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Abstract. Because exploratory rule discovery works with data that is
only a sample of the phenomena to be investigated, some resulting rules
may appear interesting only by chance. Techniques are developed for
automatically discarding statistically insignificant exploratory rules that
cannot survive a hypothesis with regard to its ancestors. We call such
insignificant rules derivative extended rules. In this paper, we argue that
there is another type of derivative exploratory rules, which is derivative
with regard to their children. We also argue that considerable amount
of such derivative partial rules can not be successfully removed using
existing rule pruning techniques. We propose a new technique to address
this problem. Experiments are done in impact rule discovery to evaluate
the effect of this derivative partial rule filter. Results show that the in-
herent problem of too many resulting rules in exploratory rule discovery
is alleviated.
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1 Introduction

Exploratory rule discovery seeks to retrieve all implicit patterns and regularities
that satisfy some user-defined set of constraints in a population, with respect to
a set of available sample data. The best known such approach is association rule
discovery [1]. Most approaches seeks rules A → C for which there is a correlation
between the antecedent A and the consequent C. However, whenever one such
rule is found, there is a risk that many derivative and potentially uninteresting
rules A′ → C ′ will also be found. These derivative rules are those for which
there is a correlation between the antecedent and the consequent only by virtue
of there being a correlation between A and C. For example, if A and C are
correlated then for any term B that is unrelated to either A or C, AB will also
turn out to be correlated with C.

Considerable research has been devoted to automatically identify and discard
such derivative rules. The closed itemset techniques [12, 3, 16] can identify rules
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for which some elements can be removed without changing the support of the
rule. Minimum improvement techniques [6] can to identify rules for which some
elements can be removed without decreasing rule confidence. However, since ex-
ploratory rule discovery seeks to discover rules characterizing the features in a
population, with respect to a given sample, rules may happen to be interesting
simply due to sampling fluctuation. Statistical tests are also applied to assess
whether there is evidence that no elements can be removed without significantly
altering the status of the rule with respect to the population from which the
sample data is drawn [11, 5, 9]. However, all these techniques relate only to iden-
tifying rules that are derivative due to the addition of irrelevant or unproductive
elements.

There exists, however, another type of derivative rules that may also result
in many rules that are likely to be of little interest to the user. For any rule
AB → C which is not derivative from another rule and for which there is a
correlation between the antecedent and the consequent, both A and B may each
be correlated with C solely due to correlation between AB and C. In this case
A → C and B → C will both be potentially uninteresting derivative rules that
may be discovered by an exploratory rule discovery system.

The following example illustrates an occasion where such a potentially unin-
teresting rule may be generated.

Example 1. Suppose a retailer is trying to identify the groups of customers who
is likely to buy some new products. After applying the impact rule discovery with
the rule filters proposed by Huang and Webb [9, 10], two rules are identified as
solutions:

District = A → profit(coverage = 200,mean = 100)
District = A & age < 50 → profit(coverage = 100,mean = 200)

Although these two rules are both “significant” as is identified by the rule
filter proposed by Huang and Webb [9], the first rule, which is an ancestor of
the second one is misleading. Actually, no profit is produced by customers who
belong to district A and are older than 50 years! The retailer’s attention should
more sensibly focus on the group of customers who are under age 50 in district
A, instead of on all those in district A. Keeping the first rule in the resulting
solutions may confuse the decision makers.

Impact rule discovery is a type of exploratory rule discovery that seeks rules
for which the consequent is an undiscretized quantitative variable, referred to
as the target and is described using its distribution. This paper investigates the
identification of the second type of derivative rules in the context of impact rule
discovery [9, 14].

The rest of this paper is organized like this: a brief introduction to exploratory
rule discovery related concepts is presented in section 2. The definitions and no-
tations of impact rule discovery is charaterized in section 3. Derivative impact
rules are defined and relationship between different rules are clarified in section
4, together with the implementation of the derivative rule filter in section 3. Ex-
perimental results are evaluated in section 5, which is followed by our conclusions
in section 6.



2 Exploratory Rule Discovery

Many machine learning systems discover a single model from the available data
that is expected to maximize some objective function of interestingness on un-
known future data. Predictions or classifications are done on the basis of this
single model [15]. However, alternative models may exist that perform equally
well. Thus, it is not always sensible to choose only one of the“best” models.
Moreover the criteria for deciding whether a model is best or not also varies
with the context of application. Exploratory rule discovery techniques overcome
this problem by searching for multiple models which satisfy certain user-defined
set of constraints and present all these models to the users to provide them with
alternative choices. Greater flexibility is achieved in this way.

Exploratory rule discovery techniques [9] are classified into propositional rule
discovery which seeks rules with qualitative attributes only and distributional-
consequent rule discovery which seeks rules with undiscretized quantitative vari-
ables as consequent. Propositional rules are composed of Boolean conditions only.
While the status or performance of the undiscretized quantitative attributes in
distributional-consequent rules are described with their distributions. Associa-
tion rule discovery [1], contrast sets discovery [5] and correlation rule discovery
[8] are examples of propositional exploratory rule discovery, while impact rule
[14] or quantitative association rule discovery [2], as is variously known, be-
longs to the class of distributional-consequent rule discovery. It is argued that
distributional-consequent rules are able to provide better descriptions of the in-
terrelationship between quantitative variables and qualitative attributes.

Considering the differences between propositional rule discovery and
distributional-consequent rule discovery, there are inherent differences between
the techniques for propositional and distributional-consequent rule pruning and
optimizations. Researchers have devoted extensive efforts to develop rule prun-
ing and optimization techniques. Reviews of such work can be found in many
related works [9].

We define some key notions of exploratory rule discovery as follows:

1. For propositional rule discovery, a record is an element to which we apply
Boolean predicates called conditions, while for distributional-consequent rule
discovery, a record is a pair < c, v >, where c is the nonempty set of Boolean
conditions, and v is a set of values for the quantitative variables in whose
distribution the users are interested.

2. Rule r1 is a parent of r2 if the body of r1 is a subset of the body of r2. If
the cardinality of the body of r1 is smaller than that of r2 by 1, then the
second rule is referred to as a direct parent of the first rule, otherwise, it is
a non-direct ancestor of the first rule.

3. We use the notion coverset(A), where A is a conjunction of conditions, to
represent the set of records that satisfy A. If a record x is in coverset(A),
we say that x is covered by A. If A is an ∅, coverset(A) includes all the
records in the database. Coverage(A) is the number of records covered by
A. coverage(A) = |coverset(A)|.



3 Impact Rule Discovery

We construct our impact rule discovery algorithm on the basis of OPUS [13]
search algorithm, which enables successful discovery of the top k impact rules
that satisfy a certain set of user-specified constraints.

We characterized the terminology of k-optimal impact rule discovery to be
used in this paper as follows:

1. An impact rule takes the form of A → target, where the target is describe by
the following measures: coverage, mean, variance, maximum, minimum,
sum and impact. This is an example of impact rules discovered by our algo-
rithm:

Address = Brighton & profession = programmer → income
(coverage : 23%,mean : 60000, variance : 4000,max : 75000,

min : 44000, sum : 1380000, impact : 3903.98)

2. Impact is an interestingness measure suggested by Webb [14]1: impact(A →
target) = (mean(A → target)− targ)× coverage(A)).

3. An k-optimal impact rule discovery task is a 6-tuple:
KOIRD(D, C, T ,M, λ, k).
D: is a nonempty set of records, which is called the database. A record is

a pair < c, v >, c ⊆ C and v is a set of values for T . D is an available
sample from the global population D.

C: is a nonempty set of Boolean conditions, which are the set of available
conditions for impact rule antecedents, which is generated from the given
data in D.

T : is a nonempty set of the variables in whose distribution we are interested.
M: is a set of constraints. A constraint is a criteria which the resulting rules

must satisfy.
λ: {X → Y } × {D} → R is a function from rules and databases to values

and defines an interestingness metric such that the greater the value
of λ(X → Y,D) the greater the interestingness of this rule given the
database.

k: is a user specified integer number denoting the number of rules in the
ultimate set of solutions for this rule discovery task.

Pseudo code of the original algorithm for impact rule discovery is described in
table 1. In this table, current is the set of conditions, whose supersets (children)
are currently being explored. Available is the set of conditions that may be
added to current. By adding the conditions in available to current one by one,
the antecedent of the current rule: New → target, is produced. Rule list is an
ordered list of the top-k interesting rules we have encountered by now.

The search space of this algorithm is illustrated in figure 1. Each node in
this search space is connected with a potential impact rule, whose antecedent
1 In this formula, mean(A → target) denotes the mean of the targets covered by A,

and coverage(A) is the number of the records covered by A.



Algorithm: OPUS IR(Current, Available, M)

1. SoFar := ∅
2. FOR EACH P in Available

2.1 New := Current ∪ P
2.2 IF current rule New → target does not satisfy any of the prunable constraints in

M
THEN go to step 2.

2.4 ELSE IF current rule New → target satisfies all the nonprunable constraints in M
Record New → target in the rule list;

2.5 OPUS IR(New, SoFar, (M));
2.6 SoFar := SoFar ∪ P
2.7 END IF

3. END FOR

Table 1. OPUS IR

is composed of the conditions between the braces. By performing a depth-first
search through such a search space, the algorithm is guarantee to access every
nodes and generate all potential impact rules. Based on the OPUS structure,
powerful search space pruning is facilitated [13], making it suitable for discov-
ering impact rules in vary large, dense databases. The completeness of OPUS
based algorithms is proved by Webb [13].

{}

{a}
{b} {ab}

{c}
{ac}
{bc} {abc}

{d}

{ad}
{bd} {abd}

{cd}
{acd}
{bcd} {abcd}

{...}

Fig. 1. fixed search space for OPUS IR

4 Derivative Partial Impact Rules

Techniques for automatically discarding potentially uninteresting rules are exten-
sively explored, examples are the constraint-based techniques, the non-redundant
techniques and the techniques regarding the rule improvement and statistically
significance. The first classes of techniques seek to identify whether a rule r fails
to satisfy the constraints inM. The second class of techniques assess whether the
resulting rules are redundant or not by reference to the sample data. Example
of non-redundant rule discovery techniques are the closed set related techniques
and the trivial rule filter. Each assessment of whether r is desirable is not al-
ways free from the risk that the rule is not correct with respect to D due to the
sampling fluctuation [15].



The third class was proposed to reduce the influence of sampling on resulting
rules. Statistical tests have been utilized for discarding potentially uninteresting
rules generated due to sampling fluctuation, both in context of propositional and
distributional-consequent rule discovery. For propositional rule discovery, Brin
et al. [8] proposed a pruning technique for removing insignificant correlation
rules using a chi-square test; Liu et al. [11] also made use of the chi-square test
to identify the significance of association rules with fixed consequents. Bay and
Pazzani [5] applied a significance test to remove the insignificant contrast sets in
STUCCO. Webb [15] sought to control the number of potentially uninteresting
association rules which happen to be interesting due to the sampling by apply-
ing a Fisher exact test. For distributional consequent rule discovery, Aumann
and Lindell [2] applied a standard z test to quantitative association rule discov-
ery and Huang and Webb [9] also developed an insignificance filter in impact
rule discovery whose efficiency is considerably improved by introducing several
efficiency improving techniques for rule discovery in very large, dense databases.

However, the techniques mentioned above can only successfully remove a
subset of derivative rules.

4.1 Relationship among Rules

As is argued in the introduction, there are derivative rules other than the deriva-
tive extended rules that the existing techniques cannot successfully remove. Even
after both rules, A → target and A &B → target, have been identified as non-
derivative extended rules, there is still a risk that either or both of them are
potentially uninteresting. For example, if the target mean of coverset(A&¬B) is
not significantly higher than the target mean of coverset(¬A), it can be asserted
that the notably high target mean for coverset(A) derives solely from that of
coverset(A&B), which is only a subset of coverset(A). Such rules are defined as
derivative partial rules, which are insignificant compared to fundamental rules
which are their children.

The inter-relationships among different rules are explained in figure 2. In this
figure, fundamental rules can also be regarded as non-derivative rules. Derivative
extended rules are those referred to as insignificant rules in previous research.
Unproductive rules are those exhibit no improvement in target mean comparing
with their parent rules. Trivial rules are rules whose antecedents cover exactly the
same records as one of their parent rules. As was proved by Huang and Webb [9],
trivial rules are a subset of unproductive rules. while those that are productive,
with respect to the sample, but fail the significance test are all classified as
statistically unproductive.

4.2 Derivative Partial rules and Implementation

we first define derivative partial impact rules:

Definition 1. A non-derivative extended impact rule, A → target is an deriva-
tive partial rule, iff there exists a condition x, not included in A, where the target



Fig. 2. Relationship of different rules

mean for coverset(A) − coverset(A&x) is not higher than the target mean for
coverset(¬A) at a user specified level of significance.

InsigPartial(A → target) = ∃x ∈ (C − {A}),
TarMean(coverset(A&¬x)) � TarMean(coverset(¬A))

Statistical Test Since by performing the exploratory rule discovery, we are
aiming at discovering rules that characterize the features of the population with
reference to sample data, hypothesis tests must be done to identify whether an
impact rule is derivative or not. A t test is applied to assess whether a partial
rule is derivative with regard to its children.

Implementation The new algorithm with derivative partial rule filter is pro-
vided in table 2. In this algorithm all the parent rules of the current rule are
stored in the parent rule list while checking whether current rule is a derivative
extended rule or not. After current rule is identified as perspectively fundamen-
tal the derivative partial rule filter is then applied to check whether the parents
are derivative with regard to current rule. Derivative parent rules are deleted
from the rule list. Since all the parent rules of current rule has already been ex-
plored before current rule (please refer to the search space of OPUS IR), every
derivative rule is guaranteed to be removed.

5 Experimental Evaluations

We study the effectiveness of the algorithm in table 2 for the derivative partial
rule filter by applying it to 10 large databases chosen from KDD archives [4] and
UCI machine learning repository [7], in which many attributes are quantitative.
Great differences exist among these databases with the smallest database in size
having less than 300 records and the greatest having 2000 times as many records
as that of the smallest. Number of attributes vary from only 9 to almost 90.
Since complex interrelationships exist among the data, there is a strong necessity



Algorithm: OPUS IR Filter(Current, Available, M)

1. SoFar := ∅
2. FOR EACH P in Available

2.1 New := Current ∪ P
2.2 IF New satisfies all the prunable constraints in M except the nontrivial

constraint THEN
2.2.1 current rule = New → target
2.2.2 IF the mean of current rule is significantly higher than all its direct parents

THEN
2.2.2.1 add the parent rules to the parent rule list
2.2.2.2 IF the rule satisfies all the other non-prunable constraints in M.

THEN record Rule to the ordered rule list
2.2.2.3 END IF
2.2.2.4 FOR EACH parent rule in parent rule list

IF parent rule is a derivative partial rule with regard to
current rule

THEN delete parent rule from rule list.
END IF

2.2.2.5 END FOR
2.2.3 OPUS IR(New, SoFar, M)
2.2.4 SoFar := SoFar ∪ P
2.2.5 END IF

2.3 END IF
3. END FOR

Table 2. derivative rule Filter

for rule pruning. We choose a target attribute from among the quantitative
attributes in each database, and discretize the rest using a 3-bin equal-frequency
discretization. After discretization the numbers of available conditions turn out
to be over 1500 for some of the databases. The significance level for the derivative
rule filters is 0.05.

We did the experiments using following protocol. First, the program in ta-
ble 1 is run using the insignificance filter proposed by Huang and Webb [9] to
find the top 1000 significance rules from each database, with maximum number
of conditions on rule antecedent set to 3, 4 and 5. Then, the algorithm with
derivative partial rule filter in table 2 is executed to remove derivative partial
rules from the resulting solutions. Results are organized in table 4. The numbers
of fundamental rules found after both filters are applied are those before the
slashes. Integers after the slashes are those found using the insignificance filter
only. Decreases in resulting rules are also presented in percentage.

Here is an example of an impact rule which is discarded as derivative partial
Sex = M → Shucked weight(coverage : 1528,mean : 0.432946,

variance : 0.049729,min : 0.0065,max : 1.351, sum : 661.542, impact : 112.428)

It is derivative regarding its parent rule:
Sex = M&1.0295 <= Whole weight → Shucked weight(coverage : 687,

mean : 0.619229, variance : 0.0284951,min : 0.315,max : 1.351,

sum : 425.411, impact : 178.525)

In this example, if an abalone is male but have a whole weight less than
1.0295 cannot have a very high shucked weight. The first rule is thus misleading!



database records attributes conditions Target

Abalone 4117 9 24 Shuckedweight
Heart 270 13 40 Max heart rate

Housing 506 14 49 MEDV
German credit 1000 20 77 Credit amount
Ipums.la.97 70187 61 1693 Total income
Ipums.la.98 74954 61 1610 Total income
Ipums.la.99 88443 61 1889 Total income
Ticdata2000 5822 86 771 Ave. income

Census income 199523 42 522 Wage per hour
Covtype 581012 55 131 Elevation

Table 3. Basic information of the databases

database MNC=3 MNC=4 MNC=5

Abalone 82/86 4.65% 127/138 7.97% 149/173 13.87%

Heart 43/57 24.56% 63/80 21.25% 81/100 19.0%

Housing 131/171 23.39% 168/255 34.12% 192/288 33.33%

German credit 152/197 22.84% 213/273 21.98% 222/295 24.75%

Ipums.la.97 949/1000 5.1% 867/1000 13.3% 809/1000 19.1%

Ipums.la.98 944/1000 5.6% 890/1000 11.0% 761/1000 23.9%

Ipums.la.99 959/1000 4.1% 930/1000 7.0% 896/1000 10.4%

Ticdata2000 803/1000 19.7% 739/1000 26.1% 674/1000 32.6%

Census income 894/1000 10.6% 776/1000 22.4% 744/1000 25.6%

Covtype 918/1000 8.2% 829/1000 17.1% 733/1000 26.7%
Table 4. Experimental results

From the experimental results in table 4, we make the following observation:
When the number of maximum conditions on rule antecedent increases, gen-
erally, more derivative partial rules are produced by the impact rule discovery
system. The greatest change for the numbers of resulting rules after the deriva-
tive partial rule filter is applied is as much as 34%. Even the database with a
slightest change saw a decrease of over 4%. This justify the argument that there
are considerable amount of derivative partial rules still exist in the resulting
rules even after the derivative extended rule filter (insignificance filter) is ap-
plied. The derivative partial rules can be pruned using our proposed algorithm
in reasonable period of time.

6 Conclusions

Exploratory rule discovery searches for multiple models within a set of given
data to represent the underlying patterns or regularities. However, it often re-
sults in large numbers of rules. Sometimes, the resulting rules are too numerous
for human to analysis. Research has investigated techniques for automatically
discarding potentially uninteresting rules, thus reducing the number of rules and
removing those that are unlikely to be of fundamental interest. One class of these



techniques is to apply statistical tests to the resulting models, so as to alleviate
the risk of accepting rules which appear to be interesting by reference to the
given data which is only a sample, instead of the real world population. In this
paper, we argued that there is a type of potentially uninteresting rules which ex-
isting techniques fail to remove. We call these rules derivative rules. A derivative
rule filter is developed in a impact rule discovery system. Experiments showed
a considerable decrease in the number of resulting rules.
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