
Design and analysis of a bio-inspired search

algorithm for peer to peer networks ?

Niloy Ganguly, Lutz Brusch, Andreas Deutsch

Center for High Performance Computing, Dresden University of Technology, Dresden,
Germany. {niloy, brusch, deutsch}@zhr.tu-dresden.de

Abstract. Decentralized peer to peer (p2p) networks like Gnutella are
attractive for certain applications because they require no centralized di-
rectories and no precise control over network topology or data placement.
The greatest advantage is the robustness provided by them. However,
flooding-based query algorithms used by the networks produce enormous
amounts of traffic and substantially slow down the system. Recently,
flooding has been replaced by more efficient k-random walkers and differ-
ent variants of such algorithms. In this paper, we report immune-inspired
algorithms for searching peer to peer networks. The algorithms use the
immune-inspired mechanism of affinity-governed proliferation to spread
query message packets in the network. Through a series of experiments,
we compare the proliferation mechanism with different variants of ran-
dom walk algorithms. The detailed experimental results show message
packets undergoing proliferation spread much faster in the network and
consequently proliferation algorithms produce better search output in
p2p networks than random walk algorithms. Moreover, theoretical results
by calculating the packet spreading speeds are reported which provide
an understanding of the improved performance of the proliferation based
search algorithm.

1 Introduction

Among different desirable qualities of a search algorithm for peer to peer (p2p)
networks, robustness is a very important aspect. That is, the performance of
a search algorithm should not radically deteriorate in face of the dynamically
changing condition of the network. As is known, the big share of Internet users,
consequently participants in p2p networks, still use slow and unreliable dial-up
modems and also leave the community at very short intervals. Thus in order to
give robustness a high priority, precise routing algorithms for forwarding query
message packets are generally avoided. Instead random forwarding of the mes-
sage packets is preferred [9]. The goal of this paper is to study more efficient
alternatives to the existing k-random walk. In this connection, we draw our
inspiration from the immune system.

? This work was partially supported by the Future & Emerging Technologies unit of
the European Commission through Project BISON (IST-2001-38923).

Application Domain

Representation

Affinity Measure

P2P Network − Human Body

Searched Item − Antigen

Search in P2P Networks

Query Message − Antibody

Hamming Distance (Query Message, Searched Item)

Immune Mechanism
Proliferation−based Search Algorithm

Affinity−governed

Fig. 1. Immune system concepts used to develop search algorithms

Our algorithm has been inspired by the simple and well known mechanism of
the humoral immune system where B cells upon stimulation by a foreign agent
(antigen) undergo proliferation generating antibodies. Proliferation helps in in-
creasing the number of antibodies while mutation implies a variety of generated
antibodies. Consequently the antibodies can efficiently track down the antigens
(foreign bodies). Fig. 1 provides an illustration explaining how we have mapped
immune system concepts to our search problem. In our problem, the query mes-
sage packet is conceived as antibody which is generated by the node initiating
a search whereas antigens are the searched items hosted by other constituent
members (nodes) of the p2p network. Like in the natural immune system, the
packets undergo proliferation based upon the affinity measure between the mes-
sage packets and the contents of the node visited which results in an efficient
search mechanism. The work presented here is further development of the works
reported in [1, 2, 3, 4].

In the next section, we detail the modeling abstractions upon which the
algorithms are based. Moreover, we elaborate our algorithms as well as different
variants of k-random walk algorithms. Furthermore, the evaluation metrics used
to compare the different schemes is introduced. The experimental results are
noted next in Section 3. Section 4 provides a theoretical outline explaining the
rationale behind the experimental results.

2 Modeling and Evaluation Methodology

It is impossible to model the complete dynamics of a p2p system. In this paper,
we do not attempt to resolve small quantitative disparities between k-random
walk and proliferation algorithms, but instead are trying to reveal fundamental
qualitative differences. While our simple models do not capture all aspects of
reality, we hope they capture the essential features needed to understand the
fundamental qualitative differences between k-random walk and proliferation
algorithms.

2

2.1 Model Definition

P2p networks are networks formed through associations of computers, each pro-
viding equivalent services, eg. search facility, to the network. Thus, each peer
can be conceived as both client and server of a particular service [9]. To model
a search service, we focus on the two most important aspects of a p2p system:
p2p network topology, query and data distribution. For simplicity, we assume
the topology and distribution do not change during the simulation of our algo-
rithms. For the purpose of our study, if one assumes that the time to complete a
search is short compared to the time of change in network topology and change
in query distribution, results obtained from the fixed settings are indicative of
performance in real systems.

Network Topology : By network topol-

0 2000 4000 6000 8000 10000
0

5

10

15

20

25

No of Nodes

N
o
.
o
f
N

e
ig

h
b
o
rs

Random Topology

Fig. 2. Cumulative distribution of
node degrees in Random graph, 10000
nodes, with µnd = 4.

ogy, we mean the graph formed by the
p2p overlay network; each p2p member
has a certain number of neighbors and
the set of neighbor connections forms
the p2p overlay network. For our stud-
ies, we use random graphs. Random graphs
are considered as the best type of topol-
ogy to represent the majority of the re-
alistic network topologies formed in the
Internet [5, 9]. In the experiments re-
ported in this paper, we have consid-
ered different random graphs each hav-
ing 10000 nodes. However, their mean
node indegree differs. The random graphs
have been generated with the help of the
topology generator BRITE[7]. In Fig. 2, we show the node degree distribution
followed by one of the representative graphs. This particular graph has 10000
nodes and mean node indegree µnd = 4.

Data and query distribution : Files are conceived as conglomeration of key-
words [6]. Hence the data distribution is represented in terms of keywords. It is
assumed that there are 2000 different keywords in the system. Each node hosts
some keywords. The number of keywords (not unique) in each node follows a
Poisson distribution with mean µkw = 1000. The data profile (D) of each node
can therefore be represented as

D =< (δ1, n1), (δ2, n2), · · · > & n1 + n2 + · · · = N

where δi are each individual keywords and ni indicates their weights (number of
times they are present in the node), N represents the total number of keywords.

The query comprises of single or multiple keywords. The query (M) can be
represented as

M =< m1, m2, · · · >

3

where mi represents each individual keyword. For 95% of the cases, the query
length (say n) is ≤ 5 while it is between 6 to 10 in the rest 5% case. In the 95%
cases where the query length is ≤ 5, each length 1 to 5 is equiprobable. This is
similar for the rest 5% case.

Zipf’s distribution[11], is chosen to distribute each of the 2000 unique key-
words in the network. In Zipf’s distribution the frequency of occurrence of some
event (here keywords) t, as a function of the rank r, where the rank is deter-
mined by the above frequency of occurrence, follows a power-law ti ∝ 1

ra . In the
experimental setup, Zipf’s exponent (value of a) for both the query and the data
is 1. The ranking of keywords in terms of frequency is the same for both data
and query distribution. For instance, the most popular query keyword is also the
most popular data keyword.

We now describe the proliferation and random walk algorithms.

2.2 Algorithms

In this section, we introduce two proliferation based as well as two random
walk based search algorithms. The important aspects of all these algorithms are
that although random walk or proliferation is exhibited by the message packets,
the algorithms are independently implemented by each node. And coordinated
behavior of the nodes produces the required packet dynamics. All the algorithms
can be expressed in terms of the following basic premise.
Basic Premise : The search in our p2p network is initiated from the user peer
(U). The user peer (U) emanates k (k ≥ 1) message packets (M) to its neighbors
- the packets are thereby forwarded to the surroundings. In the following we
present the search initiation process in algorithmic form.

Algorithm 1 InitiateSearch(U)
Input : Signal to initiate search.
Form Message Packet (M) = < m1, m2 · · · >; mi represents each individual keyword
Flood k message packets(M) to the neighbors of the user peer.

The message packets travel through the network and when a node (say A)
receives a message packet (M), it performs the following two functions.
Function 1 :- It checks whether any δi ∈ D of A is equal to any mi ∈ M (incoming
message). The number of successful matches Sm is represented by the following
equation.

Sm =
N

∑

i=1

n
∑

j=1

(mj ⊕ δi) × ni (1)

where mj ⊕ δi = 1, if mj = δi, else 0; N is the total number of keywords present
in the node while n represents the length of the search query. The node reports
the number of successful matches - Sm.
Function 2 :- It forwards the content of the message packet in some defined
manner to its neighbor(s).

In algorithmic form, we can represent the functions as Reaction p2p:

4

Algorithm 2 Reaction p2p(A)
Input : Message packet(M)
Calculate Sm from D & M /*Function 1*/
Algorithm Message Forward(A) /* Function 2*/

Each of the proliferation and random walk schemes defines Algorithm Mes-
sage Forward(A) differently. Elaboration of the algorithms corresponding to each
of the schemes follows.
Proliferation P : In the proliferation scheme, the packets undergo proliferation
at each node they visit. The proliferation is guided by a special function, whereby
a message packet visiting a node proliferates to form Np message packets which
are thereby forwarded to the neighbors of the node.

Algorithm 3 P(A)
Input : Message packet(M)
Produce Np message packets(M)
Spread the Np packets to Np randomly selected neighbors of A

The function determining the value of ‘Np’ ensures that Np is < η(A), where
η(A) is the number of neighbors of A and ≥ 1. [Note that if Np = 1, proliferation
behaves similar to random walk.]
Restricted Proliferation (RP) : The restricted proliferation algorithm, sim-
ilar to P , produces Np messages. But these Np messages are forwarded only
if the node A has ≥ Np free neighbors. By ‘free’, we mean that the respective
neighbors haven’t been previously visited by message M . If A has Z ‘free’ neigh-
bors, where Z < Np, then only Z messages are forwarded, while the rest are
destroyed. However, if Z = 0, then one message is forwarded to a randomly
selected neighbor. The rationale behind the restricted movement is to minimize
the amount of message wastage. Because, two packets of message M visiting the
same peer essentially means wastage of the second packet.

Algorithm 4 RP(A)
Input : Message packet(M)
Produce Np message packets (M)
Z = No of ‘free’ neighbors
if (Z ≥ Np)

Spread the Np packets in Np randomly selected neighbors of A

else
if (Z > 0)

Spread Z packets in Z free neighbors of A

Discard the remaining (Np - Z) packets
else

Forward one message packet to a randomly selected neighbor of A

Discard the remaining (Np - 1) packets

We now elaborate the function which controls the amount of proliferation.
Proliferation Controlling Function : The proliferation of message packets
at any node A is heavily dependent on the similarity between the message packet
(M) and the data profile (D) of A. In this connection, we define the measure

5

of similarity between the data profile (D) of the node and the message packet
(M).

Sim =
Sm

N

where the value of Sm is calculated through Eq. (1). [Note Sm ≤ N, so the value
of Sim ≤ 1.] The number of packets Np proliferated is defined on the basis of
Sm in the following manner

Np = 1 + Sim × (η − 1) × ρ

where η represents the number of neighbors the particular node has; ρ represents
the proliferation constant, it is ≤ 1. (ρ is set to 0.5 in all our experiments.) The
above formula ensures that 1 < Np ≤ N .

We now describe a simple k-random walk algorithm and subsequently two
different variations of it.
k-random walk (RW) : In k-random walk, when a peer receives a message
packet after performing the task of comparison, as mentioned in Algo. 2, it
forwards the packet to a randomly selected neighbor. The algorithm (RW) is
quite straightforward and is defined as

Algorithm 5 RW(A)
Input : Message packet(M)
Send the packet M to a randomly chosen neighbor peer

The restricted random walk (RRW) algorithm which is similar to RP (Algo.
4), is discussed next.
Restricted Random Walk (RRW) : In RRW , instead of passing the mes-
sage (M) to any random neighbor, we pass on the message to any randomly
selected ‘free’ neighbor. However, if there is no ‘free’ neighbor, we then pass on
the message to any randomly selected neighbor.

Algorithm 6 RRW(A)
Input : Message packet(M)
Send the packet M to a randomly chosen ‘free’ neighbor peer
If (no ‘free’ neighbor)

Send the packet M to a randomly chosen neighbor peer

2.3 Metrics

In this paper we focus on efficiency aspects of the algorithms solely, and use the
following simple metrics in our abstract p2p networks. These metrics, though
simple, reflect the fundamental properties of the algorithms.
(a). Success rate: The number of similar items found by the query messages
within a given time period.
(b). Coverage rate: The amount of time required by the messages to cover a
percentage of the network.
(c). Effectivity per message: The number of search items produced by a single
message .

6

3 Simulation Results

The experimental results compare the efficiency of different algorithms (Algo. 3
- 6), with respect to the metrics defined in section 2.3.

As mentioned earlier, each of the above algorithms is distributed in nature
and the nodes perform the task independently of the others. However, to assess
the speed and efficiency of the algorithm, we have to ensure some sort of syn-
chronous operation among the peers. In this context we introduce the concept
of time whereby it is assumed that in one time unit, all the nodes in the network
execute the algorithm once. That is, if a peer has some messages in its message
queue, it will process one message within that time frame. We believe although
approximate, it is a fair abstraction of reality of p2p networks where each node is
supposed to provide equivalent services. The sequence of operation of the peers
during one time step is arbitrary. The length of the message queue is considered
to be infinite.

In order to assess the efficiency of different algorithms, we have also to guar-
antee fairness of ‘power’ among them which is explained next.

3.1 Fairness in power

To ensure fair comparison among all the processes, we must ensure that each
process (P , RP , RW , RRW) participates in the network with the same ‘power’.
To provide fairness in ‘power’ for comparison of a proliferation algorithm (say
P) and a random algorithm (say RW), we ensure that the total number of query
packets used is roughly the same in all the cases. Query packets determine the
cost of the search; too many packets cause network clogging bringing down the
efficiency of the system as a whole. It can be seen that the number of packets
increase in the proliferation algorithms over the generations, while it remains
constant in the case of random walk algorithms. Therefore the number of message
packets - k in Algo. 1 is chosen in a fashion so that the aggregate number of
packets used by each individual algorithm is roughly the same.

Besides the cost of the message packets, during comparison between a re-
stricted algorithm (say RRW) and a non-restricted algorithm (say P), we also
have to keep in mind that checking ‘whether a node was earlier visited or not’
involves a cost; this also should be taken into consideration when defining ‘fair-
ness’. Therefore, the composite cost2 for a restricted algorithm can be defined
as Ccomp = X + α · L, where X is the average number of message packets, L

is the number of neighbor lookup, while α is the ratio of cost of lookup to cost
of actually sending the message; α normally ≤ 1. However, in this case, since
message length is small, we consider the worst case scenario of α = 1 to depict
our results.

To ensure fairness in ‘power’ between two proliferation algorithms (say [P &
RP]), we keep the proliferation constant ρ and the value of k the same for both

2 Henceforth, cost or simple cost indicates the cost of message packets while composite
cost always means total cost of messages and neighbor lookup.

7

20 30 40 50 60 70 80 90
20

40

60

80

100

120

140

160

180

200

Percentage of Network Covered

T
im

e

P
RP
RRW
RW

a. Time taken to cover the network

20 30 40 50 60 70 80 90
0

100

200

300

400

500

600

700

800

900

Percentage of Network Covered

#M
es

sa
ge

s

P
RP
RP − Composite Cost
RRW
RRW − Composite Cost

b. Cost incurred to cover network

Fig. 3. Graphs plotting the cost and network coverage time of P, RP, RRW , RW
algorithms in random network. The proliferation constant considered here is ρ = 0.5.

processes. The value of k for the proliferation algorithm is generally set as k =
η(U), where η(U) is the indegree of the initiator peer U .

3.2 Experimental Result - Network Coverage

As mentioned in Sec 2.1, we use a random graph, to evaluate the time taken
by the message packets to visit all the nodes of the network using different
forwarding algorithms. The particular random graph considered here has 10000
nodes and mean node indegree µnd = 4. Its distribution is shown in Fig. 2. The
experiment, network coverage is detailed in the following two paragraphs.
COVERAGE : In this experiment, upon initiation of a search (Algo. 1), the
search operation (Algo. 2) is performed till the message packets cover the entire
network. The experiment is repeated 1000 times on randomly selected initial
nodes.

During the experiment, we collect different statistic at every 10% of coverage
of the network that is, we collect statistic at [20%, 30% · · · 90%, 100%] of
network coverage. Since the message forwarding algorithms (Algo. 3 -6) are non-
deterministic in nature, message packets find it increasingly difficult to visit the
last 10% of the network. This is true for all the different variants of message
forwarding algorithms. Consequently, in our results we avoid showing results
from the last 10% as it only depicts the aberration arising from the finite size of
the network.

Fig. 3(a) shows the network coverage rate of different algorithms P , RP ,
RRW and RW . The graph plots the % of network covered in the x-axis, while
the time taken to cover the corresponding % of network is plotted on the y-axis.
It is seen that P and RP take almost identical time to cover up the network. The
time taken is, however, much less than that taken by RRW and RW respectively.
The RRW is much more efficient than RW . We now assess the cost (both simple
and composite) incurred by each algorithm to produce the above mentioned
performances.

8

0 20 40 60 80 100
2

2.5

3

3.5

4

4.5

5

5.5

6

6.5
x 10

5

No of generation

N
o.

 o
f S

ea
rc

h
Ite

m
 (

S
)

RP
RP − average
RRW
RRW − average

a. Search efficiency of RP and RRW

0 20 40 60 80 100
1500

2000

2500

3000

3500

4000

No of generation

N
o
.
o
f
S

e
a
rc

h
 I
te

m
 (

S
)

RP
RP − average
RRW
RRW − average

b. Cost incurred per item searched by
RP and RRW

Fig. 4. Graphs showing (a). search efficiency, and (b). cost incurred per item searched
by RP and RRW in random network.

Fig. 3(b) plots the increase in the average number of message packets present
in the network (also referred to as cost) in the y-axis with respect to the per-
centage of network coverage for P , RP and RRW . For each RRW and RP , we
show two lines, one for simple and composite cost respectively. Comparing, RP
and P , we see that RP uses a significantly smaller number of messages (about
one-fifth) than P and achieves the same performance. Even composite cost is
significantly lower for RP (657 for RP and 818 for P). To ensure the fairness
criterion, RRW initially starts with the number of packets which RP has used
on the average to cover the entire network (361), so it stays constant throughout
the experiment; however the composite cost steadily increases. It is the same
as for RP at the 90% coverage ratio. The number of messages RW uses (not
plotted) is 1881. 1881 is the average composite cost incurred by RRW to cover
the entire network.

It is found that RRW is much more efficient than RW . Similarly, RP is
better than P . So, in our subsequent discussions, we drop P and RW and con-
centrate on a comparison between RP and RRW .

The next experimental results highlight the search efficiency of RP and
RRW .

3.3 Experimental Results - Search Efficiency

To compare the search efficiency of RP & RRW , we perform the time-step
experiment on the random graph for RP and RRW , each spanning over 100
generations. We use the same random graph as in Sec 3.2.
TIME-STEP : In this experiment, upon initiation of a search (algorithm
(1)), the search operation is performed for N (= 50) time steps. The number
of search items (s) found within 50 time steps from the commencement of the
search is calculated. From algorithm (2), we know each visited node returns
Sm search items (calculation done through Eq. (1)); s is the summation of Sm

9

over all visited nodes. The experiment is repeated for one generation where one
generation is defined as a sequence of 100 searches. The search output (s) is
averaged over one generation (100 different searches), whereby we obtain S,

where S =
P

100

i=1
s

100
. The value of S is used to draw the graphs explained next. In

this experiment, RRW always performs the experiment with k packets where k

is the average number of packets used by RP over 100 generations.
The graph of Fig. 4(a) shows the average value S against generation number

for RP and RRW . The x-axis of the graph shows the generation number while
the y-axis represents the average number of search items (S) found in the last
100 searches. In this figure, we see that the search results for both RP and RRW
show fluctuations. The fluctuations occur due to the difference in the availability
of the searched items selected at each generation. However, we see that on the
average, search efficiency of RP is almost 1.5-times higher than that of RRW .
(For RP , the number of hits ≈ 5 × 105, while it is ≈ 3.25 × 105 for RRW .)

Fig. 4(b) displays the effectivity per

5 10 15 20 25 30
0

20

40

60

80

100

120

140

160

180

200

Mean Indegree of random graph (10000 nodes)

90
%

 c
ov

er
ag

e
tim

e

RP
P
RRW
RW

Fig. 5. Graphs illustrating the effect
on efficiency with varying indegree

messages (metrics defined in Sec. 2.3) of
each scheme. As expected, the effectiv-
ity of message packets for RP is much
higher than RRW (keeping in mind the
fairness criterion we follow to generate
experimental results). However, one more
important point to be noted is that the
standard deviation is particularly small
in the case of RP . Considering σE/µE

(Std. of effectivity/mean effectivity), it
is 0.1 for RRW while it is just 0.08 for
RP . This is because in RP , the pack-
ets are not generated blindly, but are in-
stead regulated by the availability of the
searched item. Therefore, if a particular searched item is sparse in the network,
RP produces a lower number of packets and vice versa.

We now describe how efficiency of the different algorithms gets affected when
the indegree of the random graph is increased.

3.4 Experimental Results : Changing Indegree

In this experiment, we perform the coverage experiment on random graphs each
with 10000 nodes, but their mean indegree steadily increases.

Fig. 5 plots the time taken to cover the network (y-axis) by RP , P , RRW and
RW against different indegree configurations of the random graph (x-axis). The
figure shows that as indegree increases each algorithm becomes faster. However,
it is to be noted that the speed of random walk algorithms accelerates at a
much faster speed. In fact, from around node indegree 12, RRW and P take
almost identical time. This happens because as indegree of the random graph
increases, in effect the dimension (d) of the graph also increases. That is, each

10

node can reach each other node within a shorter time span. Random walk is
particularly smart at higher dimensions which consequently provides the result.
However, maintaining high indegree in p2p environment typically is a problem
[10]. So, at lower indegree level proliferation algorithms are much more effective
than random walk algorithms.

We now summarize the results obtained through the above mentioned exper-
iments

3.5 Summary

The following is the summarization of the results.
(a). RP is more effective than P .
(b). RP is more effective than any random walk algorithm.
(c). RP has an in-built cost regulatory mechanism.
(d). The search efficiency of RP is roughly one and a half times higher than
RRW .
(e). RRW becomes more effective as the indegree of the graph increases.

4 Theoretical Justification

In this section, we provide insights into the reasons behind the better perfor-
mance of proliferation compared to random walk algorithms. We provide our
explanation in the framework of a continuum model to derive the macroscopic
behavior from knowledge about the individual microscopic behavior of the pack-
ets. Unlike the model described in the previous sections, for sake of analysis we
assume that the system is synchronous in the sense that all nodes operate at
the same time. The network is abstracted as a d-dimensional space where the
dimension grows with the average node indegree.

We relate the random walk algorithms to a simple diffusive system where the
diffusion starts from the origin. The proliferation algorithms can be conceived as
reaction-diffusion systems [8], where besides diffusion of packets, new packets are
continuously produced by the existing ones. Each of the two processes (diffusion
and reaction-diffusion) spreads the message packets through the network. The
insights which we will provide are based upon estimates of the speed of packet
spreading in the radial direction.

Fig. 6 illustrates the basic features of the two processes. Fig. 6(a) refers to
diffusion, Fig. 6(b) to a reaction-diffusion system with unrestricted proliferation,
whereas Fig. 6(c) corresponds to a reaction-diffusion system with restricted pro-
liferation. In all three graphs, we plot the density u(x, t) of message packets used
to conduct search versus the radial coordinate x. u can be conceived as a normal-
ized measure of the number of packets k. u and k is not quantitatively related
in this work, as that is not required to estimate the speed of packet spreading.
Each of the three systems is studied in detail below, here we discuss the figures
one by one.

11

x1 x2

t > 00

t > t1 0

t > t
2 1

x ρ

u

a. Spreading of packet den-
sity u due to random walk
(diffusion).

0

1

1

x

t > t1 2

t

c

u

b. Movement of packet
density u due to prolifera-
tion (reaction-diffusion 1).

x1
x2 0

1

x

2 1t > t

1t

c

u

c. Movement of packet den-
sity u due to restricted
proliferation (reaction-
diffusion 2).

Fig. 6. Packet movement with different algorithms in a continuous system with radial
coordinate x.

Fig. 6(a) shows three Gaussian curves at three different instances of time (t0,
t1, t2, where t0 < t1 < t2). As time increases, a particular density of packets (say
ρ) travels further away from the center. Moreover, since it follows a Gaussian
distribution, at time t → 0, at distance x → ∞, there is some concentration of
packets u, where u → 0. However to cover all the nodes at distance x, a finite
tangible concentration of packets ρ should reach distance x. As can be seen from
the figure, at time t1, a concentration ρ covers distance x1 or more while at time
t2 the same concentration has covered ≥ x2 distance. Below we calculate the
speed of diffusive packet spreading for this finite density ρ.

On the other hand, in the case of reaction-diffusion systems (proliferation),
the movement of packets follows a traveling front pattern with a uniform front
profile. Figs. 6(b),(c) show such front profiles at time t1 and t2. For example, in
Fig. 6(c), we see that at time t1, till distance x2, the density u = 1, while beyond
x1, it is zero. The second curve at t2 is just a uniform shift of the first curve,
hence characterized by a front speed. We now elaborate each of the processes one
by one.

A. Random Walk (Diffusion): The random walk has traditionally been mod-
eled as diffusion in continuum systems for which the diffusion equation reads [8]

du

dt
= D · d2u

dx2
(2)

where D is the diffusion coefficient. We are considering a situation where at time
t = 0 all packets are concentrated at the origin from where they diffuse outwards.
Hence, u(x, t = 0) = δ(x=0), where δ has non-zero value at 0 and 0 otherwise.
Therefore, solving the differential equation with the given initial condition, we

12

obtain

u =
1

(2 ·
√

D · π · t)d
· e− x2

4·D·t (3)

where d is the dimension of the system.
We transform this equation in order to express the position xρ of an arbi-

trarily chosen fixed density ρ � 1 as a function of time.

xρ(t) =

√

2 · D · d · t · log
1

4 · ρ2/d · D · π · t (4)

The speed c of diffusive packet spreading for any fixed density ρ is obtained by
differentiating xρ(t) with respect to time.

c =
2 · D · d

2
√

2 · D · d
·

log 1

4·ρ2/d
·D·π·t

− 1
√

t · log 1

4·ρ2/d
·D·π·t

(5)

For most of the time, the logarithm in the numerator is much larger than 1 and
we can neglect the 1, hence obtain simplified

c =

√

D · d
2

·
√

1

t
log

1

4 · ρ2/d · D · π · t (6)

The result shows that packet spreading due to random walk becomes faster

in higher dimensions as c ∝
√

d and is slowing down with time as c ∝
√

1

t · log 1

t .

B. Proliferation (Reaction-Diffusion 1): The proliferation algorithm can
be modeled as a system which is undergoing diffusion as well as gaining new
packets as copies of existing ones at the rate α at each time step. Therefore, the
dynamics can be expressed by the following equation

du

dt
= D · d2u

dx2
+ α · u (7)

This equation resembles a variation of a well-studied reaction-diffusion equation,
the Fisher equation [8]. We therefore utilize the standard result obtained for the
front speed in a generalized Fisher equation with reaction term f(u) [8].

du

dt
=

d2u

dx2
+ f(u) (8)

has a uniformly moving front as solution and this motion proceeds with the front
speed

c = 2 · [f ′(u1)]
1

2 , (9)

where f ′(u1) denotes the derivative of f(u) with respect to the packet density
u at the position u1. u1 = 0 is the state of the system that has now yet been
visited by the front.

13

Considering the equation (7), we can rescale it by

t∗ = α · t; x∗ = x · (α

D
)

1

2

dt∗ = α · dt; dx∗
2

= dx2 · α

D
(10)

Therefore, the equation (7) becomes

α · [du

dt∗
=

d2u

dx∗
2

+ u] (11)

Hence f ′(u) = 1, which implies f ′(u1) = 1. Therefore, the front speed c of the
system is given by

c =
∆x

∆t
=

∆x∗ ·
√

D
α

∆t∗ · 1

α

= 2 ·
√

α · D (12)

This result shows that the speed of packet spreading due to the proliferation
algorithm is constant, i.e. independent of time. The speed dependents on the
proliferation rate α and diffusion constant D but is independent of the dimension
d. Hence, the behavior of the proliferation algorithm drastically differs from that
of the random walk.
C. Restricted Proliferation (Reaction-Diffusion 2): In the model of re-
stricted proliferation, the number of packets initially increases at a rate α but
the packet production rate is lowered as packets encounter more and more pack-
ets, i.e. density increases. We can conceive the function as logistic population
growth model, where f(u) can be modeled by the following equation

f(u) = α · u · (1 − u) (13)

Therefore, the corresponding reaction-diffusion equation can be written as

du

dt
= D · d2u

dx2
+ α · u · (1 − u) (14)

By using the same rescaling of space and time as above (10), we obtain

α · [du

dt∗
=

d2u

dx∗2
+ u(1 − u)] (15)

Therefore, f ′(u) = 1 - 2 u and u1 = 0. Hence f ′(u1) = 1 and following the same
arguments as in case B. we find c = 2·

√
α · D. This result implies the same speed

of packet spreading and dependence on parameters as in the case of unrestricted
proliferation.

To sum up, the above theoretical calculations of speeds of packet spreading
due to different algorithms can explain the following observations of the coverage
experiments (see Fig. 3(a)) and their dependence on the average indegree of the
network (see Fig. 5).

14

1. Proliferation algorithms propagate packets faster through the network as
their speed is independent of time whereas for random walks packet spread-

ing slows down with time c ∝
√

1

t · log 1

t . This explains the differences be-

tween the curves P , RP and RW , RRW in Fig. 3(a).
2. Restricted proliferation is as fast as the simple proliferation algorithm, for

both the same speed c = 2 ·
√

α · D was calculated. This result is consistent
with our finding in Fig. 3(a) that the restricted proliferation scheme works
as good as the proliferation scheme and both curves P , RP coincide.

3. Random walk becomes faster as the effective dimension d of the network
increases, i.e. the indegree increases. This explains the strong dependence of
performance on the network indegree for both random walk algorithms in
Fig. 5.

However, the calculations of the package spreading speeds do not account for
the differences in cost effectiveness between the different algorithms.

5 Conclusion

In this paper, we have produced detailed experimental results showing that the
simple immune-inspired concept of proliferation can be used to cover the network
more effectively than random walk. The proliferation algorithm can regulate the
number of packets to be produced during a search operation according to the
availability of the searched material, thus improving the efficiency of the search.
Moreover, we have provided theoretical results by calculating the packet spread-
ing speeds which explain many of the experimental observations and provide
an understanding of the improved performance of the immune-inspired search
algorithm.

References

1. N Ganguly, G Canright, and A Deutsch. Design of a Robust Search Algorithm for
P2P Networks. In 11th International Conference on High Performance Computing,
December 2004.

2. N Ganguly, G Canright, and A Deutsch. Design Of An Efficient Search Algorithm
For P2P Networks Using Concepts From Natural Immune Systems. In 8th Inter-
national Conference on Parallel Problem Solving from Nature, September 2004.

3. N Ganguly and A Deutsch. Developing Efficient Search Algorithms for P2P Net-
works Using Proliferation and Mutation. In 3rd International Conference on Ar-
tificial Immune Systems.

4. N Ganguly and A Deutsch. A Cellular Automata Model for Immune Based Search
Algorithm. In 6th International conference on Cellular Automata for Research and
Industry, October 2004.

5. M. A. Jovanovic, F. S. Annexstein, and K. A. Berman. Scalability Issues in Large
Peer-to-peer Networks - A Case Study of Gnutella. Technical Report University
of Cincinnati, 2001.

15

6. Dik L. Lee, Huei Chuang, and Kent Seamons. Document ranking and the vector-
space model. IEEE Softw., 14(2):67–75, 1997.

7. A Medina, A Lakhina, I Matta, and J Byers. BRITE: An Approach to Universal
Topology Generation. In Proceedings of the International Workshop on Modeling,
Analysis and Simulation of Computer and Telecommunications Systems- MAS-
COTS, August 2001.

8. J. D. Murray. Mathematical Biology. Springer-Verlag, 1990.
9. A. (Ed) Oram. Peer-to-Peer: Harnessing the Power of Disruptive Technologies. O

Reilly Books, 2001.
10. G. Pandurangan, P. Raghavan, and E. Upfal. Building low-diameter peer-to-peer

networks. IEEE Journal on Selected Areas in Communications (JSAC), 21(6),
2003.

11. G. K. Zipf. Psycho-Biology of Languages. Houghton-Mifflin, 1935.

16

