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Abstract. Given an undirected graph G, an L(h, k)-labelling of G assigns colors to vertices
from the integer set {0, . . . , λh,k}, such that any two vertices vi and vj receive colors c(vi) and
c(vj) satisfying the following conditions: i) if vi and vj are adjacent then |c(vi)− c(vj)| ≥ h;
ii) if vi and vj are at distance two then |c(vi)− c(vj)| ≥ k. The aim of the L(h, k)-labelling
problem is to minimize λh,k. In this paper we study the approximability of the L(h, k)-
labelling problem on bipartite graphs and extend the results to s-partite and general graphs.
Indeed, the decision version of this problem is known to be NP-complete in general and, to
our knowledge, there are no polynomial solutions, either exact or approximate, for bipartite
graphs.
Here, we state some results concerning the approximability of the L(h, k)-labelling problem
for bipartite graphs, exploiting a novel technique, consisting in computing approximate
vertex- and edge-colorings of auxiliary graphs to deduce an L(h, k)-labelling for the input
bipartite graph. We derive an approximation algorithm with performance ratio bounded by
4

3
D2, where, D is equal to the minimum even value bounding the minimum of the maximum

degrees of the two partitions.
One of the above coloring algorithms is in fact an approximating edge-coloring algorithm for
hypergraphs of maximum dimension d, i.e. the maximum edge cardinality, with performance
ratio d.
Furthermore, we consider a different approximation technique based on the reduction of the
L(h, k)-labelling problem to the vertex-coloring of the square of a graph. Using this approach
we derive an approximation algorithm with performance ratio bounded by min(h, 2k)

√
n +

o(k
√

n), assuming h ≥ k. Hence, the first technique is competitive when D = O(n1/4).
These algorithms match with a result in [2] stating that L(1, 1)-labelling n-vertex bipartite
graphs is hard to approximate within n1/2−ǫ, for any ǫ > 0, unless NP=ZPP.
We then extend the latter approximation strategy to s-partite graphs, obtaining a (min(h, sk)

√
n+

o(sk
√

n))-approximation ratio, and to general graphs deriving an (h
√

n+o(h
√

n))-approximation
algorithm, assuming h ≥ k.
Finally, we prove that the L(h, k)-labelling problem is not easier than coloring the square
of a graph.

1 Introduction

The frequency assignment problem (FAP) in a wireless network is a widely studied problem (see
[1, 15] for a survey). A wireless network consists of a set of radio transmitter/receiver stations
distributed over a region. Communication takes place by a node broadcasting a signal over a fixed
range (whose size is proportional to the power expended by the node’s transmitter). Any receiver
within the range of the transmitter can receive the signal. In this context, the frequency assignment
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task is to assign radio frequencies to transmitters at different locations without causing interference.
This situation can be modelled by a graph G, whose nodes are the radio transmitters/receivers, and
the adjacencies indicate possible communications and, hence, interferences. To avoid interference,
two adjacent stations must receive far frequencies. Therefore, the problem is closely related to
graph coloring, where colors represent possible frequencies.

Many graph coloring models have been proposed to represent the FAP problems depending on
the specific features of the problem (i.e. handling the interference, the availability of frequencies
etc.) [15]. Among all these models the most widely accepted for the interferences avoidance is
the L(h, k)-labelling, introduced by Griggs and Yeh [12] in the special case h = 2 and k = 1.
The L(h, k)-labelling problem is a coloring problem with some constraints araising from practical
reasons: a radio station and its neighbors must have far frequencies, at least h apart, so their signals
will not interfere (direct collision); furthermore, a radio station must have a signal of frequency
different at least k from the radio stations adjacent to its neighbors (hidden collision). The nature
of the environment and the geographical distance are the major factors determining parameters h
and k, and usually, h ≥ k holds.

It has been proven that the decision version of the L(h, k)-labelling problem is NP-complete
even for h ∈ {1, 2} and k = 1 [14, 13, 12]. Therefore, the problem has been widely studied for
many specific classes of graphs. For some classes of graphs the problem has been proved to be
polynomially solvable and for other classes to be approximable within a constant factor (see [7]
for a survey on the L(h, k)-labelling, and, for instance, [6, 8, 10, 11, 18] for some specific results).

In this paper we focus on the approximability of the L(h, k)-labelling problem on bipartite
graphs, for any constant h ≥ 2 and k ≥ 1. It is easy to see that when h = k = 1, the L(h, k)-
labelling problem on a graph G is equivalent to vertex-coloring G2, where G2 is the square graph
of G, and a wide literature is known in this case (e.g., see [3, 14]).

Concerning bipartite graphs, previous best known results deal only with h = 2 and k = 1 [5],
where the authors prove that the decision version of the L(2, 1)-labelling problem is NP-complete
also for planar bounded degree (∆ = 7) bipartite graphs and they present an infinite class of bi-

partite graphs requiring at least ∆2

4 colors, where ∆ is the maximum degree. We improve the lower
bound by a constant factor, and we present two approximation algorithms whose approximation
ratios depend on the degree and on the dimension of the vertex set, respectively. In particular the
first algorithm exploits a novel technique, consisting in computing the approximate vertex- and
edge-colorings of auxiliary graphs to deduce an L(h, k)-labelling for the input bipartite graph. The
second approximation technique is based on the reduction of the L(h, k)-labelling problem to the
vertex-coloring of the square graph. This strategy has the advantage to be extendable to s-partite
and general graphs.

The obtained results are listed below:

− We improve the lower bound by a constant factor of 1
4 .

− For n-vertex general bipartite graphs we derive two approximation algorithms with performance
ratio:

– 4
3D2, where D is equal to the minimum even value bounding the minimum of the maximum
degrees of the two partitions; this result is improved to 9

2 if one of the two partitions has
regular degree 2;

– min(h, 2k)
√

n + o(k
√

n), assuming h ≥ k.

Hence, the first technique is competitive when D = O(n1/4).

These algorithms match with a result in [2] stating that L(1, 1)-labelling n-vertex bipartite
graphs is hard to approximate within n1/2−ǫ, for any ǫ > 0, unless NP=ZPP.

The technique used to derive the approximation algorithm for general bipartite graphs straight-
forwardly derives from an edge-coloring approximation algorithm for hypergraphs. More precisely,
given an n-vertex hypergraph H with maximum edge-cardinality d, we describe a d–approximation
algorithm for the edge-coloring. To the knowledge of the authors, the best known previous results
concern d–uniform hypergraphs, and the approximation ratio is a function of the vertex degree
instead of the edge’s dimension [4, 16].



Additionally, we extend the last result to s-partite graphs, obtaining a (min(h, sk)
√

n +
o(sk

√
n))-approximation ratio.

Finally, for what concerns general graphs:

− We present a (h
√

n + o(h
√

n))-approximation algorithm, assuming h ≥ k;
− We prove that the L(h, k)-labelling problem is not easier than coloring the square of a graph.

Note that no results are known about the approximability of the L(h, k)-labelling problem on
general graphs, while for the coloring of square graphs an O(

√
n)-approximation algorithm exists

[14]. In this context our result strongly relates the approximability of these two problems.

2 Definitions and Preliminary Results

In this section, we recall some basic concepts and known results, and introduce some definitions
useful for the rest of the paper.

Definition 1. An L(h, k)-labelling of a graph G = (V, E) is a function f from V to the set of all
nonnegative integers such that
1. |f(x) − f(y)| ≥ h if x and y are at distance 1 in G;
2. |f(x) − f(y)| ≥ k if x and y are at distance 2 in G;
for some fixed integer values h, k ≥ 1.

The span of an L(h, k)-labelling of a graph G is the difference between the maximum and
minimum value of f . It is not restrictive to assume that the minimum value is 0, so the span
coincides with the maximum value of f .

The L(h, k)-number of G, denoted by λ∗

h,k(G) (or simply λ∗(G), when the values of h and k
are clear from the context), is the minimum span, over all L(h, k)-labellings of G. The task of the
L(h, k)-labelling problem is to determine λ∗(G). Although not necessary for our reasonings, we
assume h ≥ k, as suggested by real applications.

Let G = (V, E) be a (multi)graph. In the following we denote by ∆(G) the maximum degree
of G. Consider an optimal vertex-coloring of G and an optimal edge-coloring of G, let χ∗(G) and
χ′∗(G) be its chromatic number and chromatic index, respectively, and let χ(G) and χ′(G) denote
the number of colors used by an approximation algorithm for coloring vertices and edges of graph
G, respectively.

Here, we recall some results relating these quantities.

Theorem 1. [19, 17] The chromatic index of any graph G of maximum degree ∆(G) satisfies
∆(G) ≤ χ′∗(G) ≤ ∆(G) + 1. If G is a multigraph then χ′∗(G) ≤ 3

2∆(G).

Since the proof is constructive, we have the following result:

Corollary 1. There is an algorithm for coloring the edges of any graph (multigraph, respectively)
G with maximum degree ∆(G), that guarantees a performance ratio of 1 + 1

∆(G) ( 3
2 , respectively).

Theorem 2. [9] There is a simple greedy algorithm for coloring the vertices of any (multi)graph
G with maximum degree ∆(G), with at most ∆(G) + 1 colors (i.e. χ(G) ≤ ∆(G) + 1).

Corollary 2. For any (multi)graph G, χ(G) ≤ χ′(G) + 1.

Let B = (U ∪V, E) be a bipartite graph. The sets U and V are defined as upper and lower set,
respectively, in view of the usual graphical representation of bipartite graphs, although – of course
– they can be freely interchanged. Let ∆U and ∆V be the maximum degrees of the vertices in the
upper and lower set, respectively, and let δ(x) denote the degree of a vertex x. We introduce the
following three structures.

The first one is a multigraph associated with a bipartite graph with one partition containing
only vertices of degree exactly two.
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Fig. 1. a) A bipartite graph B; (b) Its incident graph I(B).

Definition 2. Let B = (U ∪ V, E) be a bipartite graph with one partition containing only vertices
of degree exactly two (w.l.o.g. let it be V ). The incidence graph I(B) = (U, E′) is a multigraph
defined as follows:
i. The vertex set corresponds to the upper set U of B;
ii. The edge set E′ corresponds to the lower set V of B. For every vertex e ∈ V , such that

(u, e) ∈ E ∧ (v, e) ∈ E, there exists an edge (u, v) ∈ E′.

The incidence graph of the bipartite graph in Fig. 1 (a) is shown in Fig. 1 (b).
It is straightforward to see that all vertices in I(B) have the same degree as they have in the

upper set of B. Observe that any (multi)graph is the incidence graph of a bipartite graph with all
vertices in the lower set of degree 2.

The second structure is a generalization of the incidence graph, extended to even-degree bipar-
tite graphs. Assume that each vertex x of the lower set V in the bipartite graph B = (U ∪ V, E)
has even degree δ(x), and that an ordering of the edges incident at each vertex is given. Let
〈ex

1 , ex
2 , . . . , ex

δ(x)〉 denote the ordered sequence of edges incident at x ∈ V .

Definition 3. Given a bipartite graph B = (U ∪ V, E) as above, the extended incidence graph
Ext(B) = (U, E′′) of B is a (multi)graph defined as follows:
− the vertex set corresponds to the upper set U of B;
− for every vertex x ∈ V and each couple ex

2j+1 = {x, u} ∈ E and ex
2j+2 = {x, v} ∈ E, where

j ∈ {0, . . . , δ(x)/2 − 1}, there exists an edge (u, v) ∈ E′′.

Fig. 2 (b) shows the extended incidence graph of the graph in Fig. 2 (a).
Each vertex of Ext(B) maintains the same degree it has in B, therefore ∆(Ext(B)) = ∆(B).

Furthermore, observe that a vertex x ∈ V generates in Ext(B) a set of δ(x)/2 edges, denoted
Set(x). In Fig. 2 (b), Set(a) = {a′, a′′}, Set(b) = {b′}, Set(c) = {c′, c′′}, Set(d) = {d′, d′′},
Set(e) = {e′}, and, Set(f) = {f ′, f ′′}.

Note that, the extended incident graph represents a hypergraph where each v ∈ V is a hyper-
edge.

The third structure is associated to a general bipartite graph and represents nodes in the upper
set and the relations they have through nodes in the lower set.

Definition 4. The node-graph N(B) = (U, E′′′) of a bipartite graph B = (U ∪ V, E) is a simple
graph defined as follows:
− the vertex set corresponds to the upper set U of B;



− an edge (u, v) ∈ E′′′ if and only if there exists a vertex x in the lower set of B such that
(u, x) ∈ E and (x, v) ∈ E.

In Fig. 2 (c) the node-graph of the graph in Fig. 2 (a) is depicted. The maximum degree
∆(N(B)) of N(B) is bounded by min{∆U · (∆V − 1), |U |}.
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Fig. 2. (a) A bipartite graph B; (b) The extended incidence graph Ext(B); (c) The node graph N(B);

3 Bipartite Graphs: Lower Bound

In [5], Bodlaender et al. proved that for every ∆ ≥ 2, there is a bipartite graph with maximum

degree ∆ such that λ∗

0,1 ≥ ∆2

4 . Since λ∗

0,1 ≤ λ∗

h,1, for any h > 0, the value ∆2

4 represents a lower

bound for λ∗

h,k of bipartite graphs. We improve this bound to ∆2 − ∆ + 1.

Definition 5. Let B be the class of bipartite graphs B = (U ∪ V, E) satisfying the following
conditions:
a. Both the upper set U and the lower set V have q2 + q + 1 vertices, for any integer q ≥ 0;
b. Any vertex u ∈ U ∪ V has exactly degree ∆ = q + 1;
c. Given u, v ∈ U (or, u, v ∈ V ), then |Adj(v) ∩ Adj(u)| = 1.

We show that the cardinality of B is infinite. Let us consider a projective plane P of order q, for
some prime power q. Let U represent points and V lines of P . For u ∈ U and v ∈ V , (u, v) ∈ E
if and only if point u belongs to line v. It is straightforward to verify that the bipartite graph so
defined satisfies the constraints in Definition 5 and, since all vertices in U (or in V ) are at distance
2, we have λ∗

0,1(B) ≥ |U | = q2 + q + 1 = ∆2 − ∆ + 1.
Note that the class B has been introduced in [12] without deriving the lower bound. It is easy

to see that this lower bound applies to s-partite graphs, for any s.

4 First approximation algorithm for bipartite graphs

The first algorithm we propose reduces the L(h, k)-labelling problem to both the edge- and the
vertex-coloring of the (extended) incidence and the node-graphs associated with a given bipartite
graph.

To make the exposition easier, the presentation proceeds in three steps. First we analyze
bipartite graphs with vertices in the lower partition of regular degree 2. Then, we extend the
technique to bipartite graphs with even-degree lower set. Finally, we generalize the algorithm to
any bipartite graph.



4.1 Lower Set of Regular Degree 2

Let B = (U ∪ V, E) be a bipartite graph with all vertices in the lower set having regular degree 2.
Let I(B) = (U, E′) be the corresponding incidence graph.

Let c1 and c′1 be two functions for vertex- and edge-coloring I(B), requiring χ1(I(B)) and
χ′

1(I(B)) colors, respectively.
These two colorings can be exploited to deduce an L(h, k)-labelling of B in the following way:

− label each vertex v in the upper set of B with k(c1(v) − 1);
− label each vertex e in the lower set B with (χ1(I(B)) − 1)k + h + k(c′1(e) − 1),

where the term −1 is due to the fact that the smallest value for c1 and c′1 is 1, while for the
L(h, k)-labelling it is 0. The term (χ1(I(B)) − 1)k represents the largest color used in the upper
set, and term h is the separation value.

It is easy to prove that the labelling produced is indeed an L(h, k)-labelling. The span of this
labelling is k(χ1(I(B)) + χ′

1(I(B))) + h − 2k.
Hence, from Corollary 2, we have:

λ(B) ≤ 2kχ′

1(I(B)) + h − k. (1)

Consider now an optimal L(h, k)-labelling of B and call f(v) the color assigned to vertex v in
B. We can use this labelling to achieve a feasible edge-coloring for I(B): consider each vertex e in
the lower set of B and its corresponding edge e of I(B); label e in I(B) with ⌊f(e)/k⌋+ 1.

This labelling is a feasible edge-coloring of I(B) since, for any pair of adjacent edges e and e′ in
I(B), they are at distance two in V (via the vertex in the upper set corresponding to the common
end-point) and, hence, they have labels at least k apart, so ⌊f(e)/k⌋ + 1 and ⌊f(e′)/k⌋ + 1 are
different. Therefore, for the number χ′

2(I(B)) of used colors it holds:

χ′∗ ≤ χ′

2(I(B)) ≤ λ∗(B)

k
+ 1 (2)

Furthermore, if we consider any non trivial bipartite graph B, i.e. a connected graph with at
least three vertices, with maximum degree ∆(B) then λ∗(B) ≥ h + (∆(B) − 1)k. Since, in this
case, ∆(B) ≥ 2, we have λ∗(I(B)) ≥ h + k. On the other hand, since k ≤ h, then k ≤ λ∗(I(B))/2
.

From Equation 1, Corollary 1 and Equation 2, and from the above observations, we get:

λ(B) ≤ 3λ∗(B) + 2k + h ≤ 9

2
λ∗(B).

The previous reasonings lead us to the following theorem:

Theorem 3. The L(h, k)-labelling problem on bipartite graphs with a partition of regular degree
2 is 9

2–approximable.

4.2 Lower Set of Even Degree

In this subsection we extend the results of the previous section to bipartite graphs having vertices
in the lower set of even degree.

Let B = (U ∪ V, E) be a bipartite graph, with vertices in the lower set of even degree. Let ∆U

and ∆V be the maximum degree of the upper and lower set, respectively. Consider the associated
node graph N(B) and the extended incidence graph Ext(B).

Observe that there exists a vertex-coloring function of N(B) using at most χ(N(B)) ≤
∆(N(B)) + 1 ≤ ∆U · (∆V − 1) + 1 colors.

Consider now the trivial greedy algorithm to color edges of Ext(B) that sequentially considers
each Set(v) and assigns to all its edges the same smallest feasible color.

Lemma 1. The greedy algorithm for edge-coloring Ext(B) uses at most
χ′(Ext(B)) ≤ ∆V · ∆U − ∆V + 1 colors.

Proof. Let us consider Set(x) for some x ∈ V . Set(x) has at most ∆V /2 vertex disjoint edges, each
one of them incident at most 2(∆U − 1) further edges; hence, to color Set(x) at most 2 · ∆V /2 ·
(∆U − 1) colors must be avoided. The proof follows.



Corollary 3. Ext(B) can be edge-colored so that all edges in Set(x), for any x, receive the same
color, with a guaranteed performance ratio of ∆V .

Proof. The claim follows from Lemma 1 and from the obvious inequality
χ′∗(Ext(B)) ≥ ∆(Ext(B)) = ∆U .

An immediate consequence of the above result is shown in the following theorem.

Theorem 4. Given an n–vertex hypergraph H of dimension d, then there exists an approximation
algorithm coloring edges of H with guaranteed approximation ratio of d.

We are now ready to derive a feasible L(h, k)-labelling of B as follows. Let c1 be a vertex-
coloring function for N(B) and let c′1 be an edge-coloring function for Ext(B), with the property
that edges of Set(x) have all the same color, for each x. Let χ1(N(B)) and χ′

1(Ext(B)) denote the
number of colors required.
Proceed as follows:
− label each vertex v in the upper set of B with k(c1(v) − 1);
− label each vertex x in the lower set of B with (χ1(N(B)) − 1)k + h + k(c′1(Set(x)) − 1).
By the definitions of N(B), Ext(B), and the specific edge-coloring function c′1, the labelling
obtained is feasible and its span is λ(B) = kχ1(N(B)) + kχ′

1(Ext(B)) + h − 2k.
Reminding that χ1(N(B)) ≤ ∆(N(B)) + 1 ≤ ∆U (∆V − 1) + 1 and that χ′

1(Ext(B)) ≥ ∆U we
have:

λ(B) ≤ kχ′

1(Ext(B))∆V + h − k. (3)

Similarly to Subsection 4.1, we assume to have an optimal L(h, k)-labelling for B with span
λ∗(B) and deduce a feasible edge-coloring for Ext(B) with the property that all edges in Set(x)
have the same color, for any x. Let χ′

2(Ext(B)) be the number of used colors. It follows that:

χ′∗(Ext(B)) ≤ χ′

2(Ext(B)) ≤ λ∗(B)

k
+ 1. (4)

Considering that, for the class of graphs under consideration ∆ ≥ 3 (if ∆ = 2 we have already

given a result), we have λ∗(B) ≥ h + 2k. Additionally, since h ≥ k, then k ≤ λ∗(B)
3 . From

Equation 3, Corollary 3, Equation 4, and the above observations, we have:

λ(B) ≤ k

(

λ∗(B)

k
+ 1

)

∆2
V + h − k ≤

≤ ∆2
V λ∗(B) + (∆2

V − 3)
λ∗(B)

3
+ λ∗(B) =

=
4

3
∆2

V λ∗(B). (5)

From the above discussion we have the following theorem:

Theorem 5. The L(h, k)-labelling problem on bipartite graphs with all vertices in the lower set
of even degree is 4

3∆2
V –approximable, where ∆V is the maximum degree of the lower set.

4.3 General Bipartite Graphs

In this subsection we further extend the previous results obtaining an approximation algorithm
guaranteeing a performance ratio of 4

3D2 for each bipartite graph where D is the smallest even
value bounding the minimum of the maximum degrees of the two partition.

Let B = (U ∪V, E) be a bipartite graph. W.l.o.g. let ∆V = min ∆U , ∆V , hence D is either ∆V

or ∆V + 1. Consider all vertices in the lower set with odd degree, and for each such vertex x, add
a dummy vertex vx in the upper set and a dummy edge (x, vx) in E. In this way a new bipartite
graph B′ = (U ′ ∪ V, E′) is generated and its lower set has maximum degree D and all vertices
in V have even degree. Hence, we can consider graphs N(B) and Ext(B′) and apply Theorem 5.
Indeed, it is easy to see that a feasible L(h, k)-labelling for B′ is a L(h, k)-labelling for B, also.
Obviously, the viceversa could not be true. Hence, we have the following theorem:

Theorem 6. The L(h, k)-labelling problem on bipartite graphs is 4
3D2–approximable, where D is

the smallest even value bounding the minimum of the maximum degrees of the two partitions.



5 Second Approximation Algorithm

In this section we propose another approximation algorithm for λ∗

h,k(B) on a general bipartite

graph B with a ratio min(h, 2k)
√

n + o(k
√

n), not depending on the degree of the graph.

In [14] the author proves the existence of an approximation algorithm for vertex-coloring the
square G2 of any n vertex graph G with performance ratio

√
n − 1 + 1.

Consider any bipartite graph B = (U ∪ V, E). We remind that any L(1, 1)-labelling of B is
a vertex-coloring of B2, and it partitions the vertex set in classes such that vertices in different
classes have different colors. Furthermore, if a class contains nodes of both U and V , we can split it
into two classes so that each of them contains only elements in the upper (lower) set. Let L1,1(U)
and L1,1(V ) be the number of classes covering U and V , respectively. It holds L1,1(U)+L1,1(V ) ≤
2(λ1,1(B) + 1), where the term +1 derives from the fact that the smallest color of an L(1, 1)-
labelling is 0. Additionally, observe that λ∗

h,k(B) ≥ λ∗

1,1(B). We are now ready to describe the
algorithm.

Run algorithm described in [14] on B to obtain an L(1, 1)-labelling such that:

λ1,1(B)

λ∗

1,1(B)
≤

√
n − 1 + 1.

If 2k ≤ h, consider the classes induced by colors and split them into classes separating vertices
of U and of V .

Number all classes in U , starting from 0, and all classes in V , starting again from 0. Then, for
each vertex v ∈ U belonging to class numbered f(v), label v with kf(v). Finally, for each vertex
v ∈ V belonging to class numbered f(v), label v with k(L1,1(U) − 1) + h + kf(v). The computed
labelling is a feasible L(h, k)-labelling of B and has span λh,k(B) ≤ k(L1,1(U)− 1) + k(L1,1(V )−
1) + h ≤ 2kλ1,1(B) + h. The performance ratio of the previous algorithm is:

λh,k(B)

λ∗

h,k(B)
≤ 2kλ1,1(B) + h

λ∗

h,k(B)
≤

≤ 2kλ1,1(B)

λ∗

1,1(B)
+

h

λ∗

h,k(B)
≤ 2k(

√
n − 1 + 1) + 1

as λ∗

h,k(B) is at least h for each non trivial graph with at least two vertices.

If 2k > h, instead of labelling nodes as above described, we proceed as follows: Consider the
classes induced by colors and label each node in the class colored f(v) with hf(v). The produced
labelling is feasible and its span is λh,k(B) ≤ hλ1,1(B). Hence, the performance ratio is h

√
n − 1+h.

The above discussion leads to the following theorem:

Theorem 7. Given a n-vertex bipartite graph B, there exists a polynomial time approximation
algorithm for computing an L(h, k)-labelling of B with
min(h, 2k)

√
n + o(k

√
n) guaranteed performance ratio.

Observe that the 4
3D2-approximation algorithm is better than this one when D = O(n1/4).

Furthermore, it is easy to generalize the above strategy to s-partite graph. In this case we have
the following theorem:

Theorem 8. Given an n-vertex s-partite graph G, there exists a polynomial time approximation
algorithm for computing an L(h, k)-labelling of G with
min(h, sk)

√
n + o(sk

√
n) guaranteed performance ratio.

Proof. The proof easily derives by generalizing Theorem 7, and it is omitted in this extended
abstract for the sake of brevity.



6 General Graphs

In this section, we show a result stating the strong tie between the L(h, k)-labelling problem and
the problem of coloring the vertices of the square of a graph with the minimum number of colors.

Theorem 9. Let be given any value α > 1 and a graph G. If there exists an algorithm finding

an approximate vertex-coloring of G2 with approximation ratio χ(G2)
χ∗(G2) ≤ α, then there exists an

algorithm finding an approximate L(h, k)-labelling of G with approximation ratio
λh,k(G)
λ∗

h,k
(G) ≤ hα.

Conversely, let be given any value β > 1 and a graph G. If there exists an algorithm finding an

approximate L(h, k)-labelling with approximation ratio
λh,k(G)
λ∗

h,k
(G) ≤ β, then there exists an algorithm

finding an approximate vertex-coloring of G2 with approximation ratio χ(G2)
χ∗(G2) ≤ hβ.

Proof. Suppose there exists an algorithm coloring vertices of G2 with performance ratio χ(G2)
χ∗(G2) ≤

α, for any graph G = (V, E). Let f(v) be the color assigned to vertex v. Then a feasible L(h, k)-
labelling for G is obtained by assigning label h(f(v) − 1) to v, assuming h ≥ k. It is easy to see
that such a labelling is a feasible L(h, k)-labelling and its performance ratio is:

λh,k(G)

λ∗

h,k(G)
≤ h(λ1,1(G))

λ∗

1,1(G)
≤ hα.

Conversely, suppose there exists an approximation algorithm for L(h, k)-labelling with perfor-

mance ratio
λh,k(G)
λ∗

h,k
(G) ≤ β for any graph G.

Since h ≥ k ≥ 1, a L(h, k)-labelling is always a feasible L(1, 1)-labelling for G. On the other
hand, using a similar reasoning as in Section 3, λ∗

1,1(G) ≥ λ∗

h,k/h. It follows that:

χ(G2)

χ∗(G2)
≤ hλh,k(G)

λ∗

h,k(G)
≤ hβ

Corollary 4. The problem of vertex-coloring the square of a graph with the minimum number
of colors is in APX if and only if the problem of L(h, k)-labelling a graph is in APX, for each
constant value h and k ≤ h.

Note that for a not constant h, the L(h, k)-labelling problem is not easier than the vertex-coloring
of the square of a graph.

From Theorem 9 and considering the approximation algorithm described in [14], we can state
the following theorem:

Theorem 10. Given a n-vertex graph G, there exists a polynomial time approximation algorithm
for computing an L(h, k)-labelling of G with h(

√
n − 1 + 1) guaranteed performance ratio.
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