) and wi1 is a eigenvector corresponding to eigen-
value L(wi1x), we have ŵ = c1wi1 , in which c1 is a non-zero constant. Hence,
we obtain ŵx = (c1wi1)x = c1si1 .

Necessity of the condition. If ŵx is a recovered signal of source signals, there
exists a source signal si2 (1 ≤ i2 ≤ n) such that ŵx = c2si2 , in which c2 is
non-zero constant. Similar to the proof of Eq.(36), from Eq.(19), we have

g(x)ŵ = L(ŵx)h(x)ŵ (23)

According to Eq.(19) and Eq.(20), ŵ is a stable point of optimization problem
Eq.(15). �
Corollary 1. ŵix is a recovered signal of source signal si if and only if ŵi is an
eigenvector corresponding to the eigenvalue in Eq.(20).

Proof: On the basis of above proof and Eq.(19), it can be seen that this result
is true. �

According to Theorem 2, de-mixing matrix W can be obtained through solv-
ing eigenvector corresponding to eigenvalue L(s1), L(s2), ..., L(sn) in Eq.(20).

4 Simulation Results

In our computer simulation, we let h(s) be signal s and the operator g be,

g(s(t)) =
{

var(
∑t

i=1 s(i)), t ≤ q;
var(

∑t
i=t−q+1 s(i)), t > q.

(24)

We used three independent source signals: a subgaussian signal s1(a cosine sig-
nal), a supergaussian signal s2(a speech sound), and a gaussian signal s3 gen-
erated using the randn procedure in Matlab. In this example, mixing matrix A
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Source signal (bottom trace) and recovered signal (top trace)

Fig. 1. Separating Mixture signals of Super-Guassian Signal, Sub-Gaussian Signal and
Guassian Signal

was generated at random and the number of samples was 5,000. Each source
signal (solid line) and its corresponding recovered signal (dot line) acquired by
our proposed algorithm are shown in Figure 1.

5 Conclusion

In this paper, we have presented a general BSS learning procedure using gen-
eral Eigenvalues. Such a learning not only acquires the BSS solution in the one
step without the time-consuming iterative learning as used in those information-
theoretic based algorithms, but also makes a correct BSS solution guaranteed.
The computer simulations have shown the success of our method.
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