

Cooper, R. and Ali, S. and Bi, C. (2005) Extracting information from
short messages. Lecture Notes in Computer Science 3513:pp. 388-391.

http://eprints.gla.ac.uk/3465/

Extracting Information from Short Messages

Richard Cooper †, Sajjad Ali and Chenlan Bi

† Computing Science, University of Glasgow, 17 Lilybank Gardens, Glasgow G12 8QQ

rich@dcs.gla.ac.uk

Abstract Much currently transmitted information takes the form of e-mails
or SMS text messages and so extracting information from such short messages
is increasingly important. The words in a message can be partitioned into the
syntactic structure, terms from the domain of discourse and the data being
transmitted. This paper describes a light-weight Information Extraction
component which uses pattern matching to separate the three aspects: the
structure is supplied as a template; domain terms are the metadata of a data
source (or their synonyms), and data is extracted as those words matching
placeholders in the templates.

1 Introduction

In developing a body of information, we typically ask others for information, interpret
what they tell us, extract the information we want and store it away. The work
described here attempts to build a semi-automated system in which the information is
passed by e-mail or SMS text message and is to be stored in a database. In this case,
we can exploit two features of the message – it will include terms from the database
domain and it is probable that the language structure will be fairly simple. We can
also ignore anything in the message which seems to be irrelevant. We cannot, on the
other hand, be as confident that syntax and spelling will be accurately used – indeed
in the case of text messaging, spelling rules will almost always be transformed
dramatically. In fact, a recent experiment soliciting messages of this sort elicited
messages which ignored natural language in favour of making up a form structure.

In a factual statement, the function of the words in the sentence naturally falls into
three categories. Articles, conjunctives, etc. are there to provide syntactic structure.
Other words identify information categories from the domain of discourse. The
remaining words provide data values drawn from the information categories. In
database terms, the second group are metadata and the third group data. Making this
three way distinction explicit permits us to attempt text analysis in a number of ways.
Much IE work attempts to learn the structures having been given the terms from the
domain of discourse [1]. Other work starts by manually tagging the text [2]. In our
work, we can mostly assume we know both terms and structure and are only trying to
find the data values. Attempts to discover the structure use two broad approaches:
fully parsing the text [3, 4] or matching fragments of the text with structural
templates. The second approach seems more promising in contexts such as this one,

in which the domain is restricted but the language will be used loosely, and is the
approach we will describe here. We will provide sentence pattern templates with
placeholders for the domain terms and the data. This is lightweight in the sense used
in the work of Kang et al. [5], and is also similar to the work of Stratica and Desai [6],
both using similar techniques to process natural language queries.

Turning to the domain terms, we believe that the IE process needs to be given these
as well. To extract information for storage we use the metadata as a basis for our
collection of terms, augmented with synonyms to cope with equivalent terms. The
terms are combined with the templates to generate patterns for matching. When a
match is found, the data is extracted from the parts of the text matching data
placeholders and the result is turned into appropriate database updates. The matching
process uses a maintained context to deal with anaphoric references and the update
generation creates a mixture of entity creation and property update commands.

Metadata

Pattern
Generation Patterns

Message

Information
Extraction

Updates

Hand Crafted
Patterns

Context

Pattern and
Update

Templates

Synonyms

Fig. 1. An Architecture for Information Extraction to a Data Source

2 A Pattern Matching Information Extraction System

The system we have created comprises three phases – the generation of a collection of
sentence structures patterns; the use of that collection to locate new data; and the use
of that data to derive database update statements to store the information found. The
architecture supporting these activities is shown as Figure 2.

2.1 Setting Up The System

The setup process includes patterns generation and consists of the following steps:
1. Create a schema for the data using a special purpose data model which more

closely resembles the structures underlying the communication. The model is a
standard entity model in which entities have properties which may be base values
or other entities, but adds a base type for gender so that every entity can be
identified as masculine, feminine or neuter, this being used to interpret pronouns.
There are also two notions of keys – ones that a database would use (Dkeys) and
ones that a human would use (Hkeys).

2. Generate and edit the synonyms for the metadata using WordNet. Two tasks are
required here – noun synonyms which do not change the sentence structure and
verb synonyms which create a fresh sentence structure.

3. Input pattern templates.
4. Generate the patterns by combining the templates, the metadata and synonyms.

The pattern templates are text strings distinguishing the three classes of word:
structural words, domain terms and data, where the data may be either fresh data that
the visitor is communicating or an HKey value which the visitor sending the message
expects to find in the database already. The structural words are introduced verbatim,
the other two classes of word appear as placeholders. The pattern generation
mechanism takes the template, leaves the structural words unchanged, replaces the
domain term placeholders with meta-data and makes specific the data placeholders.

Here is a simple example of a template which includes a metadata placeholder,
which will be replaced by each of the property names and their noun synonyms, and
two data placeholders which will be replaced by each of the human key property
placeholders and all of the property placeholders respectively.
− “The <PropertyName> of <<HkeyValue>> is <<PropertyValue>>”

The pattern generator takes each entity type in turn and produces patterns for every
combination of properties that fit the template, one of which would be for a movie
entity type which uses title as an Hkey and has another property year::
− “The year of <titleValue> is <yearValue >”
from which the information extraction process can recover yearValue=1958 from
either of: "The year of this film is 1958.” or “The year of The Music Room is 1958.”

After the IE process, the component will now have values for particular property,
in this case the year. It can discover which entity the property is for, either by context
in the first instance or by using the Hkey in the second instance.

2.2 The Information Extraction Process and the Use of Context

The IE process is passed a message and a starting context (see below), tokenises the
message and identifies sentences. Each sentence is then checked against the patterns,
ordered so that the most specific structure will be found first. If the sentence does not
match anything, it is ignored. Otherwise, data is extracted and update statement(s) are
output. After each sentence, the context is updated and the next sentence is checked.
Much of this is routine string manipulation, but the complicating factor is the context.

The discussion above assumes that each sentence is complete in itself, but this is
rarely the case. Most sentences will have contextual references embedded in them
either in the form of pronouns, definites or implicit references. In these cases, our
component must discover which entity is referred to before the sentence can be
processed. To this end, the component manages an object maintaining contextual
information which contains: variables holding references to the most recently
mentioned entity type and the most recently mentioned entity of: any type, each
gender and each type. When the IE component is passed a message, it will be in
response to a request or a question about a specific entity or entity type, in which case
it can initialise the context using this. It could also start cold with an empty context.

The process of extracting data is now more complex than just pattern matching and
proceeds by identifying explicitly referred to entities first, then uses the gender
variable for pronouns, the entity type variables for definites and the most recently
used entity for implicit references. When the sentence has been dealt with, it is

necessary to update the context in order to prepare the component for the next
sentence. Any entity encountered will be used to update the various context variables.

2.3 Generating the Updates

The extraction process returns values of one or more properties for one or more
entities, identified either by context variable reference or key value, perhaps only a
human key. Having located new data values in the message, we proceed as follows.

To update a single property, we will have the property name, the entity key and the
value – enough to produce a simple update command. If the property has an entity
type, then the Dkey may have to be found from the Hkey to be the updated value.

There are two occasions when we need to add a new entity to the repository –
when the sentence explicitly discusses a new entity that the message is informing us
about and when the message is informing us about an entity property value that may
or may not be in the repository. In either case, we will only have an Hkey and if this
is not also a Dkey, we must generate a Dkey. If this fails to find a value, a new entity
must be created using an insert command, generating a new Dkey to identify it.

3 Conclusions

The system (more fully described in [7,8]) as described handles simple sentences
including the use of noun synonyms and context. The design supports the automatic
generation of different verb phrases, but that has yet to be fully implemented.
However, these can be added by hand if required. There are however, many ways in
which the work needs to progress, including the handling of more complex sentence
structures, fuzzy word checking, learning of sentence structures [9], extending the
context mechanism to hold more of the history, handling negative or conflicting
information and the management of synonyms at the data level.

Bibliography

1. R. Gaizauskas and Y. Wilks, Information Extraction: Beyond Document Retrieval, Journal
of Documentation, 54(1):70--105, 1998

2. D. Fisher, S.Soderland, J. McCarthy, F. Feng and W. Lehnert, Umass System, MUC-6, 1995
3. C. Cardie, Empirical Methods in Information Extraction, AI Magazine, 18:4, 65--79 1997
4. http://gate.ac.uk/
5. I-S Kang, S-H Na, J-H Lee and G. Yang, ,Lightweight Natural Language Database

Interfaces, NLDB 2004, LNCS 3136, pp76-88, 2004
6.. N. Stratica and B. C. Desai, Schema-Based Natural Language Semantic Mapping,

NLDB 2004, LNCS 3136, pp103-113, 2004
7. Cooper,R.L. and Ali,S., Extracting Database Information from E-mail Messages, 20th

British National Conference on Databases, July 2003, pp 271-279, LNCS 2712, Springer
8. Cooper,R.L., Ali,S.and Bi, C.L., A System for Extracting Information from Short Messages,

Technical Report, University of Glasgow, in press.
9. E. Agichtein and L. Gravano, Snowball: Extracting Relations from Large Plain-Text

Collections, Proc.5th ACM International Conference on Digital Libraries (DL), 2000

	citation_temp.pdf
	http://eprints.gla.ac.uk/3465/

