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Abstract. Mixture models, such as Gaussian Mixture Modelehaeen widely
used in many applications for modeling data. Gaunssiixture model (GMM)
assumes that data points are generated from & &stussian models with the
same set of mixture weights. A natural extensioGbfM is the probabilistic
latent semantic analysis (PLSA) model, which assijfferent mixture weights
for each data point. Thus, PLSA is more flexiblartithe GMM method. How-
ever, as a tradeoff, PLSA usually suffers from dlerfitting problem. In this
paper, we propose a regularized probabilistic tassmantic analysis model
(RPLSA), which can properly adjust the amount ofleldlexibility so that not
only the training data can be fit well but also thedel is robust to avoid the
overfitting problem. We conduct empirical study fbe application of speaker
identification to show the effectiveness of the newdel. The experiment re-
sults on the NIST speaker recognition dataset @idithat the RPLSA model
outperforms both the GMM and PLSA models substhynti@he principle of
RPLSA of appropriately adjusting model flexibilican be naturally extended
to other applications and other type of mixture gied

1 Introduction

Mixture models, such as Gaussian Mixture Model.ehlasen widely used throughout
the applications of data mining and machine legrnior example, Gaussian Mixture
model (GMM) has been applied for time series cfasdion [9], image texture detec-
tion [8] and speaker identification [11]. In thessks, the GMM model assumes that
data points from a specific object or class (@agpeaker in speaker identification) are
generated from a pool of Gaussian models with firgégture weights; it estimates
mixture models from the training data using a maximikelihood method; it predicts
test data with the classes that generate the taatwlith the largest probabilities.
GMM model has been well studied and different esi@ms of GMM such as dis-
criminative training have been examined in the jinev research [7].

One general problem of modeling data with GNdMhat GMM uses the same set
of mixture weights for all the data points of atgadar class, which limits the power



of the mixture model in fitting the training datecarately. In contrast, a probabilistic
latent semantic analysis (PLSA) [5][6] model allosech data point to choose its own
mixture weights. Apparently, the PLSA model is méexible than the GMM model
in that a different set of mixture weights is irdued for each data point. However, as
a tradeoff, PLSA has a substantially larger paramgtace than the GMM model; the
excessive freedom of assigning data point dependexture weights invites the
PLSA model to the potential overfitting problem gjivthe limited amount of training
data.

In this paper, we propose ragularized probabilistic latent semantic analysis
(RPLSA) model that addresses the overfitting pnoble PLSA by regularizing the
mixture weights. In particular, a regularizatiomnteis introduced in RPLSA, which
punishes the objective function in RPLSA when défe data points of the same class
choose mixture weights that are far away from eabkr. It is an intermediate model
between GMM and PLSA: different mixture weights atlewed for each data point;
but similar mixture weights are favored for diffetelata points in the same class.

Empirical study for the application of speakimtification was conducted to show
the effectiveness of the new RPLSA model. The NI®B9 speaker recognition
evaluation dataset with 539 speakers were usedten@xperiment results indicate
that the RPLSA model achieves better results theth the GMM and PLSA. Fur-
thermore, careful analysis shows that the advararPLSA comes from the power
of properly adjusting the model flexibility.

2 Previous Research of Mixture M odel

There has been tremendous amount of previous oisedrmixture model. In this
section, we only survey the most related work.

2.1 Gaussian Mixture M odel

GMM is one of the most widely used mixture modeliaghniques [4][8][9][11]. It is
a simple model and is reasonably accurate when atategenerated from a set of

Gaussian distributions. LeX' ={x,1<t<T'} denote the feature vectors for data

points from the ith class (e.g., a particular spepkrhey are modeled by a total num-
ber of J Gaussians as follows:
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where &, includes all the model parameters, i.eRP(g) v;,2,,1<j<J}
P, (% lu;,Z;) is the Gaussian distribution for the j-th class, vatimean vector

u, and a covariance matrix ; as:
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where D is the dimension of the feature vector Usually Z; is set to be a diagonal

matrix asdiag{afd :1<d <D} inorderto reduce the size of the parameter sfgce

It can be seen from Equation (1) that the datatpaha specific class are gener-
ated from multiple Gaussian models with an idehtisat of mixture weights
(i.e.,P(z;) ). This constraint may not be valid in the data elimd) process. For ex-

ample, in speaker identification, mixture weights & vowel can be significantly
different from the mixture weights for a consondrtierefore, it is important to incor-
porate data point dependent mixture weights ineditamework of mixture models.

2.2 Probabilistic Latent Semantic Analysis

Unlike the Gaussian Mixture Model, the probabitigatent semantic analysis model
(PLSA) allows for data point specific mixture weighFormally, the likelihood of
training data for the ith class is written as:

P(X' |Gps) = DZP(Zj [d )P, (% u; 2;) ®3)

t j=1

where 6, , includes {u;,%;, 1< j<J; P(z |d,), 1< j<J, 1<st<T'}. Note thata
dummy variabled, is introduced for every data point, and therefore the mixture
weights P(z; |d,) are data point dependent. The PLSA model was origifmatly

posed for the probabilistic semantic indexing (PLSI) technigfuenformation re-
trieval [5][6]. Both PLSI and PLSA allow data point specihixture weights, but the
PLSI model is based on multinomial distributions to slodocuments while the
PLSA model is used here for modeling continuous data with Seauslistributions.
Note that the PLSA model shares the same idea withetthentixture model technique
[1], which assumes that speech data is generated froomenon pool of Gaussian
mixture models and each data point can choose its own mixeights independ-
ently.

Because the mixture weights are data point dependenf RlL&pable to fit train-
ing data better than GMM. However, a potential problem WitlSA is that it has a
significantly larger parameter space than GMM, thus a@rto overfitting training
data. To alleviate this problem, a maximum posterior (M&Rdothing technique can
be used for estimating PLSA. In particular, priors arethiced for parameters in the
Gaussian models, and the parameters are estimatedvbgnizing the posterior of
training data:
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The first item on the right hand side is the likeldbd of training data. The next two
items are the conjugate priors for the means andnaes in the Gaussian models. A
and B are two constants that adjust the weightriofs. P(u; [u,,Z,) is a Gaussian

distribution with meanu,and variance ¥, as a diagonal matrixdiag{cy} ;
P(ajzd |ayy .5 ) is an inverse gamma distribution with parametgys 5., . formally
as:
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Although maximum posterior smoothing can allevitite overfitting problem in
some extent, the PLSA model still suffers from éheessive freedom of assigning
totally independent data point specific mixture gtes. To further address this prob-
lem, a novel method of regularizing mixture weigktproposed in this paper.

2.3 Latent Dirichlet Allocation

Latent Dirichlet Allocation (LDA) [2] is a generag model for collections of discrete

data such as text. In LDA, each item (documeng dfass (text collection) is modeled
as a finite mixture over an underlying set of tep{mixture models). LDA shares a
common feature with the new research in this papérat both of them choose mod-
erate amount of model flexibility. More specificDA assumes that the mixture
weights of items in a class are generated fromnanoan Dirichlet distribution so that

the weights for different data points in the sarf@s< are coupled instead of being
chosen independently.

However, the LDA model requires sophiscated vamieti methods to calculate the
model parameters both in the training and thertggthrases, which is time consum-
ing and thus limits the application of LDA in primel work. Furthermore, the LDA
model does not work well when each item contaimerg small number of data points
(like documents contain small number of words bgrage, or in speaker identifica-
tion each item of a speaker utterance is a singttov of acoustic features in multi-
dimensional space). To illustrate this problem,sider the extreme case when each

item only contains a single data point. FormallpALmodels a classX' with single
data point items as:

P(X'[Gpa) = ”I(P(U |a)Q_ Pz U, & lu; 2 ))] du ©
t= j=1



Where P(u|a) is the Dirichlet distribution that generates thtore weights for

all data points. By switching the order of integratand summation and integrating
out the parameten , Equation (6) becomes:

P(X |HLDA) ” Z—JP, (Xt |uivzi) (7)

Which is essentially a GMM model if we set, /Zaj. as the mixture weight
=

P(z) in the GMM model.

3 Regularized Probabilistic Latent Semantic Analysis M odel

From the previous research, we find that GMM an&Rlare two extreme cases of
the mixture model family: GMM uses the same semofture weights for all data

points of the same class, thus lacking flexibilB;SA model allows each data point
to choose its own mixture weights and therefo@@e to overfitting training data. A

better idea is to develop an algorithm that carpery adjust the amount of model
flexibility so that not only the training data cha fit well but also the model is robust
to overfitting problems. This is the motivation thie regularized probabilistic latent
semantic analysis model (RPLSA).

3.1 Model Description

Similar to the PLSA model, RPLSA allows each datapto choose its own mixture
weights. At the meantime, it requires mixture wésgihom different data points to be
similar in order to avoid overfitting. This is read by assuming that there is a com-
mon set of mixture weights and the mixture weidbtsdifferent training data points
should be close to the common set of mixture weighbrmally, this idea can be
expressed as:

|ng(gm_SA X )DZ|OQQP(21 d BJ & b % ))FAZ lod ¢; W 2,
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Compared to the PLSA model in Equation (4), thevalemuation introduces a new

P(z 1d)

regularization term, |eczl 1ZJ _P(z)log——= P ) , into the objective function.
z,

c\5j

It is a weighted sum of the Kullback-Leibler (KLjvdrgence between the common



mixture weights (i.e.,R.(z;) ) and the mixture weights that are specific to edata
point (i.e., P(z; |d;)). C is the regularization constant that contrbls &amount of

model flexibility.

The role of the regularization term is to enforcetare weights for different data
points to be close to each other. This is becausk divergence is minimized when
the data-dependent mixture weights are identicath®s common set of mixture
weights. In general, the closer the data-dependedtre weights are to the common
set of mixture weights, the smaller the KL divergemvill be. Thus, by adjusting the
constant C, we are able to adjust the flexibilitythe RPLSA model: A small C will
lead to a large freedom in assigning different omxtweights to different data points,
thus exhibiting a behavior similar to the PLSA mipdelarge C will strongly enforce
different data points to choose similar mixture gt#$, thus close to the behavior of
the GMM method. Therefore, the RPLSA model connduésspectrum of mixture
models between GMM and PLSA.

3.2 Parameter Estimation

The Expectation-Maximization (EM) algorithm [3] ised to estimate the model pa-
rameters of the RPLSA model. In the E step, theepims probability of which mix-
ture model each data point belongs to is calculassillows:

P(z, |d,)P(x |u; %, =diag{o%}) +CP(z)
> P(z;. |d)P(x |u;. 2. = diag{o?}) +C ©)
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In the M step, theP™(z, |d,), u]® and =" parameters are updated using Equa-
tions (10), (11) and (12) separately.

P™(z1d,)=P(z |d,) (10)
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whereu,, and g;, are the dth element of the mean and variance ctegly for the
jth mixture, andx, is the dth element of the feature vecipr
Finally, the common set of mixture weights is updaas follows:

P"*(z,) O exp{l/T' Di log(P (z; Id, ))} (13)

which is essentially the geometric mean of theesponding mixture weights that are
related to each data point. Note that the choicdaptively adjusting the common set
of mixture weights in Equation (13) is differenbfin the method that simply selecting
a prior distribution of the mixture weights andiestting the model with maximum
posterior smoothing. It can be imagined that theesaet of prior of mixture weights
(e.g., the Dirichlet prior distribution with unifior parameter values of the mixture
weights) does not well fit data with different cheteristics. The adaptive estimation
of the common set of mixture weights in RPLSA im@re reasonable choice.
The parameter estimation procedure for PLSA isngldied version of that for

RPLSA. In the expectation step, the posterior podiya is calculated by a similar
formula as Equation (9) without the factor of tiegularization item. In the maximi-

zation step, the new parameté?$*(z, |d,), u]® and ™" of PLSA are updated in
a similar way as the Equations (10), (11) and (12).

3.3 ldentification

The RPLSA model is different from the GMM model ihat some parameters
P(z; |d,) need to be estimated for the test data in thetifdetion phase. A plug-in
EM procedure is used to accomplish this. Speclficétie EM algorithm described in
Section 2.2 is rerun to estimak(z; |d,) for each test data point while all the other
parameters are fixed. With the estimated new méxteights, we can identify the test

item (e.g., a vector of acoustic features) for igalar class (e.g., a speaker in the
training set) whose model has the largest genergiiobabilities of the test item

X', formally as:

ID_Rs(X"™) = argmaP K™ Brocsa . (14)

The identification process of PLSA is almost thmeas the procedure of RPLSA.
All the model parameters are fixed except thatrtfrdure weights are estimated for
each test data point. The test item is identifiedhe training class whose model gen-
erates the test data with the largest probabilities



4. Experimental Results

In this section, we show the empirical study thatndnstrates the advantage of the
new regularized probabilistic latent semantic mg@&R®PLSA). Specifically, the three
models of GMM, PLSA and RPLSA are compared for #épplication of speaker
identification.

4.1 Experiment M ethodology

The experiments were conducted on the NIST 1998@ksgperecognition evaluation
datasét There are a total of 309 female speakers and286 speakers. The speech
signal was pre-emphasized using a coefficient @ .0Each frame was windowed with
a Hamming window [10] and set to 30ms long with 50&me overlap. 10 mel fre-
guency cepstral coefficients [10] were extractezhifreach speech frame. Both the
training data and the test data come from the sdraenel. The training data consists
of speech data of 7.5 seconds for each trainingkspe

We present experiment results to address two isg)e¥ill the proposed RPLSA
be more effective than the GMM and the PLSA modémispeaker identification? 2)
What is the power of the RPLSA model? What is thbavior of the RPLSA model
with different amount of model flexibility by choiog different values for the regu-
larization parameter C?

4.2 Experiment Results of Different Algorithms

The first set of experiments was conducted to stbhdyeffectiveness of the three mix-
ture models. The numbers of mixture models weresehdoy cross-validation for the
three models. Specifically, 30 mixtures for GMM regd50 for both PLSA and
RPLSA. The smoothing prior parameters of PLSA aRL®&A were set as follows:
u, is the mean value of the training dadg;is identity matrix; a,,is 1 and S,, is

twice the variance of the dth value of the trainilaga. The smoothing constants in
Equations (4) and (8) were set as: AT$/(10*J) and B is|T,|/J (where|s| indi-

cates the number of items within a class). The leggation constant C of RPLSA
was set to be 20 by cross-validation.

To compare the algorithms in a wide range nextvarious lengths of test data.
Specifically, three pieces of test speech from espetaker that have the lengths of 2, 3
or 5 seconds were used in each experiment. Thésesa shown in Tablel. Clearly,
both PLSA and RPLSA are more effective than the GMMill cases. This can be
attributed to the fact that both PLSA and RPLSAaxethe constraint on mixture
weights imposed by GMM. Furthermore, the RPLSA nhamgperforms the PLSA
model. This is consistent with the motivation of RPLSA model as it automatically
adjusts the model flexibility for better recognitiaccuracy.

1 http://www.nist.gov/speech/tests/spk/



Table 1: Speaker identification errors for the G#urs mixture model
(GMM), the probabilistic latent semantic analysisdal (PLSA) and the
regularized probabilistic latent semantic analysisiel (RPLSA).

TestData| o\, PLSA RPLSA
Length

2 Sec 37.8% 33.9% 31.2%

3 Sec 31.5% 24.7% 21.8%

5 Sec 27.3% 22.5% 20.1%

Table 2: Speaker identification errors for the sthed Gaussian mixture model
(GMM), the probabilistic latent semantic analysisdal (PLSA) with uniform
Dirichlet prior (& =100) and the RPLSA model.

Test Data GMM PLSA

Length | (Smoothed ) (Dirichlet Prior) RPLSA
2 Sec 36.1% 33.2% 3L.2%
3 Sec 30.2% 24.3% 21.8%
5 Sec 26.0% 22.3% 20.1%

To further confirm the hypothesis that RPLSA mloldas advantage than both the
GMM and PLSA methods, two more sets of experimeset® conducted. The first set
of extended experiments was to train a GMM modé¢h wmoothed Gaussian model
parameters like that used for PLSA (Two smoothechst of Gaussian model parame-
ters like that of Equation (4) were introduced itiie GMM objective function with A
and B roughly tuned to be five times smaller thiaat tof the RPLSA setting). The
second set of extended experiments was to regeldnz mixture weights in PLSA
using a Dirichlet prior as described in Section. 3t2s different from the regulariza-
tion scheme of Equation (9) in that a Dirichletopruses a fixed set of common mix-
ture weights (uniform) that is unable to adapth® training data. The modified PLSA
is trained with a new likelihood function of Equati(4) with an additional item of a
Dirichlet prior with the parameter values of 100ughly tuned).

It can be seen from Table 2 that the new versiérGMM and PLSA model give
very small improvement of the original algorithriitie behavior of GMM model can
be explained as that GMM has a much smaller pasnsgace than PLSA and
RPLSA, smoothing does not give too much help. Hsellts of the PLSA model with
uniform Dirichlet prior indicates that the simpleethod of smoothing the mixture
weights with a single prior does not successfullye the overfitting problem.

To sum up, the experiments in this section showttienew RPLSA model has ad-
vantage than both the GMM model and the PLSA moldgbrovides more model
flexibility than the GMM model and also better sedvthe overfitting problem than the
PLSA model.
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Figure 1. The Behavior of the RPLSA Model with Different Vak
of Regularization Constant

4.3 Study the Behavior of the RPLSA Method

Previous analysis has shown that the GMM and PL®#8els are two extreme cases
of the mixture model family. They either requiréddta points to share a single set of
mixture weights or allow the data points to chotsgir own mixture weights with
total freedom. The new proposed RPLSA is an intdiate model between GMM
and PLSA: different mixture weights are allowed éach data point; but similar mix-
ture weights for different data points are encoedagrhe RPLSA is the bridge to
connect a spectrum of mixture models with two ergecases of GMM and RPLSA
models. Therefore, it is very interesting to inigetie the behavior of the RPLSA
method with different amount of model flexibly aitd relationship with the GMM
and RPLSA models.

Specifically, different values of parameter C ie RPLSA model of Equation (8)
were investigated. 3 seconds’ test data was usédisrset of experiments. The de-
tailed results are shown in Figure 1.

According to previous analysis in Section 3.1, wew that a smaller C value
gives more freedom to the data points in choodmedr town mixture weights, which
leads to a behavior closer to that of the PLSA rhotais is consistent with the ob-
servation from Figure 1. When C is as small asRI®l,.SA acquires a similar recogni-
tion accuracy with that of PLSA. On the other haadlarger value for C makes
RPLSA behave more like GMM. As indicated in Figdrea larger C leads to worse
recognition accuracy.

For the middle part of the curve, with C rangingnfr 15 to 40, RPLSA acquires
the best recognition accuracy; this suggests tieaRPLSA with reasonable amount of
model flexibility reaches a better trade-off betweenough model flexibility and
model robustness.

The experiments in this section show the behavidh@ new RPLSA model with
different amount of modeling flexibility. It is caistent with our theoretical analysis
that RPLSA has advantage than the GMM model andR®PleSA model in its better
ability to adjust the appropriate amount of modktibility.



5. Conclusion

Mixture models such as Gaussian mixture model (GMK) very important tools for
data mining and machine learning applications. Hareclassic mixture models like
GMM have limitations in their modeling abilities afi data points of an object are
required to be generated from a pool of mixturah wie same set of mixture weights.
Previous research such as the probabilistic laemantic analysis (PLSA) model has
been proposed to release this constraint. PLSAvaltotally independent data point
specific mixture weights. But the excessive modgfiexibility makes PLSA tend to
suffer from the overfitting problem.

This paper proposes a new regularized PLSA §¥)lmodel: On one hand, it is
similar to the original PLSA model in that a diet set of mixture weights is used
for different data points; on the other hand, itsimilar to GMM in that mixture
weights for different data points are required ¢osbmilar to each other. In particular,
the new model has the ability in adjusting the nhdiéeibility of the mixture weights
through the regularization term. Experiment resfdtsspeaker identification applica-
tion have shown that the new RPLSA model outperfobuth the GMM and the
PLSA models substantially. Choosing the appropréai®unt of modeling flexibility
is a general problem for all mixture modeling tagmes. The new research in this
paper can be naturally incorporated with other typmixture models than the GMM
model and be applied for other applications.
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