
ar
X

iv
:0

81
1.

32
31

v1
 [

cs
.P

L
]

 1
9

N
ov

 2
00

8

Logical Methods in Computer Science
Volume 00, Number 0, Pages 000–000
S 0000-0000(XX)0000-0

A RATIONAL DECONSTRUCTION

OF LANDIN’S SECD MACHINE WITH THE J OPERATOR

OLIVIER DANVY AND KEVIN MILLIKIN

Department of Computer Science, Aarhus University

IT-parken, Aabogade 34, DK-8200 Aarhus N, Denmark

E-mail address: danvy@brics.dk

Google Inc.

Aabogade 15, DK-8200 Aarhus N, Denmark

E-mail address: kmillikin@google.com

Abstract. Landin’s SECD machine was the first abstract machine for applicative expres-
sions, i.e., functional programs. Landin’s J operator was the first control operator for func-
tional languages, and was specified by an extension of the SECD machine. We present a
family of evaluation functions corresponding to this extension of the SECD machine, using a
series of elementary transformations (transformation into continuation-passing style (CPS)
and defunctionalization, chiefly) and their left inverses (transformation into direct style and
refunctionalization). To this end, we modernize the SECD machine into a bisimilar one that
operates in lockstep with the original one but that (1) does not use a data stack and (2) uses
the caller-save rather than the callee-save convention for environments. We also identify that
the dump component of the SECD machine is managed in a callee-save way. The caller-save
counterpart of the modernized SECD machine precisely corresponds to Thielecke’s double-
barrelled continuations and to Felleisen’s encoding of J in terms of call/cc. We then variously
characterize the J operator in terms of CPS and in terms of delimited-control operators in
the CPS hierarchy.

As a byproduct, we also present several reduction semantics for applicative expressions
with the J operator, based on Curien’s original calculus of explicit substitutions. These
reduction semantics mechanically correspond to the modernized versions of the SECD ma-
chine and to the best of our knowledge, they provide the first syntactic theories of applicative
expressions with the J operator.

The present work is concluded by a motivated wish to see Landin’s name added to the
list of co-discoverers of continuations. Methodologically, however, it mainly illustrates the
value of Reynolds’s defunctionalization and of refunctionalization as well as the expressive
power of the CPS hierarchy (1) to account for the first control operator and the first abstract
machine for functional languages and (2) to connect them to their successors. Our work also
illustrates the value of Danvy and Nielsen’s refocusing technique to connect environment-
based abstract machines and syntactic theories in the form of reduction semantics for calculi
of explicit substitutions.

2000 ACM Subject Classification. D.1.1, F.3.2.
Key words and phrases. Abstract machines, continuations, control operators, reduction semantics.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view
a copy of this license, visit http://creativecommons.org/licenses/by-nd/2.0/ or send a letter
to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

1

http://arxiv.org/abs/0811.3231v1

2 A RATIONAL DECONSTRUCTION OF LANDIN’S SECD MACHINE WITH THE J OPERATOR

1. Introduction

Forty years ago, Peter Landin unveiled the first control operator, J, to a heretofore
unsuspecting world [81, 82, 84]. He did so to generalize the notion of jumps and labels for
translating Algol 60 programs into applicative expressions, using the J operator to account
for the meaning of an Algol label. For a simple example, consider the block

begin s1 ; goto L ; L : s2 end

where the sequencing between the statements (‘basic blocks,’ in compiler parlance [8]) s1 and
s2 has been made explicit with a label and a jump to this label. This block is translated into
the applicative expression

λ().let L = J s ′2 in let () = s ′1 () in L ()

where s ′1 and s ′2 respectively denote the translation of s1 and s2. The occurrence of J captures
the continuation of the outer let expression and yields a ‘program closure’ that is bound to
L. Then, s ′1 is applied to (). If this application completes, the program closure bound to L
is applied: (1) s ′2 is applied to () and then, if this application completes, (2) the captured
continuation is resumed, thereby completing the execution of the block.

Landin also showed that the notion of program closure makes sense not just in an im-
perative setting, but also in a functional one. He specified the J operator by extending the
SECD machine [80,83].

1.1. The SECD machine. Over the years, the SECD machine has been the topic of con-
siderable study: it provides an unwavering support for operational semantics [1, 9, 11, 19, 25,
26, 53, 68, 69, 74, 95, 100, 117], compilation [5, 10, 21, 23, 62, 64, 65, 96, 98, 99, 106], and paral-
lelism [2, 20], and it lends itself readily to variations [47, 48, 51, 67, 101, 105, 116] and general-
izations [87, 88, 120]. In short, it is standard textbook material [55, 63, 70, 71, 79, 109], even
though its architecture is generally agreed to be on the ‘baroque’ side, since most subsequent
abstract machines have no data stack and only one control stack instead of two. Nobody,
however, seems to question its existence as a distinct artifact (i.e., man-made construct) me-
diating between applicative expressions (i.e., functional programs) and traditional sequential
imperative implementations.

Indeed abstract machines provide a natural meeting ground for theoretically-minded and
experimentally-minded computer scientists: they are as close to an actual implementation as
most theoreticians will ever get, and to an actual formalization as most experimentalists will
ever go. For example, Plotkin [100] proved the correctness of the SECD machine in reference
to a definitional interpreter due to Morris [91] and a variety of implementations take the
SECD machine as their starting point [10,20,23,87].

1.2. The authors’ thesis. Is there, however, such a gap between applicative expressions
and abstract machines? The thrust of Steele’s MSc thesis [110] was that after CPS trans-
formation,1 a λ-abstraction can be seen as a label and a tail call as a machine jump with
the machine registers holding the actual parameters. Furthermore the point of Reynolds’s

1‘CPS’ stands for ‘Continuation-Passing Style;’ this term is due to Steele [110]. In a CPS program, all calls
are tail calls and functions thread a functional accumulator, the continuation, that represents ‘the rest of the
computation’ [114]. CPS programs are either written directly or the result of a CPS transformation [39,100].
(See Appendix A.2.) The left inverse of the CPS transformation is the direct-style transformation [33,41].

A RATIONAL DECONSTRUCTION OF LANDIN’S SECD MACHINE WITH THE J OPERATOR 3

defunctionalization [102] is that higher-order programs can be given an equivalent first-order
representation.2

It nevertheless took 40 years for the SECD machine to be ‘rationally deconstructed’ into
a compositional evaluation function [35], the point being that

(1) the SECD machine is essentially in defunctionalized form, and
(2) its refunctionalized counterpart is an evaluation function in CPS, which turns out to

be compositional.

This deconstruction laid the ground for a functional correspondence between evaluators and
abstract machines [3, 4, 6, 7, 13,16,36,37, 73, 89, 90, 93].

It is therefore the authors’ thesis [36, 90] that the gap between abstract machines and
applicative expressions is bridged by Reynolds’s defunctionalization.

Our goal here is to show that the functional correspondence between evaluators and
abstract machines also applies to the SECD machine with the J operator, which, as we
show, also can be deconstructed into a compositional evaluation function. As a corollary,
we present several new simulations of the J operator, and the first syntactic theories for
applicative expressions with the J operator.

1.3. Deconstruction of the SECD machine with the J operator. Let us outline our
deconstruction of the SECD machine before substantiating it in the next sections. We fol-
low the order of the first deconstruction [35], though with a twist: for simplicity and with-
out loss of generality, in the middle of the derivation, we first abandon the stack-threading,
callee-save features of the SECD machine, which are non-standard, for the more familiar—
and therefore less ‘baroque’—stackless, caller-save features of traditional definitional inter-
preters [59, 91, 102, 111]. (These concepts are reviewed in the appendices. The point here is
that the SECD machine manages the environment in a callee-save fashion.) We then identify
that the dump too is managed in a callee-save fashion and we present the corresponding
caller-save counterpart.

The SECD machine is defined as the iteration of a state-transition function operating
over a quadruple—a data stack (of type S) containing intermediate values, an environment
(of type E), a control stack (of type C), and a dump (of type D) and yielding a value (of type
value):

run : S * E * C * D -> value

The first deconstruction [35] showed that together the C and D components represent the
current continuation and that the D component represents the continuation of the current
caller, if there is one. As already pointed out in Section 1.1, since Landin’s work, the C and
D components of his abstract machine have been unified into one component; reflecting this
unification, control operators capture both what used to be C and D instead of only what
used to be D.

1.3.1. Disentangling and refunctionalization (Section 2). The above definition of run looks
complicated because it has several induction variables, i.e., it dispatches over several compo-
nents of the quadruple. Our deconstruction proceeds as follows:

2In the early 1970’s [102], John Reynolds introduced defunctionalization as a variation of Landin’s ‘function
closures’ [80], where a term is paired together with its environment. In a defunctionalized program, what
is paired with an environment is not a term, but a tag that determines this term uniquely. In ML, the
tagged environments are grouped into data types, and auxiliary apply functions dispatch over the tags. (See
Appendix A.3.) The left inverse of defunctionalization is ‘refunctionalization’ [43,44].

4 A RATIONAL DECONSTRUCTION OF LANDIN’S SECD MACHINE WITH THE J OPERATOR

• We disentangle run into four mutually recursive transition functions, each of which has
one induction variable, i.e., dispatches over one component of the quadruple (boxed
in the signature below):

run_c : S * E * C * D -> value

run_d : value * D -> value

run_t : term * S * E * C * D -> value

run_a : value * value * S * E * C * D -> value

The first function, run c, dispatches towards run d if the control stack is empty, run t

if the top of the control stack contains a term, and run a if the top of the control
stack contains an apply directive. This disentangled specification, as it were, is in
defunctionalized form [43,44,102]: the control stack and the dump are defunctionalized
data types, and run c and run d are the corresponding apply functions.

• Refunctionalization eliminates the two apply functions:
run_t : term * S * E * C * D -> value

run_a : value * value * S * E * C * D -> value

where C = S * E * D -> value and D = value -> value

C and D are now function types. As identified in the first rational deconstruction [35],
the resulting program is a continuation-passing interpreter. This interpreter threads a
data stack to hold intermediate results and uses a callee-save convention for environ-
ments to process subterms. (For information and comparison, Appendix B illustrates
an interpreter with no data stack for intermediate results and a caller-save conven-
tion for environments, Appendix C illustrates an interpreter with no data stack for
intermediate results and a callee-save convention for environments, and Appendix D
illustrates an interpreter with a data stack for intermediate results and a caller-save
convention for environments.)

At this point, we could continue as in the first deconstruction [35] and exhibit the direct-style
counterpart of this interpreter. The result, however, would be less simple and less telling than
first making do without the data stack (Section 1.3.2) and second adopting the more familiar
caller-save convention for environments (Section 1.3.3) before continuing the deconstruction
towards a compositional interpreter in direct style (Section 1.3.4).

1.3.2. A first modernization: eliminating the data stack (Section 3). In order to focus on the
nature of the J operator, we first eliminate the data stack:

run_t : term * E * C * D -> value

run_a : value * value * E * C * D -> value

where C = value * E * D -> value and D = value -> value

(Two simpler interpreters are presented and contrasted in Appendices B and D. The first, in
Appendix B, has no data stack for intermediate results, and the second, in Appendix D, has
one.)

1.3.3. A second modernization: from callee-save to caller-save environments (Section 3).
Again, in order to focus on the nature of the J operator, we adopt the more familiar caller-save
convention for environments. In passing, we also rename run t as eval and run a as apply:

eval : term * E * C * D -> value

apply : value * value * C * D -> value

where C = value * D -> value and D = value -> value

A RATIONAL DECONSTRUCTION OF LANDIN’S SECD MACHINE WITH THE J OPERATOR 5

(Two simpler interpreters are presented and contrasted in Appendices B and C. The first, in
Appendix B, uses a caller-save convention for environments, and the second, in Appendix C,
uses a callee-save convention.)

1.3.4. Continuing the deconstruction: towards a compositional interpreter in direct style.

• A direct-style transformation eliminates the dump continuation:
eval : term * E * C -> value

apply : value * value * C -> value

where C = value -> value

The clause for the J operator and the main evaluation function are expressed using
the delimited-control operators shift and reset [38].3 The resulting interpreter still
threads an explicit continuation, even though it is not tail-recursive.

• Another direct-style transformation eliminates the control continuation:
eval : term * E -> value

apply : value * value -> value

The clauses catering for the non-tail-recursive uses of the control continuation are
expressed using the delimited-control operators shift1, reset1, shift2, and reset2 [13,38,
46,75,94]. The resulting evaluator is in direct style. It is also in closure-converted form:
the applicable values are a defunctionalized data type and apply is the corresponding
apply function.

• Refunctionalization eliminates the apply function:
eval : term * E -> value

The resulting evaluation function is compositional, and the corresponding syntax-
directed encoding gives rise to new simulations of the J operator.

1.3.5. A variant: from callee-save to caller-save dumps (Section 4). In Section 1.3.3, we kept
the dump component because it is part of the SECD machine semantics of the J operator.
We observe, however, that the dump is managed in a callee-save way. We therefore change
gear and consider the caller-save counterpart of the interpreter:

eval : term * E * C * D -> value

apply : value * value * C -> value

where C = value -> value and D = value -> value

This caller-save interpreter is still in CPS. We can write its direct-style counterpart and
refunctionalize its applicable values, which yields another compositional evaluation function
in direct style. This compositional evaluation function gives rise to new simulations of the J
operator, some of which had already been invented independently.

1.3.6. Assessment. As illustrated in Sections 1.3.2, 1.3.3, and 1.3.5, there is plenty of room
for variation in the present deconstruction. Each step is reversible: one can CPS-transform
and defunctionalize an evaluator and (re)construct an abstract machine [3,4,6,7,13,16,35–37].

1.4. Syntactic theories of applicative expressions with the J operator. Let us outline
our syntactic theories of applicative expressions substantiating them in the next sections.

3 Delimited continuations represent part of the rest of the computation: the control operator reset delimits
control and the control operator shift captures the current delimited continuation [38]. These two control op-
erators provide a direct-style handle for programs with two layers of continuations. This programming pattern
is also used for ‘success’ and ‘failure’ continuations in the functional-programming approach to backtracking.
Programs that have been CPS-transformed twice exhibit two such layers of continuations. Here, C is the first
layer and D is the second. Iterating a CPS transformation gives rise to a CPS hierarchy [13,38,76,94].

6 A RATIONAL DECONSTRUCTION OF LANDIN’S SECD MACHINE WITH THE J OPERATOR

1.4.1. Explicit, callee-save dumps (Section 7). We present a reduction semantics for Curien’s
calculus of closures extended with the J operator, and we derivationally link it to the caller-
save, stackless SECD machine of Section 7.1.

1.4.2. Implicit, caller-save dumps (Section 8). We present another reduction semantics for
Curien’s calculus of closures extended with the J operator, and we derivationally link it to a
version of the SECD machine which is not in defunctionalized form.

1.4.3. Explicit, caller-save dumps (Section 9). We outline a third reduction semantics for
Curien’s calculus of closures extended with the J operator, and we show how it leads towards
Thielecke’s double-barrelled continuations.

1.4.4. Inheriting the dump through the environment (Section 10). We present a fourth re-
duction semantics for Curien’s calculus of closures extended with the J operator, and we
derivationally link it to a version of the CEK machine that reflects Felleisen’s simulation of
the J operator.

1.5. Prerequisites and domain of discourse: the functional correspondence. We
mostly use pure ML as a meta-language. We assume a basic familiarity with Standard ML
and with reasoning about pure ML programs as well as an elementary understanding of
defunctionalization [43, 44, 102] and its left inverse, refunctionalization; of the CPS trans-
formation [38, 41, 59, 91, 102, 110] and its left inverse, the direct-style transformation; and of
delimited continuations [13,38,46,56,75]. From Section 3.2, we use pure ML with delimited-
control operators as a meta-language.
The source language of the SECD machine. The source language is the λ-calculus, extended
with literals (as observables) and the J operator. Except for the variables in the initial
environment of the SECD machine, a program is a closed term.

datatype term = LIT of int

| VAR of string

| LAM of string * term

| APP of term * term

| J

type program = term

The control directives. The control component of the SECD machine is a list of control di-
rectives, where a directive is a term or the tag APPLY:

datatype directive = TERM of term | APPLY

The environment. We use a structure Env with the following signature:

signature ENV = sig

type ’a env

val empty : ’a env

val extend : string * ’a * ’a env -> ’a env

val lookup : string * ’a env -> ’a

end

The empty environment is denoted by Env.empty. The function extending an environment
with a new binding is denoted by Env.extend. The function fetching the value of an identifier
from an environment is denoted by Env.lookup. These functions are pure and total and
therefore throughout, we call them without passing them any continuation, i.e., in direct
style [40].

A RATIONAL DECONSTRUCTION OF LANDIN’S SECD MACHINE WITH THE J OPERATOR 7

Values. There are five kinds of values: integers, the successor function, function closures,
“state appenders” [21, page 84], and program closures:

datatype value = INT of int

| SUCC

| FUNCLO of E * string * term

| STATE_APPENDER of D

| PGMCLO of value * D

withtype S = value list (* data stack *)

and E = value Env.env (* environment *)

and C = directive list (* control *)

and D = (S * E * C) list (* dump *)

A function closure pairs a λ-abstraction (i.e., its formal parameter and its body) and its
lexical environment. A state appender is an intermediate value; applying it yields a program
closure. A program closure is a first-class continuation.4

The initial environment. The initial environment binds the successor function:

val e_init = Env.extend ("succ", SUCC, Env.empty)

The starting specification: Several formulations of the SECD machine with the J operator
have been published [21, 51, 82]. We take the most recent one, i.e., Felleisen’s [51], as our
starting point, and we consider the others in Section 5:

(* run : S * E * C * D -> value *)

fun run (v :: s, e, nil, nil)

= v

| run (v :: s’, e’, nil, (s, e, c) :: d)

= run (v :: s, e, c, d)

| run (s, e, (TERM (LIT n)) :: c, d)

= run ((INT n) :: s, e, c, d)

| run (s, e, (TERM (VAR x)) :: c, d)

= run ((Env.lookup (x, e)) :: s, e, c, d)

| run (s, e, (TERM (LAM (x, t))) :: c, d)

= run ((FUNCLO (e, x, t)) :: s, e, c, d)

| run (s, e, (TERM (APP (t0, t1))) :: c, d)

= run (s, e, (TERM t1) :: (TERM t0) :: APPLY :: c, d)

| run (s, e, (TERM J) :: c, d) (* 1 *)

= run ((STATE_APPENDER d) :: s, e, c, d)

| run (SUCC :: (INT n) :: s, e, APPLY :: c, d)

= run ((INT (n+1)) :: s, e, c, d)

| run ((FUNCLO (e’, x, t)) :: v :: s, e, APPLY :: c, d)

= run (nil, Env.extend (x, v, e’), (TERM t) :: nil, (s, e, c) :: d)

| run ((STATE_APPENDER d’) :: v :: s, e, APPLY :: c, d) (* 2 *)

= run ((PGMCLO (v, d’)) :: s, e, c, d)

| run ((PGMCLO (v, d’)) :: v’ :: s, e, APPLY :: c, d) (* 3 *)

= run (v :: v’ :: nil, e_init, APPLY :: nil, d’)

fun evaluate0 t (* evaluate0 : program -> value *)

= run (nil, e_init, (TERM t) :: nil, nil)

4The terms ‘function closures’ and ‘program closures’ are due to Landin [82]. The term ‘state appender’
is due to Burge [21]. The term ‘continuation’ is due to Wadsworth [118]. The term ‘first-class’ is due to
Strachey [113]. The term ‘first-class continuation’ is due to Friedman and Haynes [58].

8 A RATIONAL DECONSTRUCTION OF LANDIN’S SECD MACHINE WITH THE J OPERATOR

The function run implements the iteration of a transition function for the SECD machine:
(s, e, c, d) is a state of the machine and each clause of the definition of run specifies a state
transition.

The SECD machine is deterministic. It terminates if it reaches a state with an empty
control stack and an empty dump; in that case, it produces a value on top of the data stack.
It does not terminate for divergent source terms. It becomes stuck if it attempts to apply
an integer or attempts to apply the successor function to a non-integer value, in that case an
ML pattern-matching error is raised (alternatively, the codomain of run could be made value

option and a fallthrough else clause could be added). The clause marked “1” specifies that
the J operator, at any point, denotes the current dump; evaluating it captures this dump
and yields a state appender that, when applied (in the clause marked “2”), yields a program
closure. Applying a program closure (in the clause marked “3”) restores the captured dump.

1.6. Prerequisites and domain of discourse: the syntactic correspondence. We as-
sume a basic familiarity with reduction semantics as can be gathered in Felleisen’s PhD
thesis [50] and undergraduate lecture notes [52] and with Curien’s original calculus of clo-
sures [14,31], which is the ancestor of calculi of explicit substitutions. In addition, we review
the syntactic correspondence between reduction semantics and abstract machines in Section E
by deriving the CEK machine from Curien’s calculus of closures for left-to-right applicative
order.

1.7. Overview. We first disentangle and refunctionalize Felleisen’s version of the SECD ma-
chine (Section 2). We then modernize it, eliminating its data stack and making go from
callee-save to caller-save environments, and deconstruct the resulting specification into a
compositional evaluator in direct style; we then analyze the J operator (Section 3). Identi-
fying that dumps are managed in a callee-save way in the modernized SECD machine, we
also present a variant where they are managed in a caller-save way, and we deconstruct the
resulting specification into another compositional evaluator in direct style; we then analyze
the J operator (Section 4). Overall, the deconstruction takes the form of a series of elemen-
tary transformations. The correctness of each step is very simple: most of the time, it is a
corollary of the correctness of the transformation itself.

We then review related work (Section 5) and outline the deconstruction of the original
version of the SECD machine, which is due to Burge (Section 6).

We then present a reduction semantics for the J operator that corresponds to the specifica-
tion of Section 3 (Section 7). We further present a syntactic theory of applicative expressions
with the J operator using delimiters (Section 8), and we show how this syntactic theory spe-
cializes to a reduction semantics that yields the abstract machine of Section 4 (Section 9)
and to another reduction semantics that embodies Felleisen’s embedding of J into Scheme
described in Section 4.5 (Section 10).

We then conclude (Sections 11 and 12).

2. Deconstruction of the SECD machine with the J operator:

disentangling and refunctionalization

2.1. A disentangled specification. In the starting specification of Section 1.5, all the pos-
sible transitions are meshed together in one recursive function, run. As in the first rational

A RATIONAL DECONSTRUCTION OF LANDIN’S SECD MACHINE WITH THE J OPERATOR 9

deconstruction [35], we factor run into four mutually recursive functions, each with one induc-
tion variable. In this disentangled definition, run c dispatches to the three other transition
functions, which all dispatch back to run c:

• run c interprets the list of control directives, i.e., it specifies which transition to take
according to whether the list is empty, starts with a term, or starts with an apply
directive. If the list is empty, it calls run d. If the list starts with a term, it calls
run t, caching the term in an extra component (the first parameter of run t). If the
list starts with an apply directive, it calls run a.

• run d interprets the dump, i.e., it specifies which transition to take according to
whether the dump is empty or non-empty, given a valid data stack; run t interprets
the top term in the list of control directives; and run a interprets the top value in the
current data stack.

Graphically:

(s1,e1,c1,d1)
run //

run c

##GGGGGGGGGGGGG

(s2,e2,c2,d2)
run //

run c

##GGGGGGGGGGGGG

(s3,e3,c3,d3)

run c

$$IIIIIII
IIIII

III

. . .
;;wwwwwwwwwwwww

;;wwwwwwwwwwwww

run d

run t

run a

;;wwwwwwwwwwwww

;;wwwwwwwwwwwww

;;wwwwwwwwwwwww

run d

run t

run a

;;wwwwwwwwwwwww

(* run_c : S * E * C * D -> value *)

(* run_d : value * D -> value *)

(* run_t : term * S * E * C * D -> value *)

(* run_a : value * value * S * E * C * D -> value *)

fun run_c (v :: s, e, nil, d)

= run_d (v, d)

| run_c (s, e, (TERM t) :: c, d)

= run_t (t, s, e, c, d)

| run_c (v0 :: v1 :: s, e, APPLY :: c, d)

= run_a (v0, v1, s, e, c, d)

and run_d (v, nil)

= v

| run_d (v, (s, e, c) :: d)

= run_c (v :: s, e, c, d)

and run_t (LIT n, s, e, c, d)

= run_c ((INT n) :: s, e, c, d)

| run_t (VAR x, s, e, c, d)

= run_c ((Env.lookup (x, e)) :: s, e, c, d)

| run_t (LAM (x, t), s, e, c, d)

= run_c ((FUNCLO (e, x, t)) :: s, e, c, d)

| run_t (APP (t0, t1), s, e, c, d)

= run_c (s, e, (TERM t1) :: (TERM t0) :: APPLY :: c, d)

| run_t (J, s, e, c, d)

= run_c ((STATE_APPENDER d) :: s, e, c, d)

and run_a (SUCC, INT n, s, e, c, d)

= run_c ((INT (n+1)) :: s, e, c, d)

| run_a (FUNCLO (e’, x, t), v, s, e, c, d)

10 A RATIONAL DECONSTRUCTION OF LANDIN’S SECD MACHINE WITH THE J OPERATOR

= run_c (nil, Env.extend (x, v, e’), (TERM t) :: nil, (s, e, c) :: d)

| run_a (STATE_APPENDER d’, v, s, e, c, d)

= run_c ((PGMCLO (v, d’)) :: s, e, c, d)

| run_a (PGMCLO (v, d’), v’, s, e, c, d)

= run_c (v :: v’ :: nil, e_init, APPLY :: nil, d’)

fun evaluate1 t (* evaluate1 : program -> value *)

= run_c (nil, e_init, (TERM t) :: nil, nil)

By construction, the two machines operate in lockstep, with each transition of the original
machine corresponding to two transitions of the disentangled machine. Since the two machines
start in the same initial state, the correctness of the disentangled machine is a corollary of
them operating in lockstep:

Proposition 1 (full correctness). Given a program, evaluate0 and evaluate1 either both
diverge or both yield values that are structurally equal.

In the rest of this section, we only consider programs that yield an integer value, if any.
Indeed we are going to modify the data type of the values as we go from abstract machine to
evaluator, and we want a simple characterization of the results they yield, to compare them.

Furthermore, again for simplicity, we short-circuit four state transitions in the abstract
machine above:

...

| run_t (APP (t0, t1), s, e, c, d)

= run_t (t1, s, e, (TERM t0) :: APPLY :: c, d)

...

| run_a (FUNCLO (e’, x, t), v, s, e, c, d)

= run_t (t, nil, Env.extend (x, v, e’), nil, (s, e, c) :: d)

...

| run_a (PGMCLO (v, d’), v’, s, e, c, d)

= run_a (v, v’, nil, e_init, nil, d’)

...

fun evaluate1 t

= run_t (t, nil, e_init, nil, nil)

2.2. A higher-order counterpart. In the disentangled definition of Section 2.1, there are
two possible ways to construct a dump—nil and consing a triple—and three possible ways
to construct a list of control directives—nil, consing a term, and consing an apply directive.
One could phrase these constructions as two specialized data types rather than as two lists.

These data types, together with run d and run c as their apply functions, are in the image
of defunctionalization. After refunctionalization, the higher-order evaluator reads as follows;5

it is higher-order because c and d now denote functions:

datatype value = INT of int

| SUCC

| FUNCLO of E * string * term

| STATE_APPENDER of D

| PGMCLO of value * D

withtype S = value list (* data stack *)

5Had we not short-circuited the four state transitions at the end of Section 2.1, the resulting higher-order
evaluator would contain four βv-redexes. Contracting these redexes corresponds to short-circuiting these
transitions.

A RATIONAL DECONSTRUCTION OF LANDIN’S SECD MACHINE WITH THE J OPERATOR 11

and E = value Env.env (* environment *)

and D = value -> value (* dump continuation *)

and C = S * E * D -> value (* control continuation *)

val e_init = Env.extend ("succ", SUCC, Env.empty)

(* run_t : term * S * E * C * D -> value *)

(* run_a : value * value * S * E * C * D -> value *)

fun run_t (LIT n, s, e, c, d)

= c ((INT n) :: s, e, d)

| run_t (VAR x, s, e, c, d)

= c ((Env.lookup (x, e)) :: s, e, d)

| run_t (LAM (x, t), s, e, c, d)

= c ((FUNCLO (e, x, t)) :: s, e, d)

| run_t (APP (t0, t1), s, e, c, d)

= run_t (t1, s, e, fn (s, e, d) =>

run_t (t0, s, e, fn (v0 :: v1 :: s, e, d) =>

run_a (v0, v1, s, e, c, d), d), d)

| run_t (J, s, e, c, d)

= c ((STATE_APPENDER d) :: s, e, d)

and run_a (SUCC, INT n, s, e, c, d)

= c ((INT (n+1)) :: s, e, d)

| run_a (FUNCLO (e’, x, t), v, s, e, c, d)

= run_t (t, nil, Env.extend (x, v, e’), fn (v :: s, e, d) => d v,

fn v => c (v :: s, e, d))

| run_a (STATE_APPENDER d’, v, s, e, c, d)

= c ((PGMCLO (v, d’)) :: s, e, d)

| run_a (PGMCLO (v, d’), v’, s, e, c, d)

= run_a (v, v’, nil, e_init, fn (v :: s, e, d) => d v, d’)

fun evaluate2 t (* evaluate2 : program -> value *)

= run_t (t, nil, e_init, fn (v :: s, e, d) => d v, fn v => v)

The resulting evaluator is in CPS, with two layered continuations c and d. It threads a
stack of intermediate results (s), an environment (e), a control continuation (c), and a dump
continuation (d). Except for the environment being callee-save, the evaluator follows a tra-
ditional eval–apply schema: run t is eval and run a is apply. Defunctionalizing it yields the
definition of Section 2.1 and as illustrated in Appendix A, by construction, run t and run a in
the defunctionalized version operate in lockstep with run t and run a in the refunctionalized
version:

Proposition 2 (full correctness). Given a program, evaluate1 and evaluate2 either both
diverge or both yield values; and if these values have an integer type, they are the same
integer.

3. Deconstruction of the SECD machine with the J operator:

no data stack and caller-save environments

We want to focus on J, and the non-standard aspects of the evaluator of Section 2.2 (the
callee-save environment and the data stack) are a distraction. We therefore modernize this
evaluator into a more familiar caller-save, stackless form [59,91,102,111]. Let us describe this
modernization in two steps: first we transform the evaluator to use a caller-save convention
for environments (as outlined in Section 1.3.2 and illustrated in Appendices B and C), and

12 A RATIONAL DECONSTRUCTION OF LANDIN’S SECD MACHINE WITH THE J OPERATOR

second we transform it to not use a data stack (as outlined in Section 1.3.3 and illustrated in
Appendices B and D).

The environments of the evaluator of Section 2.2 are callee-save because the apply function
run a receives an environment e as an argument and “returns” one to its continuation c [8,
pages 404–408]. Inspecting the evaluator shows that whenever run a is passed a control
directive c and an environment e and applies c, then the environment e is passed to c. Thus,
the environment is passed to run a only in order to thread it to the control continuation. The
control continuations created in run a and evaluate2 ignore their environment argument, and
the control continuations created in run t are passed an environment that is already in their
lexical scope. Therefore, neither the apply function run a nor the control continuations need
to be passed an environment at all.

Turning to the data stack, we first observe that the control continuations of the evaluator
in Section 2.2 are always applied to a data stack with at least one element. Therefore, we
can pass the top element of the data stack as a separate argument, changing the type of
control continuations from S * E * D -> value to value * S * E * D -> value. We can thus
eliminate the data stack following an argument similar to the one for environments in the
previous paragraph: the run a function merely threads its data stack along to its control
continuation; the control continuations created in run a and evaluate2 ignore their data-
stack argument, and the control continuations created in run t are passed a data stack that is
already in their lexical scope. Therefore, neither the apply function run a, the eval function
run t, nor the control continuations need to be passed a data stack at all.

3.1. A specification with no data stack and caller-save environments. The caller-
save, stackless counterpart of the evaluator of Section 2.2 reads as follows, renaming run t as
eval and run a as apply in passing:

datatype value = INT of int

| SUCC

| FUNCLO of E * string * term

| STATE_APPENDER of D

| PGMCLO of value * D

withtype E = value Env.env (* environment *)

and D = value -> value (* dump continuation *)

and C = value * D -> value (* control continuation *)

val e_init = Env.extend ("succ", SUCC, Env.empty)

(* eval : term * E * C * D -> value *)

(* apply : value * value * C * D -> value *)

fun eval (LIT n, e, c, d)

= c (INT n, d)

| eval (VAR x, e, c, d)

= c (Env.lookup (x, e), d)

| eval (LAM (x, t), e, c, d)

= c (FUNCLO (e, x, t), d)

| eval (APP (t0, t1), e, c, d)

= eval (t1, e, fn (v1, d) =>

eval (t0, e, fn (v0, d) =>

apply (v0, v1, c, d), d), d)

| eval (J, e, c, d)

= c (STATE_APPENDER d, d)

A RATIONAL DECONSTRUCTION OF LANDIN’S SECD MACHINE WITH THE J OPERATOR 13

and apply (SUCC, INT n, c, d)

= c (INT (n+1), d)

| apply (FUNCLO (e’, x, t), v, c, d)

= eval (t, Env.extend (x, v, e’), fn (v, d) => d v,

fn v => c (v, d))

| apply (STATE_APPENDER d’, v, c, d)

= c (PGMCLO (v, d’), d)

| apply (PGMCLO (v, d’), v’, c, d)

= apply (v, v’, fn (v, d) => d v, d’)

fun evaluate2’ t (* evaluate2’ : program -> value *)

= eval (t, e_init, fn (v, d) => d v, fn v => v)

The new evaluator is still in CPS, with two layered continuations. In order to justify it
formally, we consider the corresponding abstract machine as obtained by defunctionalization
(shown in Section 7; the ML code for evaluate1’ is not shown here). This abstract machine
and the disentangled abstract machine of Section 2.1 operate in lockstep and we establish
a bisimulation between them. The full details of this formal justification are found in the
second author’s PhD dissertation [90, Section 4.4]. Graphically:

evaluate0
disentangling

// evaluate1
refunctionalization //

OO

bisimulation

��

evaluate2oo

‘modernization’:
no data stack and
caller-save environments

���
�

�

�

�

�

�

evaluate1’
//
evaluate2’

defunctionalization
oo

The following proposition follows as a corollary of the bisimulation and of the correctness of
defunctionalization:

Proposition 3 (full correctness). Given a program, evaluate2 and evaluate2’ either both
diverge or both yield values; and if these values have an integer type, they are the same
integer.

3.2. A dump-less direct-style counterpart. The evaluator of Section 3.1 is in continuation-
passing style, and therefore it is in the image of the CPS transformation. In order to highlight
the control effect of the J operator, we now present the direct-style counterpart of this eval-
uator.

The clause for J captures the current continuation (i.e., the dump) in a state appender,
and therefore its direct-style counterpart naturally uses the undelimited control operator
call/cc [41]. With an eye on our next step, we do not, however, use call/cc but its delimited
cousins shift and reset [13,38,46] to write the direct-style counterpart.

Concretely, we use an ML functor to obtain an instance of shift and reset with value as
the type of intermediate answers [46,56]: reset delimits the (now implicit) dump continuation
in eval, and corresponds to its initialization with the identity function; and shift captures
it in the clauses where J is evaluated and where a program closure is applied. There is one

14 A RATIONAL DECONSTRUCTION OF LANDIN’S SECD MACHINE WITH THE J OPERATOR

non-tail call to eval, to evaluate the body of a λ-abstraction; this context is captured by
shift when J is evaluated:

datatype value = INT of int

| SUCC

| FUNCLO of E * string * term

| STATE_APPENDER of D

| PGMCLO of value * D

withtype E = value Env.env (* environment *)

and C = value -> value (* control continuation *)

and D = value -> value (* first-class dump continuation *)

val e_init = Env.extend ("succ", SUCC, Env.empty)

structure SR = make_Shift_and_Reset (type intermediate_answer = value)

(* eval : term * E * C -> value *)

(* apply : value * value * C -> value *)

fun eval (LIT n, e, c)

= c (INT n)

| eval (VAR x, e, c)

= c (Env.lookup (x, e))

| eval (LAM (x, t), e, c)

= c (FUNCLO (e, x, t))

| eval (APP (t0, t1), e, c)

= eval (t1, e, fn v1 => eval (t0, e, fn v0 => apply (v0, v1, c)))

| eval (J, e, c)

= SR.shift (fn d => d (c (STATE_APPENDER d))) (* * *)

and apply (SUCC, INT n, c)

= c (INT (n+1))

| apply (FUNCLO (e’, x, t), v, c)

= c (eval (t, Env.extend (x, v, e’), fn v => v)) (* * *)

| apply (STATE_APPENDER d, v, c)

= c (PGMCLO (v, d))

| apply (PGMCLO (v, d), v’, c)

= SR.shift (fn d’ => d (apply (v, v’, fn v => v))) (* * *)

fun evaluate3’ t (* evaluate3’ : program -> value *)

= SR.reset (fn () => eval (t, e_init, fn v => v))

The dump continuation is now implicit and is accessed using shift. The first occurrence of
shift captures the current dump when J is evaluated. The second occurrence is used to discard
the current dump when a program closure is applied. CPS-transforming this evaluator yields
the evaluator of Section 3.1:

Proposition 4 (full correctness). Given a program, evaluate2’ and evaluate3’ either both
diverge or both yield values; and if these values have an integer type, they are the same
integer.

3.3. A control-less direct-style counterpart. The evaluator of Section 3.2 still threads
an explicit continuation, the control continuation. It however is not in continuation-passing
style because of the non-tail calls to c, eval, and apply (in the clauses marked “*” above)
and the occurrences of shift and reset. This pattern of control is characteristic of the CPS
hierarchy [13,38,46,75] (see also Footnote 3, page 5). We therefore use the delimited-control
operators shift1, reset1, shift2, and reset2 to write the direct-style counterpart of this evaluator

A RATIONAL DECONSTRUCTION OF LANDIN’S SECD MACHINE WITH THE J OPERATOR 15

(shift2 and reset2 are the direct-style counterparts of shift1 and reset1, and shift1 and reset1
are synonyms for shift and reset).

Concretely, we use two ML functors to obtain layered instances of shift and reset with
value as the type of intermediate answers [46, 56]: reset2 delimits the (now twice implicit)
dump continuation in eval; shift2 captures it in the clauses where J is evaluated and where a
program closure is applied; reset1 delimits the (now implicit) control continuation in eval and
in apply, and corresponds to its initialization with the identity function; and shift1 captures
it in the clause where J is evaluated:

datatype value = INT of int

| SUCC

| FUNCLO of E * string * term

| STATE_APPENDER of D

| PGMCLO of value * D

withtype E = value Env.env (* environment *)

and D = value -> value (* first-class dump continuation *)

val e_init = Env.extend ("succ", SUCC, Env.empty)

structure SR1 = make_Shift_and_Reset (type intermediate_answer = value)

structure SR2 = make_Shift_and_Reset_next (type intermediate_answer = value

structure over = SR1)

(* eval : term * E -> value *)

(* apply : value * value -> value *)

fun eval (LIT n, e)

= INT n

| eval (VAR x, e)

= Env.lookup (x, e)

| eval (LAM (x, t), e)

= FUNCLO (e, x, t)

| eval (APP (t0, t1), e)

= let val v1 = eval (t1, e)

val v0 = eval (t0, e)

in apply (v0, v1) end

| eval (J, e)

= SR1.shift (fn c => SR2.shift (fn d => d (c (STATE_APPENDER d))))

and apply (SUCC, INT n)

= INT (n+1)

| apply (FUNCLO (e’, x, t), v)

= SR1.reset (fn () => eval (t, Env.extend (x, v, e’)))

| apply (STATE_APPENDER d, v)

= PGMCLO (v, d)

| apply (PGMCLO (v, d), v’)

= SR1.shift (fn c’ => SR2.shift (fn d’ =>

d (SR1.reset (fn () => apply (v, v’)))))

fun evaluate4’ t (* evaluate4’ : program -> value *)

= SR2.reset (fn () => SR1.reset (fn () => eval (t, e_init)))

The control continuation is now implicit and is accessed using shift1. The dump continuation is
still implicit and is accessed using shift2. CPS-transforming this evaluator yields the evaluator
of Section 3.2:

16 A RATIONAL DECONSTRUCTION OF LANDIN’S SECD MACHINE WITH THE J OPERATOR

Proposition 5 (full correctness). Given a program, evaluate3’ and evaluate4’ either both
diverge or both yield values; and if these values have an integer type, they are the same
integer.

3.4. A compositional counterpart. We now turn to the data flow of the evaluator of Sec-
tion 3.3. As for the SECD machine without J [35], this evaluator is in defunctionalized form:
each of the values constructed with SUCC, FUNCLO, PGMCLO, and STATE APPENDER is constructed
at exactly one place and consumed at exactly one other (the apply function). We therefore
refunctionalize them into the function space value -> value, which is shaded below:

datatype value = INT of int

| FUN of value -> value

withtype E = value Env.env

val e_init = Env.extend ("succ", FUN (fn (INT n) => INT (n+1)), Env.empty)

structure SR1 = make_Shift_and_Reset (type intermediate_answer = value)

structure SR2 = make_Shift_and_Reset_next (type intermediate_answer = value

structure over = SR1)

(* eval : term * E -> value *)

(* where E = value Env.env *)

fun eval (LIT n, e)

= INT n

| eval (VAR x, e)

= Env.lookup (x, e)

| eval (LAM (x, t), e)

= FUN (fn v => SR1.reset (fn () => eval (t, Env.extend (x, v, e))))

| eval (APP (t0, t1), e)

= let val v1 = eval (t1, e)

val (FUN f) = eval (t0, e)

in f v1 end

| eval (J, e)

= SR1.shift (fn c => SR2.shift (fn d =>

d (c (FUN (fn v =>

FUN (fn v’ => SR1.shift (fn c’ =>

SR2.shift (fn d’ =>

d (SR1.reset (fn () => let val (FUN f) = v

in f v’ end))))))))))

fun evaluate4’’ t (* evaluate4’’ : program -> value *)

= SR2.reset (fn () => SR1.reset (fn () => eval (t, e_init)))

Unlike all the abstract machines and evaluators before, this evaluation function is composi-
tional: all the recursive calls on the right-hand side are over proper sub-parts of the corre-
sponding expression on the left-hand side. Defunctionalizing this evaluation function yields
the evaluator of Section 3.3:

Proposition 6 (full correctness). Given a program, evaluate4’ and evaluate4’’ either both
diverge or both yield values; and if these values have an integer type, they are the same
integer.

3.5. Assessment. From Section 3.1 to Section 3.4, we have modernized the SECD machine
into a stackless machine with a caller-save convention for environments, and then decon-
structed the modernized version of this machine into a series of equivalent specifications,

A RATIONAL DECONSTRUCTION OF LANDIN’S SECD MACHINE WITH THE J OPERATOR 17

starting (essentially) from a relation between states and ending with an evaluation function.
The diagram below graphically summarizes the deconstruction. The evaluators in the top row
are the defunctionalized counterparts of the evaluators in the bottom row. (The ML code for
evaluate2’’ and evaluate3’’ is not shown here.)

evaluate2’ //

re-
functionalization

��

evaluate3’ //

CPS
transformationoo

��

evaluate4’

CPS
transformationoo

��
evaluate2’’

direct-style
transformation

//

OO

evaluate3’’
oo

direct-style
transformation

//

OO

evaluate4’’
oo

de-
functionalization

OO

Using the tracing technique of Appendix A, we can show that evaluate2’ and evaluate2’’

operate in lockstep. We have however not proved this lockstep property for evaluate3’

and evaluate3’’ and for evaluate4’ and evaluate4’’, satisfying ourselves with Plotkin’s
Simulation theorem [100], suitably extended for shift and reset [76,77].

3.6. On the J operator. We now reap the fruits of the modernization and the reconstruc-
tion, and present a series of simulations of the J operator (Sections 3.6.1, 3.6.2, and 3.6.3).
We then put the J operator into perspective (Section 3.6.4).

3.6.1. Three simulations of the J operator. The evaluator of Section 3.4 (evaluate4’’) and
the refunctionalized counterparts of the evaluators of Sections 3.2 and 3.1 (evaluate3’’ and
evaluate2’’) are compositional. They can be viewed as syntax-directed encodings into their
meta-language, as embodied in the first Futamura projection [60] and the original approach
to denotational semantics [112]. Below, we state these encodings as three simulations of J:
one in direct style, one in CPS with one layer of continuations, and one in CPS with two
layers of continuations.

We assume a call-by-value meta-language with right-to-left evaluation.

• In direct style, using shift2 (S2), reset2 (〈〈〈·〉〉〉2), shift1 (S1), and reset1 (〈〈〈·〉〉〉1), based on
the compositional evaluator evaluate4’’ in direct style:

JnK = n
JxK = x

Jt0 t1K = Jt0K Jt1K
Jλx.tK = λx.〈〈〈JtK〉〉〉1

JJK = S1λc.S2λd.d (c λv.λv ′.S1λc
′.S2λd

′.d 〈〈〈v v ′〉〉〉1)

A program p is translated as 〈〈〈〈〈〈JpK〉〉〉1〉〉〉2.
• In CPS with one layer of continuations, using shift (S) and reset (〈〈〈·〉〉〉), based on the

compositional evaluator evaluate3’’ in CPS with one layer of continuations:

18 A RATIONAL DECONSTRUCTION OF LANDIN’S SECD MACHINE WITH THE J OPERATOR

JnK ′ = λc.c n
JxK ′ = λc.c x

Jt0 t1K
′ = λc.Jt1K

′ λv1.Jt0K
′ λv0.v0 v1 c

Jλx.tK ′ = λc.c λx.λc.c (JtK ′ λv.v)

JJK ′ = λc.Sλd.d (c λv.λc.c λv ′.λc ′.Sλd ′.d (v v ′ λv ′′.v ′′))

A program p is translated as 〈〈〈JpK ′ λv.v〉〉〉.
• In CPS with two layers of continuations (the outer continuation, i.e., the dump con-

tinuation, can be η-reduced in the first three clauses), based on the compositional
evaluator evaluate2’’ in CPS with two layers of continuations:

JnK ′′ = λc.λd.c n d
JxK ′′ = λc.λd.c x d

Jt0 t1K
′′ = λc.λd.Jt1K

′′ (λv1.λd.Jt0K
′′ (λv0.λd.v0 v1 c d) d) d

Jλx.tK ′′ = λc.λd.c (λx.λc.λd.JtK ′′ (λv.λd.d v) λv.c v d) d

JJK ′′ = λc.λd.c (λv.λc.λd ′′′.c (λv ′.λc ′.λd ′.v v ′ (λv ′′.λd ′′.d ′′ v ′′) d) d ′′′) d

A program p is translated as JpK ′′ (λv.λd.d v) λv.v.

Analysis: The simulation of literals, variables, and applications is standard. The control
continuation of the body of each λ-abstraction is delimited, corresponding to it being eval-
uated with an empty control stack in the SECD machine. The J operator abstracts the
control continuation and the dump continuation and immediately restores them, resuming
the computation with a state appender which holds the abstracted dump continuation cap-
tive. Applying this state appender to a value v yields a program closure (boxed in the three
simulations above). Applying this program closure to a value v ′ has the effect of discarding
both the current control continuation and the current dump continuation, applying v to v ′,
and resuming the captured dump continuation with the result.
Assessment: The first rational deconstruction [35] already characterized the SECD machine
in terms of the CPS hierarchy: the control stack is the first continuation, the dump is the
second one (i.e., the meta-continuation), and abstraction bodies are evaluated within a control
delimiter (i.e., an empty control stack). Our work further characterizes the J operator as
capturing (a copy of) the meta-continuation.

3.6.2. The C operator and the CPS hierarchy. In the terminology of reflective towers [42], con-
tinuations captured with shift are “pushy”—at their point of invocation, they compose with
the current continuation by “pushing” it on the meta-continuation. In the second encoding
of J in Section 3.6.1, the term Sλd ′.d (v v ′ λv ′′.v ′′) serves to discard the current continuation
d ′ before applying the captured continuation d. Because of this use of shift to discard d ′, the
continuation d is composed with the identity continuation.

In contrast, still using the terminology of reflective towers, continuations captured with
call/cc [29] or with Felleisen’s C operator [50] are “jumpy”—at their point of invocation, they
discard the current continuation. If the continuation d were captured with C, then the term
d (v v ′ λv ′′.v ′′) would suffice to discard the current continuation.

The first encoding of J in Section 3.6.1 uses the pushy control operators S1 (i.e., S) and
S2. Murthy [94] and Kameyama [75] have investigated their jumpy counterparts in the CPS
hierarchy, C1 (i.e., C) and C2. Jumpy continuations therefore suggest two new simulations

A RATIONAL DECONSTRUCTION OF LANDIN’S SECD MACHINE WITH THE J OPERATOR 19

of the J operator. We show only the clauses for J, which are the only ones that change
compared to Section 3.6.1. As before, we assume a call-by-value meta-language with right-
to-left evaluation.

• In direct style, using C2, reset2 (〈〈〈·〉〉〉2), C1, and reset1 (〈〈〈·〉〉〉1):

JJK = C1λc.C2λd.d (c λv.λv ′.d 〈〈〈v v ′〉〉〉1)

This simulation provides a new example of programming in the CPS hierarchy with
jumpy delimited continuations.

• In CPS with one layer of continuations, using C and reset (〈〈〈·〉〉〉):

JJK ′ = λc.Cλd.d (c λv.λc.c λv ′.λc ′.d (v v ′ λv ′′.v ′′))

The corresponding CPS simulation of J with two layers of continuations coincides with the
one in Section 3.6.1.

3.6.3. The call/cc operator and the CPS hierarchy. Like shift and C, call/cc takes a snapshot
of the current context. However, unlike shift and C, in so doing call/cc leaves the current
context in place. So for example, 1 + (call/cc λk.10) yields 11 because call/cc leaves the
context 1 + [] in place, whereas both 1 + (Sλk.10) and 1 + (Cλk.10) yield 10 because the
context 1+ [] is tossed away.

Therefore J can be simulated in CPS with one layer of continuations, using call/cc and
exploiting its non-abortive behavior:

JJK ′ = λc.call/cc λd.c λv.λc.c λv ′.λc ′.d (v v ′ λv ′′.v ′′)

The obvious generalization of call/cc to the CPS hierarchy does not work, however. One
needs an abort operator as well in order for call/cc2 to capture the initial continuation and
the current meta-continuation. We leave the rest of this train of thought to the imagination
of the reader.

3.6.4. On the design of control operators. We note that replacing C with S in Section 3.6.2
(resp. C1 with S1 and C2 with S2) yields a pushy counterpart for J, i.e., program closures
returning to their point of activation. (Similarly, replacing C with S in the specification of
call/cc in terms of C yields a pushy version of call/cc, assuming a global control delimiter.)
One can also envision an abortive version of J that tosses away the context it abstracts.
In that sense, control operators are easy to invent, though not always easy to implement
efficiently. Nowadays, however, the litmus test for a new control operator lies elsewhere, for
example:

(1) Which programming idiom does this control operator reflect [29,38,41,102,108]?
(2) What is the logical content of this control operator [66,97]?

Even though it was the first control operator ever, J passes this litmus test. As pointed out
by Thielecke,

(1) besides reflecting Algol jumps and labels [81], J provides a generalized return [115,
Section 2.1], and

(2) the type of J λv.v is the law of the excluded middle [116, Section 5.2].

On the other hand, despite their remarkable fit to Algol labels and jumps (as illustrated in the
beginning of Section 1), the state appenders denoted by J are unintuitive to use. For example,

20 A RATIONAL DECONSTRUCTION OF LANDIN’S SECD MACHINE WITH THE J OPERATOR

if a let expression is the syntactic sugar of a beta-redex (and x1 is fresh), the observational
equivalence

t0 t1 ∼= let x1 = t1 in t0 x1

does not hold in the presence of J due to the non-standard translation of abstractions, even
though it does hold in the presence of call/cc, C, and shift for right-to-left evaluation. For
example, given C[] = (λx2.succ []) 10, t0 = J (λk.k) 0, and t1 = 100, C[t0 t1] yields 0 whereas
C[let x1 = t1 in t0 x1] yields 1.

4. Deconstruction of the SECD machine with the J operator:

caller-save dumps

In Section 3, we modernized the SECD machine by removing the intermediate data stack
and by managing the environment in a caller-save rather than callee-save fashion. We left
the ‘non-modern’ feature of the dump continuation alone because it was part of the SECD-
machine semantics of the J operator. In this section, we turn our attention to this dump
continuation, and we identify that like the environment in the original SECD machine, the
dump continuation is managed in a callee-save fashion. Indeed the apply function receives a
dump continuation from its caller and passes it in turn to the control continuation.

4.1. A specification with caller-save dump continuations. Let us modernize the SECD
machine further by managing dump continuation in a caller-save fashion. Our reasoning is
similar to that used in Section 3 for the environment. Inspecting the evaluator evaluate2’

shows that when either eval or apply receives a control continuation c and a dump contin-
uation d as arguments and applies c, the dump continuation d is passed to c. Therefore,
when the control continuation passed to eval or apply is fn (v, d) => d v and the dump
continuation is some d’, d’ can be substituted for d in the body of the control continuation.
After this change, inspecting the control continuations reveals that the ones created in apply

and evaluate2’ ignore their dump-continuation arguments, and the ones created in eval are
passed a dump continuation that is already in their lexical scope. Therefore, the control
continuations do not need to be passed a dump continuation. Since the dump continuation
was passed to apply solely for the purpose of threading it to the control continuation, apply
does not need to be passed a dump continuation either.

The evaluator of Section 3.1 with caller-save dump continuations reads as follows:

datatype value = INT of int

| SUCC

| FUNCLO of E * string * term

| STATE_APPENDER of D

| PGMCLO of value * D

withtype E = value Env.env (* environment *)

and D = value -> value (* dump continuation *)

and C = value -> value (* control continuation *)

val e_init = Env.extend ("succ", SUCC, Env.empty)

(* eval : term * E * C * D -> value *)

(* apply : value * value * C -> value *)

fun eval (LIT n, e, c, d)

= c (INT n)

A RATIONAL DECONSTRUCTION OF LANDIN’S SECD MACHINE WITH THE J OPERATOR 21

| eval (VAR x, e, c, d)

= c (Env.lookup (x, e))

| eval (LAM (x, t), e, c, d)

= c (FUNCLO (e, x, t))

| eval (APP (t0, t1), e, c, d)

= eval (t1, e, fn v1 =>

eval (t0, e, fn v0 =>

apply (v0, v1, c), d), d)

| eval (J, e, c, d)

= c (STATE_APPENDER d)

and apply (SUCC, INT n, c)

= c (INT (n + 1))

| apply (FUNCLO (e’, x, t), v, c)

= eval (t, Env.extend (x, v, e’), c, c)

| apply (STATE_APPENDER d’, v, c)

= c (PGMCLO (v, d’))

| apply (PGMCLO (v, d’), v’, c)

= apply (v, v’, d’)

fun evaluate2’_alt t (* evaluate2’_alt : program -> value *)

= eval (t, e_init, fn v => v, fn v => v)

This evaluator still passes two continuations to eval. However, the dump continuation is no
longer passed as an argument to the control continuation. Thus, the two continuations have
the same type. The dump continuation is a snapshot of the control continuation of the caller.
It is reset to be the continuation of the caller when evaluating the body of a function closure
and it is captured in a state appender by the J operator. Applying a program closure discards
the current control continuation in favor of the captured dump continuation.

As in Section 3.1, the abstract machine corresponding to evaluate2’ alt (obtained by de-
functionalization and displayed in Section 8) operates in lockstep with the abstract machine
corresponding to evaluate2’ (obtained by defunctionalization and displayed in Section 7).
The following proposition is a corollary of this bisimulation and the correctness of defunc-
tionalization:

Proposition 7 (full correctness). Given a program, evaluate2’ and evaluate2’ alt either
both diverge or both yield values; and if these values have an integer type, they are the same
integer.

4.2. The rest of the rational deconstruction. The evaluator of Section 4.1 can be trans-
formed exactly as the higher-order evaluators of Sections 2.2 and 3.1:

(1) A direct-style transformation with respect to the control continuation yields an eval-
uator in direct style.

(2) Refunctionalizing the applicable values yields a compositional, higher-order evaluator
in direct style.

Graphically:

22 A RATIONAL DECONSTRUCTION OF LANDIN’S SECD MACHINE WITH THE J OPERATOR

evaluate1’OO

bisimulation

��

evaluate2’

defunctionalization
of the

continuationsoo

‘modernization’:
a caller-save dump continuation

���
�

�

�

�

�

�

evaluate1’ alt evaluate2’ altoo //

direct-style transformation
wrt.

the control continuation

��

evaluate3’ alt

��
evaluate2’ alt’

refunctionalization
of the

applicable values

// evaluate3’ alt’

4.3. Two other simulations of the J operator. As in Section 3.6.1, the compositional
evaluators of Section 4.2 can be viewed as syntax-directed translations into their meta-
language. Below, we state these encodings as two further simulations of the J operator:
one in CPS with an additional return continuation, and one in direct-style with a return
continuation.

• In CPS with an additional return continuation, based on evaluate3’ alt:

JnK ′ = λc.λd.c n
JxK ′ = λc.λd.c x

Jt0 t1K
′ = λc.λd.Jt1K

′ (λv1.Jt0K
′ (λv0.v0 v1 c) d) d

Jλx.tK ′ = λc.λd.c λv.λc.JtK ′ c c

JJK ′ = λc.λd.c λv0.λc.c λv1.λc.v0 v1 d

A program p is translated as JpK ′ (λv.v) λv.v.
• In direct style with a return continuation, based on evaluate3’ alt’:

JnK = λd.n
JxK = λd.x

Jt0 t1K = λd.Jt0K d (Jt1K d)
Jλx.tK = λd.λx.Sλc.〈〈〈c (JtK c)〉〉〉

JJK = λd.λv0. λv1.Sλc.〈〈〈d (v0 v1)〉〉〉

A program p is translated as 〈〈〈JpK λv.v〉〉〉.
NB. Operationally, the two occurrences of reset surrounding the body of the shift-

expression are unnecessary. They could be omitted.

A RATIONAL DECONSTRUCTION OF LANDIN’S SECD MACHINE WITH THE J OPERATOR 23

Assessment: Transformed terms are passed a pair of continuations, the usual continuation
of the call-by-value CPS transform and a return continuation. Abstractions set the return
continuation to be the continuation at their point of invocation, i.e., the continuation of their
caller. The J operator captures the current return continuation in a program closure (boxed
above).

4.4. Thielecke. In his work on comparing control constructs [116], Thielecke introduced a
‘double-barrelled’ CPS transformation, where terms are passed an additional ‘jump contin-
uation’ in addition to the usual continuation of the call-by-value CPS transformation. By
varying the transformation of abstractions, he was able to account for first-class continua-
tions, exceptions, and jumping. His double-barrelled CPS transformation, including a clause
for his JI operator (i.e., J λx.x) and modified for right-to-left evaluation, reads as follows:

JxK = λc.λd.c x
Jt0 t1K = λc.λd.Jt1K (λv1.Jt0K (λv0.v0 v1 c d) d) d
Jλx.tK = λc.λd.c λx.λc ′.λd ′.JtK c ′ c ′

JJIK = λc.λd.c λx.λc ′.λd ′.d x

The continuation c is the continuation of the usual call-by-value CPS transformation. The
continuation d is a return continuation, i.e., a snapshot of the continuation of the caller of
a function abstraction. It is set to be the continuation of the caller in the body of each
function abstraction and it is captured as a first-class function by the JI operator. The extra
continuation passed to each abstraction is not necessary (for the encoding of JI), and can be
eliminated from the translation of abstractions and applications, as we did in Section 4.1.

As noted by Thielecke and earlier Landin, J can be expressed in terms of JI as:

J ≡ (λc.λv.λv ′.c (v v ′)) (JI)

The β-expansion is necessary to move the occurrence of JI outside of the outer abstraction,
because λ-abstractions are CPS-transformed in a non-standard way. By CPS-transforming
this definition and eliminating the extra continuation for function abstractions, we derive the
same double-barrelled encoding of Landin’s J operator as in Section 4.3:

JxK ′ = λc.λd.c x
Jt0 t1K

′ = λc.λd.Jt1K
′ (λv1.Jt0K

′ (λv0.v0 v1 c) d) d
Jλx.tK ′ = λc.λd.c λx.λc ′.JtK ′ c ′ c ′

JJK ′ = λc.λd.c λv.λc ′.c ′ λv ′.λc ′′.v v ′ d

Analysis: In essence, Thielecke’s simulation corresponds to an abstract machine which is the
caller-save counterpart of Landin’s machine with respect to the dump.

4.5. Felleisen. Felleisen showed how to embed Landin’s extension of applicative expressions
with J into the Scheme programming language [51]. The embedding is defined using Scheme
syntactic extensions (i.e., macros). J is treated as a dynamic identifier that is bound in the
body of every abstraction, similarly to the dynamically bound identifier ‘self’ in an embedding
of Smalltalk into Scheme [84]. The control aspect of J is handled through Scheme’s control
operator call/cc.

Here are the corresponding simulations using C and reset, using shift and reset, and in
CPS:

24 A RATIONAL DECONSTRUCTION OF LANDIN’S SECD MACHINE WITH THE J OPERATOR

• In direct style, using either of call/cc, C, or shift (S), and one global control delimiter
(〈〈〈·〉〉〉):

JxK = x
Jt0 t1K = Jt0K Jt1K

Jλx.tK = λx.call/cc λd.let J = λv.λv ′.d (v v ′) in JtK

= λx.Cλd.let J = λv.λv ′.d (v v ′) in d JtK

= λx.Sλd.let J = λv.λv ′.Sλc ′.d (v v ′) in d JtK

A program p is translated as let J = λv.λv ′.〈〈〈v v ′〉〉〉 in 〈〈〈JpK〉〉〉.
• In CPS:

JxK ′ = λc.c x
Jt0 t1K

′ = λc.Jt1K
′ λv1.Jt0K

′ λv0.v0 v1 c

Jλx.tK ′ = λc.c (λx.λd.let J = λv.λc.c λv ′.λc ′.v v ′ d in JtK ′ d)

A program p is translated as let J = λv.λc.c (λv ′.λc ′.v v ′ λv ′′.v ′′) in JpK ′ λv.v.

Analysis: The simulation of variables and applications is standard. The continuation of the
body of each λ-abstraction is captured, and the identifier J is dynamically bound to a function
closure (the state appender) which holds the continuation captive. Applying this function
closure to a value v yields a program closure (boxed in the simulations above). Applying this
program closure to a value v ′ has the effect of applying v to v ′ and resuming the captured
continuation with the result, abandoning the current continuation.

The evaluator corresponding to Felleisen’s simulation always has a binding of J in the
environment when evaluating the body of an abstraction (see Section 10). Under the assump-
tion that J is never shadowed in a program, passing this value as a separate argument to the
evaluator leads one towards the definition of evaluate2’ alt in Section 4.1 (see Section 9).

5. Related work

5.1. Landin and Burge. Landin [82] introduced the J operator as a new language feature
motivated by three questions about labels and jumps:

• Can a language have jumps without having assignments?
• Is there some component of jumping that is independent of labels?
• Is there some feature that corresponds to functions with arguments in the same sense

that labels correspond to procedures without arguments?

Landin gave the semantics of the J operator by extending the SECD machine. In addition
to using J to model jumps in Algol 60 [81], he gave examples of programming with the J
operator, using it to represent failure actions as program closures where it is essential that
they abandon the context of their application.

In his textbook [21, Section 2.10], Burge adjusted Landin’s original specification of the
J operator. Indeed, in Landin’s extension of the SECD machine, J could only occur in the
context of an application. Burge adjusted the original specification so that J could occur
in arbitrary contexts. To this end, he introduced the notion of a “state appender” as the
denotation of J.

Thielecke [115] gave a detailed introduction to the J operator as presented by Landin and
Burge. Burstall [22] illustrated the use of the J operator by simulating threads for parallel
search algorithms, which in retrospect is the first simulation of threads in terms of first-class
continuations ever.

A RATIONAL DECONSTRUCTION OF LANDIN’S SECD MACHINE WITH THE J OPERATOR 25

5.2. Reynolds. Reynolds [102] gave a comparison of J to escape, the binder form of Scheme’s
call/cc [29].6 He gave encodings of Landin’s J (i.e., restricted to the context of an application)
and escape in terms of each other.

His encoding of escape in terms of J reads as follows:

(escape k in t)∗ = let k = J λv.v in t∗

As Thielecke notes [115], this encoding is only valid immediately inside an abstraction. Indeed,
the dump continuation captured by J only coincides with the continuation captured by escape
if the control continuation is the initial one (i.e., immediately inside a control delimiter).
Thielecke therefore generalized the encoding by adding a dummy abstraction:

(escape k in t)∗ = (λ().let k = J λx.x in t∗) ()

From the point of view of the rational deconstruction of Section 3, this dummy abstraction
implicitly inserts a control delimiter.

Reynolds’s converse encoding of J in terms of escape reads as follows:

(let d = J λx.t1 in t0)
◦ = escape k in (let d = λx.k t1

◦ in t0
◦)

where k does not occur free in t0 and t1. For the same reason as above, this encoding is
only valid immediately inside an abstraction and therefore it can be generalized by adding a
dummy abstraction:

(let d = J λx.t1 in t0)
◦ = (λ().escape k in (let d = λx.k t1

◦ in t0
◦)) ()

5.3. Felleisen and Burge. Felleisen’s version of the SECD machine with the J operator
differs from Burge’s. In the notation of Section 1.5, Burge’s clause for applying program
closures reads

| run ((PGMCLO (v, (s’, e’, c’) :: d’)) :: v’ :: s, e, APPLY :: c, d)

= run (v :: v’ :: s’, e’, APPLY :: c’, d’)

instead of

| run ((PGMCLO (v, d’)) :: v’ :: s, e, APPLY :: c, d)

= run (v :: v’ :: nil, e_init, APPLY :: nil, d’)

Felleisen’s version delays the consumption of the dump until the function, in the program clo-
sure, completes, whereas Burge’s version does not. The modification is unobservable because
a program cannot capture the control continuation and because applying the argument of a
state appender pushes the data stack, the environment, and the control stack on the dump.
Felleisen’s modification can be characterized as wrapping a control delimiter around the ar-
gument of a dump continuation, similarly to the simulation of static delimited continuations
in terms of dynamic ones [18].

Burge’s version, however, is not in defunctionalized form. In Section 6, we put it in de-
functionalized form without resorting to a control delimiter and we outline the corresponding
compositional evaluation functions and simulations.

6. Deconstruction of the original SECD machine with the J operator

We now outline the deconstruction of Burge’s specification of the SECD machine with
the J operator.

6escape k in t ≡ call/cc λk.t

26 A RATIONAL DECONSTRUCTION OF LANDIN’S SECD MACHINE WITH THE J OPERATOR

6.1. Our starting point: Burge’s specification. As pointed out in Section 5.3, Felleisen’s
version of the SECD machine applies the value contained in a program closure before restoring
the components of the captured dump. Burge’s version differs by restoring the components
of the captured dump before applying the value contained in the program closure. In other
words,

• Felleisen’s version applies the value contained in a program closure with an empty
data stack, a dummy environment, an empty control stack, and the captured dump,
whereas

• Burge’s version applies the value contained in a program closure with the captured
data stack, environment, control stack, and previous dump.

The versions induce a minor programming difference because the first makes it possible to
use J in any context whereas the second restricts J to occur only inside a λ-abstraction.

Burge’s specification of the SECD machine with J follows. Ellipses mark what does not
change from the specification of Section 1.5:

(* run : S * E * C * D -> value *)

fun run (v :: nil, e, nil, d)

= ...

| run (s, e, (TERM t) :: c, d)

= ...

| run (SUCC :: (INT n) :: s, e, APPLY :: c, d)

= ...

| run ((FUNCLO (e’, x, t)) :: v :: s, e, APPLY :: c, d)

= ...

| run ((STATE_APPENDER d’) :: v :: s, e, APPLY :: c, d)

= ...

| run ((PGMCLO (v, (s’, e’, c’) :: d’)) :: v’ :: s, e, APPLY :: c, d)

= run (v :: v’ :: s’, e’, APPLY :: c’, d’)

fun evaluate0_alt t (* evaluate0_alt : program -> value *)

= ...

Just as in Section 2.1, Burge’s specification can be disentangled into four mutually-recursive
transition functions. The disentangled specification, however, is not in defunctionalized form.
We put it next in defunctionalized form without resorting to a control delimiter, and then
outline the rest of the rational deconstruction.

6.2. Burge’s specification in defunctionalized form. The disentangled specification of
Burge is not in defunctionalized form because the dump does not have a single point of con-
sumption. It is consumed by run d for values yielded by the body of λ-abstractions and in
run a for values thrown to program closures. In order to be in the image of defunctionaliza-
tion and have run d as the apply function, the dump should be solely consumed by run d.
We therefore distinguish values yielded by normal evaluation and values thrown to program
closures, and we make run d dispatch over these two kinds of returned values. For values
yielded by normal evaluation (i.e., in the call from run c to run d), run d proceeds as before.
For values thrown to program closures, run d calls run a. Our modification therefore adds one
transition (from run a to run d) for values thrown to program closures.

The change only concerns three clauses and ellipses mark what does not change from the
evaluator of Section 2.1:

datatype returned_value = YIELD of value

A RATIONAL DECONSTRUCTION OF LANDIN’S SECD MACHINE WITH THE J OPERATOR 27

| THROW of value * value

(* run_c : S * E * C * D -> value *)

(* run_d : returned_value * D -> value *)

(* run_t : term * S * E * C * D -> value *)

(* run_a : value * value * S * E * C * D -> value *)

fun run_c (v :: nil, e, nil, d)

= run_d (YIELD v, d) (* 1 *)

| run_c ...

= ...

and run_d (YIELD v, nil)

= v

| run_d (YIELD v, (s, e, c) :: d)

= run_c (v :: s, e, c, d)

| run_d (THROW (v, v’), (s, e, c) :: d)

= run_a (v, v’, s, e, c, d) (* 2 *)

and run_t ...

= ...

and run_a ...

= ...

| run_a (PGMCLO (v, d’), v’, s, e, c, d)

= run_d (THROW (v, v’), d’) (* 3 *)

fun evaluate1_alt t (* evaluate1_alt : program -> value *)

= ...

YIELD is used to tag values returned by function closures (in the clause marked “1” above),
and THROW is used to tag values sent to program closures (in the clause marked “3”). THROW

tags a pair of values, which will be applied in run d (by calling run a in the clause marked
“2”).

Proposition 8 (full correctness). Given a program, evaluate0 alt and evaluate1 alt either
both diverge or both yield values that are structurally equal.

6.3. A higher-order counterpart. In the modified specification of Section 6.2, the data
types of control stacks and dumps are identical to those of the disentangled machine of
Section 2.1. These data types, together with run d and run c, are in the image of defunc-
tionalization (run d and run c are their apply functions). The corresponding higher-order
evaluator reads as follows:

datatype value = INT of int

| SUCC

| FUNCLO of E * string * term

| STATE_APPENDER of D

| PGMCLO of value * D

and returned_value = YIELD of value

| THROW of value * value

withtype S = value list (* data stack *)

and E = value Env.env (* environment *)

and D = returned_value -> value (* dump continuation *)

and C = S * E * D -> value (* control continuation *)

val e_init = Env.extend ("succ", SUCC, Env.empty)

(* run_t : term * S * E * C * D -> value *)

28 A RATIONAL DECONSTRUCTION OF LANDIN’S SECD MACHINE WITH THE J OPERATOR

(* run_a : value * value * S * E * C * D -> value *)

(* where S = value list, E = value Env.env, C = S * E * D -> value *)

(* and D = returned_value -> value *)

fun run_t ...

= ...

and run_a (SUCC, INT n, s, e, c, d)

= c ((INT (n+1)) :: s, e, d)

| run_a (FUNCLO (e’, x, t), v, s, e, c, d)

= run_t (t, nil, Env.extend (x, v, e’),

fn (v :: nil, e, d) => d (YIELD v),

fn (YIELD v)

=> c (v :: s, e, d)

| (THROW (f, v))

=> run_a (f, v, s, e, c, d))

| run_a (STATE_APPENDER d’, v, s, e, c, d)

= c ((PGMCLO (v, d’)) :: s, e, d)

| run_a (PGMCLO (v, d’), v’, s, e, c, d)

= d’ (THROW (v, v’))

fun evaluate2_alt t (* evaluate2_alt : program -> value *)

= run_t (t, nil, e_init, fn (v :: nil, e, d) => d (YIELD v),

fn (YIELD v) => v)

As before, the resulting evaluator is in continuation-passing style (CPS), with two layered
continuations. It threads a stack of intermediate results, a (callee-save) environment, a control
continuation, and a dump continuation. The values sent to dump continuations are tagged to
indicate whether they represent the result of a function closure or an application of a program
closure. Defunctionalizing this evaluator yields the definition of Section 6.2:

Proposition 9 (full correctness). Given a program, evaluate1 alt and evaluate2 alt either
both diverge or yield expressible values; and if these values have an integer type, they are the
same integer.

6.4. The rest of the rational deconstruction. The evaluator of Section 6.3 can be trans-
formed exactly as the higher-order evaluator of Section 2.2:

(1) Eliminating the data stack and the callee-save environment yields a traditional eval–
apply evaluator, with run t as eval and run a as apply. The evaluator is in CPS with
two layers of continuations.

(2) A first direct-style transformation with respect to the dump yields an evaluator that
uses shift and reset (or C and a global reset, or again call/cc and a global reset) to
manipulate the implicit dump continuation.

(3) A second direct-style transformation with respect to the control stack yields an eval-
uator in direct style that uses the delimited-control operators shift1, reset1, shift2,
and reset2 (or C1, reset1, C2, and reset2) to manipulate the implicit control and dump
continuations.

(4) Refunctionalizing the applicable values yields a compositional, higher-order, direct-
style evaluator corresponding to Burge’s specification of the J operator. The result is
presented as a syntax-directed encoding next.

6.5. Three simulations of the J operator. As in Section 3.6.1, the compositional coun-
terpart of the evaluators of Section 6.4 can be viewed as syntax-directed encodings into their

A RATIONAL DECONSTRUCTION OF LANDIN’S SECD MACHINE WITH THE J OPERATOR 29

meta-language. Below, we state these encodings as three simulations of J: one in direct style,
one in CPS with one layer of continuations, and one in CPS with two layers of continua-
tions. Again, we assume a call-by-value meta-language with right-to-left evaluation and with
a sum (to distinguish values returned by functions and values sent to program closures), a
case expression (for the body of λ-abstractions) and a destructuring let expression (at the top
level).

• In direct style, using either of shift2, reset2, shift1, and reset1 or C2, reset2, C1, and
reset1, based on the compositional evaluator in direct style:

JnK = n
JxK = x

Jt0 t1K = Jt0K Jt1K
Jλx.tK = λx.case 〈〈〈inLJtK〉〉〉1

of inL(v) ⇒ v
| inR(v, v ′) ⇒ v v ′

JJK = S1λc.S2λd.d (c λv.λv ′.S1λc
′.S2λd

′.d (inR(v, v ′)))

= C1λc.C2λd.d (c λv.λv ′.d (inR(v, v ′)))

A program p is translated as 〈〈〈let inL(v) = 〈〈〈inL(JpK)〉〉〉1 in v〉〉〉2.
• In CPS with one layer of continuations, using either of shift and reset, C and reset,

or call/cc and reset, based on the compositional evaluator in CPS with one layer of
continuations:

JnK ′ = λc.c n
JxK ′ = λc.c x

Jt0 t1K
′ = λc.Jt1K

′ (λv1.Jt0K
′ λv0.v0 v1 c)

Jλx.tK ′ = λc.c (λx.λc.case JtK ′ λv.inL(v)
of inL(v) ⇒ c v
| inR(v, v ′) ⇒ v v ′ c)

JJK ′ = λc.Sλd.d (c λv.λc.c λv ′.λc ′.Sλd ′.d (inR(v, v ′)))

= λc.Cλd.d (c λv.λc.c λv ′.λc ′.d (inR(v, v ′)))

= λc.call/cc λd.c λv.λc.c λv ′.λc ′.d (inR(v, v ′))

A program p is translated as 〈〈〈let inL(v) = JpK ′ λv.inL(v) in v〉〉〉.
• In CPS with two layers of continuations, based on the compositional evaluator in CPS

with two layers of continuations:

JnK ′′ = λc.λd.c n d
JxK ′′ = λc.λd.c x d

Jt0 t1K
′′ = λc.λd.Jt1K

′′ (λv1.λd.Jt0K
′′ (λv0.λd.v0 v1 c d) d) d

Jλx.tK ′′ = λc.λd.c (λx.λc.λd.JtK ′′ (λv.λd.d (inL(v)))
λv ′′.case v ′′

of inL(v) ⇒ c v d
| inR(v, v ′) ⇒ v v ′ c d)d

JJK ′′ = λc.λd.c (λv.λc.λd ′′′.c (λv ′.λc ′.λd ′.d (inR(v, v ′))) d ′′′) d

A program p is translated as JpK ′′ (λv.λd.d (inL(v))) (λv.let inL(v ′) = v in v ′).

30 A RATIONAL DECONSTRUCTION OF LANDIN’S SECD MACHINE WITH THE J OPERATOR

Analysis: The simulation of literals, variables, and applications is standard. The body of each
λ-abstraction is evaluated with a control continuation injecting the resulting value into the
sum type7 to indicate normal completion and resuming the current dump continuation, and
with a dump continuation inspecting the resulting sum to determine whether to continue
normally or to apply a program closure. Continuing normally consists of invoking the control
continuation with the resulting value and the dump continuation. Applying a program closure
consists of restoring the components of the dump and then performing the application. The J
operator abstracts both the control continuation and the dump continuation and immediately
restores them, resuming the computation with a state appender holding the abstracted dump
continuation captive. Applying this state appender to a value v yields a program closure
(boxed in the three simulations above). Applying this program closure to a value v ′ has the
effect of discarding both the current control continuation and the current dump continuation,
injecting v and v ′ into the sum type to indicate exceptional completion, and resuming the
captured dump continuation. It is an error to evaluate J outside of a λ-abstraction.

6.6. Related work. Kiselyov’s encoding of dynamic delimited continuations in terms of
the static delimited-continuation operators shift and reset [78] is similar to this alternative
encoding of the J operator in that both encodings tag the argument to the meta-continuation
to indicate whether it represents a normal return or a value thrown to a first-class continuation.
In addition though, Kiselyov uses a recursive meta-continuation in order to encode dynamic
delimited continuations.

7. A syntactic theory of applicative expressions with the J operator:

explicit, callee-save dumps

Symmetrically to the functional correspondence between evaluation functions and ab-
stract machines that was sparked by the first rational deconstruction of the SECD ma-
chine [3, 4, 6, 7, 13, 16, 35, 36], a syntactic correspondence exists between calculi and abstract
machines, as investigated by Biernacka, Danvy, and Nielsen [12, 14, 15, 34, 36, 45]. This syn-
tactic correspondence is also derivational, and hinges not on defunctionalization but on a
‘refocusing’ transformation that mechanically connects an evaluation function defined as the
iteration of one-step reduction, and an abstract machine.

The goal of this section is to present the reduction semantics and the reduction-based
evaluation function that correspond to the modernized SECD machine of Section 3.1. We
successively present this machine (Section 7.1), the syntactic correspondence (Section 7.2),
a reduction semantics for applicative expressions with the J operator (Section 7.3), and the
derivation from this reduction semantics to this SECD machine (Section 7.4). We consider a
calculus of explicit substitutions because the explicit substitutions directly correspond to the
environments of the modernized SECD machine. In turn, this calculus of explicit substitutions
directly corresponds to a calculus with actual substitutions.

7.1. The SECD machine with no data stack and caller-save environments, revis-

ited. The terms, values, environments, and contexts are defined as in Section 1.5:

7This machine is therefore not properly tail recursive.

A RATIONAL DECONSTRUCTION OF LANDIN’S SECD MACHINE WITH THE J OPERATOR 31

(programs) p ::= t[(succ, SUCC) ·∅]

(terms) t ::= pnq | x | λx.t | t t | J

(values) v ::= pnq | SUCC | (λx.t, e) | pDq ◦ v | pDq

(environments) e ::= ∅ | (x, v) · e

(control contexts) C ::= [] | C[(t, e) []] | C[[] v]

(dump contexts) D ::= • | C ·D

The following four transition functions are the stackless, caller-save respective counterparts
of run t, run a, run c, and run d in Section 2.1. This abstract machine is implemented by the
modernized and disentangled evaluator evaluate1’ in the diagram at the end of Section 3.1:

〈pnq, e, C, D〉eval ⇒ 〈C, pnq, D〉cont
〈x, e, C, D〉eval ⇒ 〈C, v, D〉cont if lookup(x, e) = v

〈λx.t, e, C, D〉eval ⇒ 〈C, (λx.t, e), D〉cont
〈t0 t1, e, C, D〉eval ⇒ 〈t1, e, C[(t0, e) []], D〉eval

〈J, e, C, D〉eval ⇒ 〈C, pDq, D〉cont

〈SUCC, pnq, C, D〉apply ⇒ 〈C, pn + 1q, D〉cont
〈(λx.t, e), v, C, D〉apply ⇒ 〈t, e ′, [], C ·D〉eval where e ′ = extend(x, v, e)

〈pD ′
q ◦ v ′, v, C, D〉apply ⇒ 〈v, v ′, [], D ′〉apply
〈pD ′

q, v, C, D〉apply ⇒ 〈C, pD ′
q ◦ v, D〉cont

〈[], v, D〉cont ⇒ 〈D, v〉dump

〈C[(t, e) []], v, D〉cont ⇒ 〈t, e, C[[] v], D〉eval
〈C[[] v ′], v, D〉cont ⇒ 〈v, v ′, C, D〉apply

〈•, v〉dump ⇒ v

〈C ·D, v〉dump ⇒ 〈C, v, D〉cont

This machine evaluates a program t by starting in the configuration 〈t, (succ, SUCC) ·∅, [], •〉eval.
It halts with a value v if it reaches a configuration 〈•, v〉dump.

7.2. From reduction semantics to abstract machine. Consider a calculus together with
a reduction strategy expressed as a Felleisen-style reduction semantics satisfying the unique-
decomposition property [50]. In such a reduction semantics, a one-step reduction function is
defined as the composition of three functions:

decomposition: a total function mapping a value term to itself and decomposing a
non-value term into a potential redex and a reduction context (decomposition is a
function because of the unique-decomposition property);

contraction: a partial function mapping an actual redex to its contractum; and
plugging: a total function mapping a term and a reduction context to a new term by

filling the hole in the context with the term.

32 A RATIONAL DECONSTRUCTION OF LANDIN’S SECD MACHINE WITH THE J OPERATOR

The one-step reduction function is partial because it is the composition of two total functions
and a partial function.

An evaluation function is traditionally defined as the iteration of the one-step reduction
function:

◦
decompose

$$HH
HH

HH
HH

H

reduction step
// ◦

decompose

$$HH
HH

HH
HH

H

reduction step
// ◦

decompose

$$HH
HH

HH
HH

H

◦
contract

// ◦

plug
::vvvvvvvvv

◦
contract

// ◦

plug
::vvvvvvvvv

◦
contract

//

Danvy and Nielsen have observed that composing the two total functions plug and decompose
into a ‘refocus’ function could avoid the construction of intermediate terms:

◦
decompose

$$HH
HH

HH
HH

H ◦
decompose

$$HH
HH

HH
HH

H ◦
decompose

$$HH
HH

HH
HH

H

//____ ◦
contract

// ◦

plug
::vvvvvvvvv

refocus
//________ ◦

contract
// ◦

plug
::vvvvvvvvv

refocus
//________ ◦

contract
//

The resulting ‘refocused’ evaluation function is defined as the iteration of refocusing and
contraction. CPS transformation and defunctionalization make it take the form of a state-
transition function, i.e., an abstract machine. Short-circuiting its intermediate transitions
yields abstract machines that are often independently known [45].

Biernacka and Danvy then showed that the refocusing technique could be applied to
the very first calculus of explicit substitutions, Curien’s simple calculus of closures [31], and
that depending on the reduction order, it gave rise to a collection of both known and new
environment-based abstract machines such as Felleisen et al.’s CEK machine (for left-to-right
applicative order), the Krivine machine (for normal order), Krivine’s machine (for normal
order with generalized reduction), and Leroy’s ZINC machine (for right-to-left applicative
order with generalized reduction) [14]. They then turned to context-sensitive contraction
functions, as first proposed by Felleisen [50], and showed that refocusing mechanically gives
rise to an even larger collection of both known and new environment-based abstract machines
for languages with computational effects such as Krivine’s machine with call/cc, the λµ-
calculus, static and dynamic delimited continuations, input/output, stack inspection, proper
tail-recursion, and lazy evaluation [15].

The next section presents the calculus of closures corresponding to the abstract machine
of Section 7.1.

7.3. A reduction semantics for applicative expressions with the J operator. The
λρ̂J-calculus is an extension of Biernacka and Danvy’s λρ̂-calculus [14], which is itself a mini-
mal extension of Curien’s original calculus of closures λρ [31] to make it closed under one-step
reduction. We use it here to formalize Landin’s applicative expressions with the J operator as
a reduction semantics. To this end, we present its syntactic categories (Section 7.3.1); a plug
function mapping a closure and a two-layered reduction context into a closure by filling the
given context with the given closure (Section 7.3.2); a contraction function implementing a
context-sensitive notion of reduction (Section 7.3.3) and therefore mapping a potential redex
and its reduction context into a contractum and a reduction context (possibly another one);
and a decomposition function mapping a non-value term into a potential redex and a reduc-
tion context (Section 7.3.4). We are then in position to define a one-step reduction function
(Section 7.3.5), and a reduction-based evaluation function (Section 7.3.6).

A RATIONAL DECONSTRUCTION OF LANDIN’S SECD MACHINE WITH THE J OPERATOR 33

Before delving into this section, the reader might want to first browse through Section E,
in the appendix. This section has the same structure as the present one but instead of the
SECD machine, it addresses the CEK machine, which is simpler.

7.3.1. Syntactic categories. We consider a variant of the λρ̂J-calculus with names instead of
de Bruijn indices, and with two layers of contexts C and D that embody the right-to-left
applicative-order reduction strategy favored by Landin: C is the control context and D is the
dump context. In the syntactic category of closures, pDq and pDq ◦ v respectively denote a
state appender and a program closure, and 〈〈〈c〉〉〉 (which is shaded below) marks the boundary
between the context of a β-redex that has been contracted, i.e., a function closure that has
been applied, and the body of the λ-abstraction in this function closure:

(programs) p ::= t[(succ, SUCC) ·∅]

(terms) t ::= pnq | x | λx.t | t t | J

(closures) c ::= pnq | SUCC | t[e] | c c | pDq | pDq ◦ v | 〈〈〈c〉〉〉

(values) v ::= pnq | SUCC | (λx.t)[e] | pDq | pDq ◦ v

(potential redexes) r ::= x[e] | v v | J

(substitutions) e ::= ∅ | (x, v) · e

(control contexts) C ::= [] | C[c []] | C[[] v]

(dump contexts) D ::= • | C ·D

Values are therefore a syntactic subcategory of closures, and in this section, we make use of
the syntactic coercion ↑ mapping a value into a closure.

7.3.2. Plugging. Plugging a closure in the two layered contexts is defined by induction over
these two contexts. We express this definition as a state-transition system with two interme-
diate states, 〈C, c, D〉plug/cont and 〈D, c〉plug/dump, an initial state 〈C, c, D〉plug/cont, and a
final state c. The transition function from the state 〈C, c, D〉plug/cont incrementally peels off
the given control context and the transition function from the state 〈D, c〉plug/dump dispatches
over the given dump context:

〈[], c, D〉plug/cont → 〈D, c〉plug/dump

〈C[c0 []], c1, D〉plug/cont → 〈C, c0 c1, D〉plug/cont
〈C[[] v1], c0, D〉plug/cont → 〈C, c0 c1, D〉plug/cont where c1 = ↑ v1

〈•, c〉plug/dump → c

〈C ·D, c〉plug/dump → 〈〈〈〈c〉〉〉, C, D〉plug/cont
We can now define a total function plug over closures, control contexts, and dump contexts

that fills the given closure into the given control context, and further fills the result into the
given dump context:

plug : Closure × Control × Dump → Closure

Definition 1. For any closure c, control context C, and dump context D, plug (C, c, D) = c ′

if and only if 〈C, c, D〉plug/cont →∗ c ′.

34 A RATIONAL DECONSTRUCTION OF LANDIN’S SECD MACHINE WITH THE J OPERATOR

7.3.3. Notion of contraction. The notion of reduction over applicative expressions with the J
operator is specified by the following context-sensitive contraction rules over actual redexes:

(Var) 〈x[e], C, D〉 7→ 〈v, C, D〉 if lookup(x, e) = v

(Betasucc) 〈SUCC pnq, C, D〉 7→ 〈pn + 1q, C, D〉

(BetaFC) 〈((λx.t)[e]) v, C, D〉 7→ 〈t[e ′], [], C ·D〉 where e ′ = extend(x, v, e) = (x, v) · e

(BetaSA) 〈pD ′
q v, C, D〉 7→ 〈pD ′

q ◦ v, C, D〉

(BetaPC) 〈(pD
′
q ◦ v ′) v, C, D〉 7→ 〈v ′ v, [], D ′〉

(Prop) 〈(t0 t1)[e], C, D〉 7→ 〈(t0[e]) (t1[e]), C, D〉

(J) 〈J, C, D〉 7→ 〈pDq, C, D〉

Three of these contraction rules depend on the contexts: the J rule captures a copy of the
dump context and yields a state appender; the β-rule for function closures resets the control
context and pushes it on the dump context; and the β-rule for program closures resets the
control context and reinstates a previously captured copy of the dump context.

Among the potential redexes, only the ones listed above are actual ones. The other
applications of one value to another are stuck.

We now can define by cases a partial function contract over potential redexes that con-
tracts an actual redex and its two layers of contexts into the corresponding contractum and
contexts:

contract : PotRed × Control × Dump ⇀ Closure × Control × Dump

Definition 2. For any potential redex r, control context C, and dump context D, contract (r, C, D) =

〈c, C ′, D ′〉 if and only if 〈r, C, D〉 7→ 〈c, C ′, D ′〉.

7.3.4. Decomposition. There are many ways to define a total function mapping a value clo-
sure to itself and a non-value closure to a potential redex and a reduction context. In our
experience, the following definition is a convenient one. It is a state-transition system with
three intermediate states, 〈c, C, D〉dec/clos, 〈C, v, D〉dec/cont, and 〈D, v〉dec/dump, an initial
state 〈c, [], •〉dec/clos and two final states VAL (v) and DEC (r, C, D). If possible, the transi-
tion function from the state 〈c, C, D〉dec/clos decomposes the given closure c and accumulates
the corresponding two layers of reduction context, C and D. The transition function from the
state 〈C, v, D〉dec/cont dispatches over the given control context, and the transition function
from the state 〈D, v〉dec/dump dispatches over the given dump context.

A RATIONAL DECONSTRUCTION OF LANDIN’S SECD MACHINE WITH THE J OPERATOR 35

〈pnq, C, D〉dec/clos → 〈C, pnq, D〉dec/cont
〈SUCC, C, D〉dec/clos → 〈C, SUCC, D〉dec/cont
〈pnq[e], C, D〉dec/clos → 〈C, pnq, D〉dec/cont
〈x[e], C, D〉dec/clos → DEC (x[e], C, D)

〈(λx.t)[e], C, D〉dec/clos → 〈C, (λx.t)[e], D〉dec/cont
〈(t0 t1)[e], C, D〉dec/clos → DEC ((t0 t1)[e], C, D)

〈J[e], C, D〉dec/clos → DEC (J, C, D)

〈c0 c1, C, D〉dec/clos → 〈c1, C[c0 []], D〉dec/clos
〈pD ′

q, C, D〉dec/clos → 〈C, pD ′
q, D〉dec/cont

〈pDq ◦ v, C, D〉dec/clos → 〈C, pDq ◦ v, D〉dec/cont
〈〈〈〈c〉〉〉, C, D〉dec/clos → 〈c, [], C ·D〉dec/clos

〈[], v, D〉dec/cont → 〈D, v〉dec/dump

〈C[c0 []], v1, D〉dec/cont → 〈c0, C[[] v1], D〉dec/clos
〈C[[] v1], v0, D〉dec/cont → DEC (v0 v1, C, D)

〈•, v〉dec/dump → VAL (v)

〈C ·D, v〉dec/dump → 〈C, v, D〉dec/cont
We now can define a total function decompose over closures that maps a value closure

to itself and a non-value closure to a decomposition into a potential redex, a control con-
text, and a dump context. This total function uses three auxiliary functions decompose ′clos,
decompose ′cont, and decompose ′dump:

decompose : Closure → Value + (PotRed × Control × Dump)
decompose ′clos : Closure × Control × Dump → Value + (PotRed × Control × Dump)
decompose ′cont : Control × Value × Dump → Value + (PotRed × Control × Dump)
decompose ′dump : Dump × Value → Value + (PotRed × Control × Dump)

Definition 3. For any closure c, control context C, and dump context D,

decompose ′clos (c, C, D) =

{
VAL (v ′) if 〈c, C, D〉dec/clos →∗ VAL (v ′)

DEC (r, C ′, D ′) if 〈c, C, D〉dec/clos →∗ DEC (r, C ′, D ′)

decompose ′cont (C, v, D) =

{
VAL (v ′) if 〈C, v, D〉dec/cont →∗ VAL (v ′)

DEC (r, C ′, D ′) if 〈C, v, D〉dec/cont →∗ DEC (r, C ′, D ′)

decompose ′dump (D, v) =

{
VAL (v ′) if 〈D, v〉dec/dump →∗ VAL (v ′)

DEC (r, C ′, D ′) if 〈D, v〉dec/dump →∗ DEC (r, C ′, D ′)

and decompose (c) = decompose ′clos (c, [], •).

7.3.5. One-step reduction. We are now in position to define a partial function reduce over
closed closures that maps a value closure to itself and a non-value closure to the next closure
in the reduction sequence. This function is defined by composing the three functions above:

36 A RATIONAL DECONSTRUCTION OF LANDIN’S SECD MACHINE WITH THE J OPERATOR

reduce (c) = case decompose (c)
of VAL (v) ⇒ ↑ v
| DEC (r, C, D) ⇒ plug (contract (r, C, D))

The function reduce is partial because of contract, which is undefined for stuck closures.

Definition 4 (One-step reduction). For any closure c, c → c ′ if and only if reduce (c) = c ′.

7.3.6. Reduction-based evaluation. Iterating reduce defines a reduction-based evaluation func-
tion. The definition below uses decompose to distinguish between values and non-values, and
implements iteration (tail-) recursively with the partial function iterate:

evaluate (c) = iterate (decompose (c))

where

{
iterate (VAL (v)) = v
iterate (DEC (r, C, D)) = iterate (decompose (plug (contract (r, C, D))))

The function evaluate is partial because a given closure might be stuck or reducing it might
not converge.

Definition 5 (Reduction-based evaluation). For any closure c, c →∗ v if and only if evaluate (c)
= v.

To close, let us adjust the definition of evaluate by exploiting the fact that for any closure
c, plug (c, [], •) = c:

evaluate (c) = iterate (decompose (plug (c, [], •)))

In this adjusted definition, decompose is always applied to the result of plug.

7.4. From the reduction semantics for applicative expressions to the SECD ma-

chine. Deforesting the intermediate terms in the reduction-based evaluation function of Sec-
tion 7.3.6 yields a reduction-free evaluation function in the form of a small-step abstract
machine (Section 7.4.1). We simplify this small-step abstract machine by fusing a part of
its driver loop with the contraction function (Section 7.4.2) and compressing its ‘corridor’
transitions (Section 7.4.3). Unfolding the recursive data type of closures precisely yields the
caller-save, stackless SECD abstract machine of Section 7.1 (Section 7.4.4).

7.4.1. Refocusing: from reduction-based to reduction-free evaluation. Following Danvy and
Nielsen [45], we deforest the intermediate closure in the reduction sequence by replacing the
composition of plug and decompose by a call to a composite function refocus:

evaluate (c) = iterate (refocus (c, [], •))

where

{
iterate (VAL (v)) = v
iterate (DEC (r, C, D)) = iterate (refocus (contract (r, C, D)))

and refocus is optimally defined as continuing the decomposition in the current reduction
context [45]:

A RATIONAL DECONSTRUCTION OF LANDIN’S SECD MACHINE WITH THE J OPERATOR 37

refocus (c, C, D) = decompose ′clos (c, C, D)

Definition 6 (Reduction-free evaluation). For any closure c, c 7→∗

J v if and only if evaluate (c) =
v.

7.4.2. Lightweight fusion: making do without driver loop. In effect, iterate is as the ‘dri-
ver loop’ of a small-step abstract machine that refocuses and contracts. Instead, let us
fuse contract and iterate and express the result with rewriting rules over a configuration
〈r, C, D〉iter. We clone the rewriting rules for decompose ′clos, decompose ′cont, and decompose ′dump

into refocusing rules, indexing their configurations as 〈c, C, D〉eval,
〈C, v, D〉cont, and 〈D, v〉dump instead of as 〈c, C, D〉dec/clos, 〈C, v, D〉dec/cont, and 〈D, v〉dec/dump,
respectively:

• instead of rewriting to VAL (v), the cloned rules rewrite to v;
• instead of rewriting to DEC (r, C, D), the cloned rules rewrite to 〈r, C, D〉iter.

The result reads as follows:

〈pnq, C, D〉eval ⇒ 〈C, pnq, D〉cont

〈SUCC, C, D〉eval ⇒ 〈C, SUCC, D〉cont

〈pnq[e], C, D〉eval ⇒ 〈C, pnq, D〉cont

〈x[e], C, D〉eval ⇒ 〈x[e], C, D〉iter

〈(λx.t)[e], C, D〉eval ⇒ 〈C, (λx.t)[e], D〉cont

〈(t0 t1)[e], C, D〉eval ⇒ 〈(t0 t1)[e], C, D〉iter

〈J[e], C, D〉eval ⇒ 〈J, C, D〉iter

〈c0 c1, C, D〉eval ⇒ 〈c1, C[c0 []], D〉eval

〈pD ′
q, C, D〉eval ⇒ 〈C, pD ′

q, D〉cont

〈pD ′
q ◦ v, C, D〉eval ⇒ 〈C, pD ′

q ◦ v, D〉cont

〈〈〈〈c〉〉〉, C, D〉eval ⇒ 〈c, [], C ·D〉eval

〈[], v, D〉cont ⇒ 〈D, v〉dump

〈C[c0 []], v1, D〉cont ⇒ 〈c0, C[[] v1], D〉eval

〈C[[] v1], v0, D〉cont ⇒ 〈v0 v1, C, D〉iter

〈•, v〉dump ⇒ v

〈C ·D, v〉dump ⇒ 〈C, v, D〉cont

〈x[e], C, D〉iter ⇒ 〈v, C, D〉eval if lookup(x, e) = v

〈SUCC pnq, C, D〉iter ⇒ 〈pn + 1q, C, D〉eval

〈((λx.t)[e]) v, C, D〉iter ⇒ 〈t[e ′], [], C ·D〉eval where e ′ = extend(x, v, e) = (x, v) · e

〈pD ′
q v, C, D〉iter ⇒ 〈pD ′

q ◦ v, C, D〉eval

〈(pD ′
q ◦ v ′) v, C, D〉iter ⇒ 〈v ′ v, [], D ′〉eval

〈(t0 t1)[e], C, D〉iter ⇒ 〈(t0[e]) (t1[e]), C, D〉eval

〈J, C, D〉iter ⇒ 〈pDq, C, D〉eval

38 A RATIONAL DECONSTRUCTION OF LANDIN’S SECD MACHINE WITH THE J OPERATOR

The following proposition summarizes the situation:

Proposition 10. For any closure c, evaluate (c) = v if and only if 〈c, [], •〉eval ⇒∗ v.

Proof: straightforward. The two machines operate in lockstep. �

7.4.3. Inlining and transition compression. The abstract machine of Section 7.4.2, while inter-
esting in its own right (it is ‘staged’ in that the contraction rules are implemented separately
from the congruence rules [14, 69]), is not minimal: a number of transitions yield a configu-
ration whose transition is uniquely determined. Let us carry out these hereditary, “corridor”
transitions once and for all:

• 〈x[e], C, D〉eval ⇒ 〈x[e], C, D〉iter ⇒ 〈v, C, D〉eval ⇒ 〈C, v, D〉cont if lookup(x, e) = v
• 〈(t0 t1)[e], C, D〉eval ⇒ 〈(t0 t1)[e], C, D〉iter ⇒ 〈(t0[e]) (t1[e]), C, D〉eval ⇒ 〈t1[e], C[t0[e] []], D〉eval
• 〈J[e], C, D〉eval ⇒ 〈J, C, D〉iter ⇒ 〈pDq, C, D〉eval ⇒ 〈C, pDq, D〉cont
• 〈SUCC pnq, C, D〉iter ⇒ 〈pn + 1q, C, D〉eval ⇒ 〈C, pn + 1q, D〉cont
• 〈pD ′

q v, C, D〉iter ⇒ 〈pD ′
q ◦ v, C, D〉eval ⇒ 〈C, pD ′

q ◦ v, D〉cont
The result reads as follows:

〈pnq[e], C, D〉eval ⇒ 〈C, pnq, D〉cont

〈x[e], C, D〉eval ⇒ 〈C, v, D〉cont if lookup(x, e) = v

〈(λx.t)[e], C, D〉eval ⇒ 〈C, (λx.t)[e], D〉cont

〈(t0 t1)[e], C, D〉eval ⇒ 〈t1[e], C[(t0[e]) []], D〉eval

〈J[e], C, D〉eval ⇒ 〈C, pDq, D〉cont

〈SUCC pnq, C, D〉iter ⇒ 〈C, pn + 1q, D〉cont

〈((λx.t)[e]) v, C, D〉iter ⇒ 〈t[e ′], [], C ·D〉eval where e ′ = extend(x, v, e)

〈(pD ′
q ◦ v ′) v, C, D〉iter ⇒ 〈v v ′, [], D ′〉iter

〈pD ′
q v, C, D〉iter ⇒ 〈C, pD ′

q ◦ v, D〉cont

〈[], v, D〉cont ⇒ 〈D, v〉dump

〈C[(t[e]) []], v, D〉cont ⇒ 〈t[e], C[[] v], D〉eval

〈C[[] v ′], v, D〉cont ⇒ 〈v v ′, C, D〉iter

〈•, v〉dump ⇒ v

〈C ·D, v〉dump ⇒ 〈C, v, D〉cont

The eval-clauses for pnq, SUCC (which only occurs in the initial environment), c0 c1, pDq,
and pDq ◦ v and the iter-clauses for x[e], (t0 t1)[e], and J all have disappeared: they were only
transitory. The eval-clause for 〈〈〈c〉〉〉 has also disappeared: it is a dead clause here since plug

has been refocused away.

Proposition 11. For any closure c, evaluate (c) = v if and only if 〈c, [], •〉eval ⇒∗ v.

Proof: immediate. We have merely compressed corridor transitions and removed one dead
clause. �

7.4.4. Opening closures: from explicit substitutions to terms and environments. The abstract
machine above solely operates on ground closures and the iter-clauses solely dispatch on
applications of one value to another. If we (1) open the closures t[e] into pairs (t, e) and

A RATIONAL DECONSTRUCTION OF LANDIN’S SECD MACHINE WITH THE J OPERATOR 39

flatten the configuration 〈(t, e), C, D〉eval into a quadruple 〈t, e, C, D〉eval and (2) flatten
the configuration 〈v v ′, C, D〉iter into a quadruple 〈v, v ′, C, D〉apply, we obtain an abstract
machine that coincides with the caller-save, stackless SECD machine of Section 7.1.

The following proposition captures that the SECD machine implements the reduction
semantics of Section 7.3.

Proposition 12 (syntactic correspondence). For any program t in the λρ̂J-calculus,

t[(succ, SUCC) ·∅] →∗ v if and only if 〈t[(succ, SUCC) ·∅], [], •〉eval ⇒∗ v.

Proof: this proposition is a simple corollary of the above series of propositions and of the
observation just above. �

7.5. Summary and conclusion. All in all, the syntactic and the functional correspondences
provide a method to mechanically build compatible small-step semantics in the form of calculi
(reduction semantics) and abstract machines, and big-step semantics in the form of evalua-
tion functions. We have illustrated this method here for applicative expressions with the J
operator, providing their first big-step semantics and their first reduction semantics.

8. A syntactic theory of applicative expressions with the J operator:

implicit, caller-save dumps

The J operator capture the continuation of the caller and accordingly, the SECD machine
is structured as the expression continuation of the current function up to its point of call (the
C component) and as a list of the delimited expression continuations of the previously called
functions (the D component). This architecture stands both for the original SECD machine
(Section 2) and for its modernized instances, whether the dump is managed in a callee-save
fashion (Section 3) or in a caller-save fashion (Section 4). In this section, we study a single
representation of the context that is dynamically scanned in search for the context of the caller,
as in Felleisen et al.’s initial take on delimited continuations [54] and in John Clements’s PhD
thesis work on continuation marks [27]. We start from a reduction semantics (Section 8.1)
and refocus it into an abstract machine (Section 8.2).

8.1. Reduction semantics. We specify the reduction semantics as in Sections 7.3 and E.1,
i.e., with its syntactic categories, a plugging function, a notion of contraction, a decomposition
function, a one-step reduction function, and a reduction-based evaluation function.

8.1.1. Syntactic categories. We consider a variant of the λρ̂J-calculus with one layer of context
C and with delimiters 〈〈〈c〉〉〉 and 〈〈〈C 〉〉〉 (shaded below) to mark the boundary between the context
of a β-redex that has been contracted, i.e., a function closure that has been applied, and the
body of the λ-abstraction in this function closure which is undergoing reduction:

(programs) p ::= t[(succ, SUCC) ·∅]

(terms) t ::= pnq | x | λx.t | t t | J

(closures) c ::= pnq | SUCC | t[e] | c c | pCq | pCq ◦ v | 〈〈〈c〉〉〉

(values) v ::= pnq | SUCC | (λx.t)[e] | pCq | pCq ◦ v

(potential redexes) r ::= x[e] | v v | J

(substitutions) e ::= ∅ | (x, v) · e

(contexts) C ::= [] | C [c []] | C [[] v] | 〈〈〈C 〉〉〉

40 A RATIONAL DECONSTRUCTION OF LANDIN’S SECD MACHINE WITH THE J OPERATOR

Again, in the syntactic category of closures, pCq and pCq ◦ v respectively denote a state
appender and a program closure. Also again, values are therefore a syntactic subcategory of
closures, and we make use of the syntactic coercion ↑ mapping a value into a closure.

8.1.2. Plugging. Plugging a closure in a context is defined by induction over this context:

〈[], c〉plug/cont → c

〈C[c0 []], c1〉plug/cont → 〈C , c0 c1〉plug/cont
〈C [[] v1], c0〉plug/cont → 〈C , c0 c1〉plug/cont where c1 = ↑ v1

〈〈〈〈C 〉〉〉, c〉plug/cont → 〈C , 〈〈〈c〉〉〉〉plug/cont

Definition 7. For any closure c and context C , plug (C , c) = c ′ if and only if 〈C, c〉plug/cont →∗

c ′.

8.1.3. Notion of contraction. The notion of reduction is specified by the following context-
sensitive contraction rules over actual redexes:

(Var) 〈x[e], C 〉 7→ 〈v, C 〉 if lookup(x, e) = v

(Betasucc) 〈SUCC pnq, C 〉 7→ 〈pn + 1q, C 〉

(BetaFC) 〈((λx.t)[e]) v, C 〉 7→ 〈〈〈〈t[e ′]〉〉〉, C 〉 where e ′ = extend(x, v, e) = (x, v) · e

(BetaSA) 〈pC ′
q v, C 〉 7→ 〈pC ′

q ◦ v, C 〉

(BetaPC) 〈(pC
′
q ◦ v ′) v, C 〉 7→ 〈v ′ v, C ′〉

(Prop) 〈(t0 t1)[e], C 〉 7→ 〈(t0[e]) (t1[e]), C 〉

(J) 〈J, C 〉 7→ 〈pC ′
q, C 〉 where C ′ = previous(C)

where the following partial function maps a context to its most recent delimited context, if
any:

previous(C[c []]) = previous(C)

previous(C [[] v]) = previous(C)

previous(〈〈〈C 〉〉〉) = C

Two of the contraction rules depend on the context: the J rule captures a copy of the
context of the most recent caller and yields a state appender, and the β-rule for program
closures reinstates a previously captured copy of the context. As for the β-rule for function
closures, it introduces a delimiter.

Definition 8. For any potential redex r and context C , contract (r, C) = 〈c, C ′〉 if and only
if 〈r, C ′〉 7→ 〈c, C ′〉.

8.1.4. Decomposition. Decomposition is essentially as in Section 7.3.4, except that there is
no explicit dump component:

A RATIONAL DECONSTRUCTION OF LANDIN’S SECD MACHINE WITH THE J OPERATOR 41

〈pnq, C〉dec/clos → 〈C, pnq〉dec/cont
〈SUCC, C〉dec/clos → 〈C, SUCC〉dec/cont
〈pnq[e], C〉dec/clos → 〈C, pnq〉dec/cont
〈x[e], C〉dec/clos → DEC (x[e], C)

〈(λx.t)[e], C〉dec/clos → 〈C, (λx.t)[e]〉dec/cont
〈(t0 t1)[e], C〉dec/clos → DEC ((t0 t1)[e], C)

〈J[e], C〉dec/clos → DEC (J, C)

〈c0 c1, C〉dec/clos → 〈c1, C[c0 []]〉dec/clos
〈pC ′

q, C〉dec/clos → 〈C, pC ′
q〉dec/cont

〈pC ′
q ◦ v, C〉dec/clos → 〈C, pC ′

q ◦ v〉dec/cont
〈〈〈〈c〉〉〉, C〉dec/clos → 〈c, 〈〈〈C 〉〉〉〉dec/clos

〈[], v〉dec/cont → VAL (v)

〈C[c0 []], v1〉dec/cont → 〈c0, C[[] v1]〉dec/clos
〈C[[] v1], v0〉dec/cont → DEC (v0 v1, C)

〈〈〈〈C〉〉〉, v〉dec/cont → 〈C, v〉dec/cont

Definition 9. For any closure c,

decompose (c) =

{
VAL (v) if 〈c, [], []〉dec/clos →∗ VAL (v)

DEC (r, C) if 〈c, [], []〉dec/clos →∗ DEC (r, C)

8.1.5. One-step reduction and reduction-based evaluation. We are now in position to define
a one-step reduction function (as in Sections 7.3.5 and E.1.5) and an evaluation function
iterating this reduction function (as in Section 7.3.6 and E.1.6).

8.2. From reduction semantics to abstract machine. Repeating mutatis mutandis the
derivation illustrated in Sections 7.4 and E.2 leads one to the following variant of the SECD
machine:

(programs) p ::= t[(succ, SUCC) ·∅]

(terms) t ::= pnq | x | λx.t | t t | J

(values) v ::= pnq | SUCC | (λx.t, e) | pCq ◦ v | pCq

(environments) e ::= ∅ | (x, v) · e

(contexts) C ::= [] | C [(t, e) []] | C [[] v] | 〈〈〈C 〉〉〉

〈pnq, e, C〉eval ⇒ 〈C, pnq〉cont
〈x, e, C〉eval ⇒ 〈C, v〉cont if lookup(x, e) = v

〈λx.t, e, C〉eval ⇒ 〈C, (λx.t, e)〉cont
〈t0 t1, e, C〉eval ⇒ 〈t1, e, C[(t0, e) []]〉eval

〈J, e, C〉eval ⇒ 〈C, pC ′
q〉cont if C ′ = previous(C)

42 A RATIONAL DECONSTRUCTION OF LANDIN’S SECD MACHINE WITH THE J OPERATOR

〈SUCC, pnq, C〉apply ⇒ 〈C, pn + 1q〉cont
〈(λx.t, e), v, C 〉apply ⇒ 〈t, e ′, 〈〈〈C 〉〉〉〉eval where e ′ = extend(x, v, e)

〈pC ′
q ◦ v ′, v, C〉apply ⇒ 〈v, v ′, C ′〉apply
〈pC ′

q, v, C〉apply ⇒ 〈C, pC ′
q ◦ v〉cont

〈[], v〉cont ⇒ v

〈C[(t, e) []], v〉cont ⇒ 〈t, e, C[[] v]〉eval
〈C[[] v ′], v〉cont ⇒ 〈v, v ′, C〉apply

〈〈〈〈C 〉〉〉, v〉cont ⇒ 〈C , v〉cont
This machine evaluates a program t by starting in the configuration

〈t, (succ, SUCC) ·∅, []〉eval.

It halts with a value v if it reaches a configuration 〈[], v〉cont.
Alternatively (if we allow J to be used outside the body of a lambda-term and we let it

denote the empty context), this machine evaluates a program t by starting in the configuration

〈t, (succ, SUCC) ·∅, 〈〈〈[]〉〉〉〉eval.

It halts with a value v if it reaches a configuration 〈[], v〉cont.
In either case, the machine is not in defunctionalized form [43,44]. Therefore, one cannot

immediately map it into an evaluation function in CPS, as in Sections 2, 3, and 4. The next
two sections present two alternatives, each of which is in defunctionalized form and operates
in lockstep with the present abstract machine.

9. A syntactic theory of applicative expressions with the J operator:

explicit, caller-save dumps

Instead of marking the context and the intermediate closures, as in Section 8, one can
cache the context of the caller in a separate register, which leads one towards evaluate1’ alt

in Section 4.2. For an analogy, in some formal specifications of Prolog [17, 49], the cut
continuation denotes the previous failure continuation and is cached in a separate register.

10. A syntactic theory of applicative expressions with the J operator:

inheriting the dump through the environment

Instead of marking the context and the intermediate closures, as in Section 8, or of caching
the context of the caller in a separate register, as in Section 9, one can cache the context of
the caller in the environment, which leads one towards Felleisen’s simulation (Section 4.5) and
a lightweight extension of the CEK machine. Let us briefly outline this reduction semantics
and this abstract machine.

10.1. Reduction semantics. We specify the reduction semantics as in Section 8.1.

A RATIONAL DECONSTRUCTION OF LANDIN’S SECD MACHINE WITH THE J OPERATOR 43

10.1.1. Syntactic categories. We consider a variant of the λρ̂J-calculus which is essentially
that of Section 8.1.1, except that J is now an identifier and there are no delimiters:

(programs) p ::= t[(succ, SUCC) ·∅]

(terms) t ::= pnq | x | λx.t | t t

(closures) c ::= pnq | SUCC | t[e] | c c | pCq | pCq ◦ v

(values) v ::= pnq | SUCC | (λx.t)[e] | pCq | pCq ◦ v

(potential redexes) r ::= x[e] | v v

(substitutions) e ::= ∅ | (x, v) · e

(contexts) C ::= [] | C [c []] | C [[] v]

10.1.2. Plugging. The notion of reduction is essentially as that of Section 8.1.2, except that
there is no control delimiter:

〈[], c〉plug/cont → c

〈C[c0 []], c1〉plug/cont → 〈C , c0 c1〉plug/cont
〈C [[] v1], c0〉plug/cont → 〈C , c0 c1〉plug/cont where c1 = ↑ v1

10.1.3. Notion of contraction. The notion of reduction is essentially as that of Section 8.1.3,
except that there is no rule for J and there are no delimiters:

(Var) 〈x[e], C 〉 7→ 〈v, C 〉 if lookup(x, e) = v

(Betasucc) 〈SUCC pnq, C 〉 7→ 〈pn + 1q, C 〉

(BetaFC) 〈((λx.t)[e]) v, C 〉 7→ 〈t[e ′], C 〉 where e ′ = (J, pCq) · (x, v) · e

(BetaSA) 〈pC ′
q v, C 〉 7→ 〈pC ′

q ◦ v, C 〉

(BetaPC) 〈(pC
′
q ◦ v ′) v, C 〉 7→ 〈v ′ v, C ′〉

(Prop) 〈(t0 t1)[e], C 〉 7→ 〈(t0[e]) (t1[e]), C 〉

In the β-rule for function closures, the identifier J is dynamically bound to the current context.

10.1.4. Decomposition. Decomposition is essentially as in Section 8.1.4, except that there is
no rule for J and there are no delimiters:

〈pnq, C〉dec/clos → 〈C, pnq〉dec/cont
〈SUCC, C〉dec/clos → 〈C, SUCC〉dec/cont
〈pnq[e], C〉dec/clos → 〈C, pnq〉dec/cont
〈x[e], C〉dec/clos → DEC (x[e], C)

〈(λx.t)[e], C〉dec/clos → 〈C, (λx.t)[e]〉dec/cont
〈(t0 t1)[e], C〉dec/clos → DEC ((t0 t1)[e], C)

〈c0 c1, C〉dec/clos → 〈c1, C[c0 []]〉dec/clos
〈pC ′

q, C〉dec/clos → 〈C, pC ′
q〉dec/cont

〈pC ′
q ◦ v, C〉dec/clos → 〈C, pC ′

q ◦ v〉dec/cont

44 A RATIONAL DECONSTRUCTION OF LANDIN’S SECD MACHINE WITH THE J OPERATOR

〈[], v〉dec/cont → VAL (v)

〈C[c0 []], v1〉dec/cont → 〈c0, C[[] v1]〉dec/clos
〈C[[] v1], v0〉dec/cont → DEC (v0 v1, C)

10.2. From reduction semantics to abstract machine. Repeating mutatis mutandis the
derivation illustrated in Sections 7.4 and E.2 leads one to the following variant of the CEK
machine:

(programs) p ::= t[(succ, SUCC) ·∅]

(terms) t ::= pnq | x | λx.t | t t

(values) v ::= pnq | SUCC | (λx.t, e) | pCq ◦ v | pCq

(environments) e ::= ∅ | (x, v) · e

(contexts) C ::= [] | C [(t, e) []] | C [[] v]

〈pnq, e, C〉eval ⇒ 〈C, pnq〉cont
〈x, e, C〉eval ⇒ 〈C, v〉cont if lookup(x, e) = v

〈λx.t, e, C〉eval ⇒ 〈C, (λx.t, e)〉cont
〈t0 t1, e, C〉eval ⇒ 〈t1, e, C[(t0, e) []]〉eval

〈SUCC, pnq, C〉apply ⇒ 〈C, pn + 1q〉cont
〈(λx.t, e), v, C 〉apply ⇒ 〈t, e ′, C 〉eval where e ′ = extend(J, pCq, extend(x, v, e))

〈pC ′
q ◦ v ′, v, C〉apply ⇒ 〈v, v ′, C ′〉apply
〈pC ′

q, v, C〉apply ⇒ 〈C, pC ′
q ◦ v〉cont

〈[], v〉cont ⇒ v

〈C[(t, e) []], v〉cont ⇒ 〈t, e, C[[] v]〉eval
〈C[[] v ′], v〉cont ⇒ 〈v, v ′, C〉apply

This machine evaluates a program t by starting in the configuration

〈t, (succ, SUCC) ·∅, []〉eval.

It halts with a value v if it reaches a configuration 〈[], v〉cont.
Alternatively (if we allow J to be used outside the body of a lambda-term and we let it

denote the empty context), this machine evaluates a program t by starting in the configuration

〈t, (J, []) · (succ, SUCC) ·∅, []〉eval.

It halts with a value v if it reaches a configuration 〈[], v〉cont.
In either case, the machine is in defunctionalized form. Refunctionalizing it yields a

continuation-passing evaluation function. Refunctionalizing its closures and mapping the re-
sult back to direct style yields the compositional evaluation functions displayed in Section 4.5,
i.e., Felleisen’s embedding of the J operator in Scheme [51].

A RATIONAL DECONSTRUCTION OF LANDIN’S SECD MACHINE WITH THE J OPERATOR 45

11. Summary and conclusion

We have presented a rational deconstruction of the SECD machine with the J opera-
tor, through a series of alternative implementations, in the form of abstract machines and
compositional evaluation functions, all of which are new. We have also presented the first
syntactic theories of applicative expressions with the J operator. In passing, we have shown
new applications of refocusing and defunctionalization and new examples of control delimiters
and of both pushy and jumpy delimited continuations in programming practice.

Even though they were the first of their kind, the SECD machine and the J operator
remain computationally relevant today:

• Architecturally, and until the advent of JavaScript run-time systems [57], the SECD
machine has been superseded by abstract machines with a single control component
instead of two (namely C and D). In some JavaScript run-time systems, however,
methods have a local stack similar to C to implement and manage their expression
continuation, and a global stack similar to D to implement and manage command
continuations, i.e., the continuation of their caller.

• Programmatically, and until the advent of first-class continuations in JavaScript [28],
the J operator has been superseded by control operators that capture the current
continuation (i.e., both C and D) instead of the continuation of the caller (i.e., D).
In the Rhino implementation of JavaScript, however, the control operator captures
the continuation of the caller of the current method, i.e., the command continuation
instead of both the expression continuation and the command continuation.

At any rate, as we have shown here, both the SECD machine and the J operator fit the
functional correspondence [3, 4, 6, 7, 13,16,35,36] as well as the syntactic correspondence [12,
14,15,34,36,45], which made it possible for us to mechanically characterize them in new and
precise ways.

All of the points above make us conclude that new abstract machines should be defined
in defunctionalized form today, or at least be made to work in lockstep with an abstract
machine in defunctionalized form.

12. On the origin of first-class continuations

We have shown that jumping and labels are not essentially connected with strings
of imperatives and in particular, with assignment. Second, that jumping is not
essentially connected with labels. In performing this piece of logical analysis we
have provided a precisely limited sense in which the “value of a label” has mean-
ing. Also, we have discovered a new language feature, not present in current
programming languages, that promises to clarify and simplify a notoriously un-
tidy area of programming—that concerned with success/failure situations, and the
actions needed on failure. – Peter J. Landin, 1965 [82, page 133]

It was Strachey who coined the term “first-class functions” [113, Section 3.5.1].8 In turn
it was Landin who, through the J operator, invented what we know today as first-class
continuations [58]: like Reynolds for escape [102], Landin defined J in an unconstrained way,

8“Out of Quine’s dictum: To be is to be the value of a variable, grew Strachey’s ‘first-class citizens’.” Peter
J. Landin, 2000 [86, page 75]

46 A RATIONAL DECONSTRUCTION OF LANDIN’S SECD MACHINE WITH THE J OPERATOR

i.e., with no regard for it to be compatible with the last-in, first-out allocation discipline
prevalent for control stacks since Algol 60.9

Today, ‘continuation’ is an overloaded term, that may refer

• to the original semantic description technique for representing ‘the meaning of the
rest of the program’ as a function, the continuation, as multiply co-discovered in the
early 1970’s [103]; or

• to the programming-language feature of first-class continuations as typically provided
by a control operator such as J, escape, or call/cc, as invented by Landin.

Whether a semantic description technique or a programming-language feature, the goal of
continuations was the same: to formalize Algol’s labels and jumps. But where Wadsworth
and Abdali gave a continuation semantics to Algol, and as illustrated in the beginning of
Section 1, Landin translated Algol programs into applicative expressions in direct style. In
turn, he specified the semantics of applicative expressions with the SECD machine, i.e., using
first-order means. The meaning of an Algol label was an ISWIM ‘program closure’ as obtained
by the J operator. Program closures were defined by extending the SECD machine, i.e., still
using first-order means.

Landin did not use an explicit representation of the rest of the computation in his di-
rect semantics of Algol 60, and for that reason he is not listed among the co-discoverers of
continuations [103]. Such an explicit representation, however, exists in the SECD machine,
in first-order form—the dump—which represents the rest of the computation after returning
from the current function call.

In an earlier work [35], Danvy has shown that the SECD machine, even though it is
first-order, directly corresponds to a compositional evaluation function in CPS—the tool of
choice for specifying control operators since Reynolds’s work [102]. In particular, the dump
directly corresponds to a functional representation of control, since it is a defunctionalized
continuation. In the light of defunctionalization, Landin therefore did use an explicit repre-
sentation of the rest of the computation that corresponds to a function, and for that reason
we wish to see his name added to the list of co-discoverers of continuations.

Acknowledgments

Thanks are due to Ma lgorzata Biernacka, Dariusz Biernacki, Julia L. Lawall, Johan
Munk, Kristian Støvring, and the anonymous reviewers of IFL’05 and LMCS for comments.
We are also grateful to Andrzej Filinski, Dan Friedman, Lockwood Morris, John Reynolds,
Guy Steele, Carolyn Talcott, Bob Tennent, Hayo Thielecke, and Chris Wadsworth for their
feedback on Section 12 in November 2005.

This work was partly carried out while the two authors visited the TOPPS group at
DIKU (http://www.diku.dk/topps). It is partly supported by the Danish Natural Science
Research Council, Grant no. 21-03-0545.

9“Dumps and program-closures are data-items, with all the implied latency for unruly multiple use and other
privileges of first-class-citizenship.” Peter J. Landin, 1997 [85, Section 1]

http://www.diku.dk/topps

47

Appendices

Appendix A demonstrates how two programs, before and after defunctionalization, do not
just yield the same result but also operate in lockstep. The three following appendices il-
lustrate the callee-save, stack-threading features of the evaluator corresponding to the SECD
machine by contrasting them with a caller-save, stackless evaluator for the pure λ-calculus.
We successively consider a caller-save, stackless evaluator and the corresponding abstract ma-
chine (Appendix B), a callee-save, stackless evaluator and the corresponding abstract machine
(Appendix C), and a caller-save, stack-threading evaluator and the corresponding abstract
machine (Appendix D). Finally, Appendix E demonstrates how to go from a reduction se-
mantics of the λρ̂-calculus to the CEK machine.

Appendix A. Defunctionalizing a continuation-passing version of the

Fibonacci function

We start with the traditional Fibonacci function in direct style (Section A.1), and then
present its continuation-passing counterpart before (Section A.2) and after (Section A.3)
defunctionalization. To pinpoint that these two functions operate in lockstep, we equip them
with a trace recording their calling sequence, and we show that they yield the same result
and the same trace. (One can use the same tracing technique to prove Proposition 2 in
Section 2.2.)

A.1. The traditional Fibonacci function. We start from the traditional definition of the
Fibonacci function in ML:

fun fib n

= if n <= 1

then n

else (fib (n - 1)) + (fib (n - 2))

fun main0 n

= fib n

So for example, evaluating main0 5 yields 5.

A.2. The Fibonacci function in CPS. To CPS-transform, we first name all intermediate
results and sequentialize their computation, assuming a left-to-right order of evaluation [32]:

fun fib n

= if n <= 1

then n

else let val v1 = fib (n - 1)

val v2 = fib (n - 2)

in v1 + v2

end

fun main0’ n

= let val v = fib n

in v

end

We then give fib an extra argument, the continuation:

48

fun fib_c (n, k)

= if n <= 1

then k n

else fib_c (n - 1,

fn v1 => fib_c (n - 2,

fn v2 => k (v1 + v2)))

fun main1 n

= fib_c (n, fn v => v)

So for example, evaluating main1 5 yields 5.

A.3. The Fibonacci function in CPS, defunctionalized. To defunctionalize the Fi-
bonacci function in CPS, we consider its continuation, which has type int -> int. Each
inhabitant of this function space arises as an instance of the initial continuation in main1 or
of the two continuations in fib c. We therefore represent the function space as a sum with
three summands, one for each λ-abstraction, and we interpret each summand with the body
of each of these λ-abstractions, using apply cont:

type res = int

datatype cont = C0

| C1 of res * cont

| C2 of int * cont

fun apply_cont (C0, v)

= v

| apply_cont (C1 (v1, c), v2)

= apply_cont (c, v1 + v2)

| apply_cont (C2 (n, c), v1)

= fib_c_def (n - 2, C1 (v1, c))

and fib_c_def (n, c)

= if n <= 1

then apply_cont (c, n)

else fib_c_def (n - 1, C2 (n, c))

fun main2 n

= fib_c_def (n, C0)

Defunctionalization is summarized with the following two tables, the first one for the function
abstractions and the corresponding sum injections into the data type cont,10 and the second
one for the function applications and the corresponding calls to the apply function dispatching
over summands:

• introduction
function abstraction sum injection

fn v => v C0

fn v2 => k (v1 + v2) C1 (v1, c)

fn v1 => fib c (n - 2, fn v2 => k (v1 + v2)) C2 (n, c)

• elimination

10Which the cognoscenti will recognize as Daniel P. Friedman’s “data-structure continuations” [59,119].

49

function application case dispatch

k n apply cont (c, n)

k (v1 + v2) apply cont (c, v1 + v2)

So for example, evaluating main2 5 yields 5.

A.4. The Fibonacci function in CPS with a trace. We can easily show that applying
main1 and main2 as defined above to the same integer yields the same result, but we want to
show a stronger property, namely that they operate in lockstep. To this end, we equip fib c

with a trace recording its calls with the value of its first argument. (It would be simple to
trace its returns as well, i.e., the calls to the continuation.)

Representing the trace as a list, the Fibonacci function in CPS reads as follows:

type res = int

(* fib_c : int * (res * int list -> ’a) -> ’a *)

fun fib_c (n, k, T)

= if n <= 1

then k (n, T)

else fib_c (n - 1,

fn (v1, T) => fib_c (n - 2,

fn (v2, T) => k (v1 + v2, T),

(n - 2) :: T),

(n - 1) :: T)

(* main3 : int -> res * int list *)

fun main3 n

= fib_c (n, fn (v, T) => (v, T), n :: nil)

So for example, evaluating main3 5 yields (5,[1,0,1,2,3,0,1,2,1,0,1,2,3,4,5]).

A.5. The Fibonacci function in CPS with a trace, defunctionalized. Proceeding as in
Section A.3, the corresponding defunctionalized version reads as follows; fib c def is equipped
with a trace recording its calls with the value of its first argument. (Its returns, i.e., the calls
to apply cont, could be traced as well.)

type res = int

datatype cont = C0

| C1 of res * cont

| C2 of int * cont

(* apply_cont : cont * res * int list -> res * int list *)

fun apply_cont (C0, v, T)

= (v, T)

| apply_cont (C1 (v1, c), v2, T)

= apply_cont (c, v1 + v2, T)

| apply_cont (C2 (n, c), v1, T)

= fib_c_def (n - 2, C1 (v1, c), (n - 2) :: T)

(* fib_c_def : int * cont * int list -> res * int list *)

and fib_c_def (n, c, T)

= if n <= 1

then apply_cont (c, n, T)

50

else fib_c_def (n - 1, C2 (n, c), (n - 1) :: T)

(* main4 : int -> res * int list *)

fun main4 n

= fib_c_def (n, C0, n :: nil)

So for example, evaluating main4 5 yields (5,[1,0,1,2,3,0,1,2,1,0,1,2,3,4,5]).

A.6. Lockstep correspondence.

Definition 10. We define R(k, c) as

∀v.∀T.k (v, T) = a ⇔ apply cont (c, v, T) = a

where “e = a” means “there exists an ML value a such that evaluating the ML expression e

yields a.”

Lemma 1. R(fn (v, T) => (v, T), C0)

Proof: immediate. �

Lemma 2. ∀v1.∀k∧ c such that R(k, c).R(fn (v2, T) => k (v1 + v2, T), C1 (v1, c)).

Proof:
By βv reduction, (fn (v2, T) => k (v1 + v2, T)) (v2, T) yields the same value as k

(v1 + v2, T).
By definition, apply cont (C1 (v1, c), v2, T) yields the same value as apply cont (c,

v1 + v2, T).
Suppose that k (v1 + v2, T) = a holds. Then since R(k, c), apply cont (c, v1 + v2,

T) = a also holds, and vice-versa. �

Lemma 3. ∀n.∀k∧ c such that R(k, c).

: a. fib c (n, k, T) = a ⇔ fib c def (n, c, T) = a

: b. R(fn (v1, T) => fib c (n, fn (v2, T) => k (v1 + v2, T), n :: T), C2 (n+2, c))

Proof: by simultaneous course-of-value induction. �

Theorem 1. ∀n.main3 n = a ⇔ main4 n = a

Proof: a consequence of Lemmas 1 and 3. �

The two versions, before and after defunctionalization, therefore operate in lockstep, since
they yield the same trace and the same result.

Appendix B. A caller-save, stackless evaluator and the corresponding

abstract machine

B.1. The evaluator. The following evaluator for the pure call-by-value λ-calculus (i.e., the
language of Section 1.5 without constants and the J operator) is standard. As pointed out by
Reynolds [102], it depends on the evaluation order of its metalanguage (here, call by value):

datatype value = FUN of value -> value

(* eval : term * value Env.env -> value *)

fun eval (VAR x, e)

= Env.lookup (x, e)

| eval (LAM (x, t), e)

= FUN (fn v => eval (t, Env.extend (x, v, e)))

51

| eval (APP (t0, t1), e)

= let val (FUN f) = eval (t0, e)

in f (eval (t1, e))

end

fun evaluate t

= eval (t, Env.mt)

The evaluator is stackless because it does not thread any data stack. It is also caller-save
because in the clause for applications, when t0 is evaluated, the environment is implicitly
saved in the context in order to evaluate t1 later on. In other words, the environment is
solely an inherited attribute.

B.2. The abstract machine. As initiated by Reynolds [4,102], closure-converting the data
values of an evaluator, CPS transforming its control flow, and defunctionalizing its con-
tinuations yields an abstract machine. For the evaluator above, this machine is the CEK
machine [53], i.e., an eval-continue abstract machine where the evaluation contexts and the
continue transition function are the defunctionalized counterparts of the continuations of the
evaluator just above:

(terms) t ::= x | λx.t | t t

(values) v ::= [x, t, e]

(environments) e ::= ∅ | (x, v) · e

(contexts) k ::= END | ARG(t, e, k) | FUN(v, k)

〈x, e, k〉eval ⇒ 〈k, v〉cont if lookup(x, e) = v

〈λx.t, e, k〉eval ⇒ 〈k, [x, t, e]〉cont

〈t0 t1, e, k〉eval ⇒ 〈t0, e, ARG(t1, e, k)〉eval

〈END, v〉cont ⇒ v

〈ARG(t, e, k), v〉cont ⇒ 〈t, e, FUN(v, k)〉eval

〈FUN([x, t, e], k), v〉cont ⇒ 〈t, e ′, k〉eval where e ′ = extend(x, v, e)

This machine evaluates a closed term t by starting in the configuration 〈t, ∅, END〉eval. It
halts with a value v if it reaches a configuration 〈END, v〉cont.

Appendix C. A callee-save, stackless evaluator and the corresponding

abstract machine

C.1. The evaluator. The following evaluator is a callee-save version of the evaluator of
Appendix B. Whereas the evaluator of Appendix B maps a term and an environment to the
corresponding value, this evaluator maps a term and an environment to the corresponding
value and the environment. This way, in the clause for applications, the environment does
not need to be implicitly saved since it is explicitly returned together with the value of t0.
In other words, the environment is not solely an inherited attribute as in the evaluator of
Appendix B: it is a synthesized attribute as well.

Functional values are passed the environment of their caller, and eventually they return
it. The body of function abstractions is still evaluated in an extended lexical environment,
which is returned but then discarded. Otherwise, environments are threaded through the
evaluator as inherited attributes:

52

datatype value = FUN of value * value Env.env -> value * value Env.env

(* eval : term * value Env.env -> value * value Env.env *)

fun eval (VAR x, e)

= (Env.lookup (x, e), e)

| eval (LAM (x, t), e)

= (FUN (fn (v0, e0) => let val (v1, e1) = eval (t, Env.extend (x, v0, e))

in (v1, e0) end),

e)

| eval (APP (t0, t1), e)

= let val (FUN f, e0) = eval (t0, e)

val (v, e1) = eval (t1, e0)

in f (v, e1) end

fun evaluate t

= let val (v, e) = eval (t, Env.mt)

in v end

Operationally, one may wish to note that unlike the evaluator of Appendix B, this eval-
uator is not properly tail recursive since the evaluation of the body of a function abstraction
no longer occurs in tail position [30,101].

C.2. The abstract machine. As in Appendix B, closure-converting the data values of this
evaluator, CPS-transforming its control flow, and defunctionalizing its continuations yields
an abstract machine. This machine is a variant of the CEK machine with callee-save envi-
ronments; its terms, values, and environments remain the same:

(contexts) k ::= END | ARG(t, k) | FUN(v, k) | RET(e, k)

〈x, e, k〉eval ⇒E 〈k, v, e〉cont if lookup(x, e) = v

〈λx.t, e, k〉eval ⇒E 〈k, [x, t, e], e〉cont

〈t0 t1, e, k〉eval ⇒E 〈t0, e, ARG(t1, k)〉eval

〈END, v, e〉cont ⇒E v

〈ARG(t, k), v, e〉cont ⇒E 〈t, e, FUN(v, k)〉eval

〈FUN([x, t, e ′], k), v, e〉cont ⇒E 〈t, e ′′, RET(e, k)〉eval where e ′′ = extend(x, v, e ′)

〈RET(e ′, k), v, e〉cont ⇒E 〈k, v, e ′〉eval

This machine evaluates a closed term t by starting in the configuration 〈t, ∅, END〉eval. It
halts with a value v if it reaches a configuration 〈END, v, e〉cont.

C.3. Analysis. Compared to the CEK machine in Section B.2, there are two differences in the
datatype of contexts and one new transition rule. The first difference is that environments are
no longer saved by the caller in ARG contexts. The second difference is that there is an extra
context constructor, RET, to represent the continuation of the non-tail call to the evaluator
over the body of function abstractions. The new transition interprets a RET constructor by
restoring the environment of the caller before returning.

It is simple to construct a bisimulation between this callee-save machine and the CEK
machine.

53

Appendix D. A caller-save, stack-threading evaluator and the corresponding

abstract machine

D.1. The evaluator. In a stack-threading evaluator, a data stack stores intermediate values
after they have been computed but before they are used. Evaluating an expression leaves
its value on top of the data stack. Applications therefore expect to find their argument and
function on top of the data stack.11

Several design possibilities arise. First, one can choose between a single global data stack
used for all intermediate values (i.e., as in Forth) or one can use a local data stack for each
function application (i.e., as in the SECD machine and in the JVM). For the purpose of
illustration, we adopt the latter since it matches the design of the SECD machine.

Since there is one local data stack per function application, then this data stack can be
chosen to be saved by the caller or by the callee. Though the former design might be more
natural, we again adopt the latter in this illustration since it matches the design of the SECD
machine.

If there is a local, callee-save data stack, then functional values are passed their argument
and a data stack, and return a value and a data stack. One can choose instead to pass the
argument to the function on top of the stack and leave the return value on top of the stack
(i.e., as in Forth). We adopt this design here, for a local callee-save data stack:

datatype value = FUN of value list -> value list

(* eval : term * value list * value Env.env -> value *)

fun eval (VAR x, s, e)

= Env.lookup (x, e) :: s

| eval (LAM (x, t), s, e)

= FUN (fn (v0 :: s0) => let val (v1 :: s1) = eval (t, nil, Env.extend (x, v0, e))

in (v1 :: s0) end) :: s

| eval (APP (t0, t1), s, e)

= let val s0 = eval (t0, s, e)

val (v :: FUN f :: s1) = eval (t1, s0, e)

in f (v :: s1) end

fun evaluate t

= let val (v :: s) = eval (t, nil, Env.mt)

in v end

Functional values are now passed the data stack of their caller and they find their argu-
ment on top of it. The body of a function abstraction is evaluated with an empty data stack,
and yields a stack with the value of the body on top. This value is returned to the caller on
top of its stack.

D.2. The abstract machine. As in Appendix C, one may wish to note that functions using
local callee-save data stacks are not properly tail-recursive, though functions using global or
local caller-save data stacks can be made to be.

As in Appendix B and C, closure converting the data values of this evaluator, CPS trans-
forming its control flow, and defunctionalizing its continuations yields an abstract machine.
This machine is another variant of the CEK machine with a data stack; its terms, values, and
environments remain the same:

11If evaluation is left-to-right, the argument will be evaluated after the function and thus will be on top
of the data stack. Some shuffling of the stack can be avoided if the evaluation order is right-to-left, as in the
SECD machine or the ZINC abstract machine.

54

(contexts) k ::= END | ARG(t, e, k) | FUN(k) | RET(s, k)

〈x, s, e, k〉eval ⇒S 〈k, v : : s〉cont if lookup(x, e) = v

〈λx.t, s, e, k〉eval ⇒S 〈k, [x, t, e] : : s〉cont

〈t0 t1, s, e, k〉eval ⇒S 〈t0, s, e, ARG(t1, e, k)〉eval

〈END, v : : s〉cont ⇒S v

〈ARG(t, e, k), s〉cont ⇒S 〈t, s, e, FUN(k)〉eval

〈FUN(k), v : : [x, t, e] : : s〉cont ⇒S 〈t, nil, e ′, RET(s, k)〉eval where e ′ = extend(x, v, e)

〈RET(s ′, k), v : : s〉cont ⇒S 〈k, v : : s ′〉cont

This machine evaluates a closed term t by starting in the configuration 〈t, nil, ∅, END〉eval.
It halts with a value v if it reaches a configuration 〈END, v : : s〉cont.

D.3. Analysis. Compared to the CEK machine in Section B.2, there are two differences in
the datatype of contexts and one new transition rule. The first difference is that intermediate
values are no longer saved in FUN contexts, since they are stored on the data stack instead.
The second difference is that there is an extra context constructor, RET, to represent the
continuation of the non-tail call to the evaluator over the body of function abstractions (i.e.,
a continuation that restores the caller’s data stack and pushes the function return value on
top). The new transition interprets a RET constructor by restoring the data stack of the
caller and pushing the returned value on top of it before returning.

It is simple to construct a bisimulation between this stack-threading machine and the
CEK machine.

Appendix E. From reduction semantics to abstract machine

As a warmup to Sections 7.3 and 7.4, we present a reduction semantics for applicative
expressions (Section E.1) and we derive the CEK machine from this reduction semantics
(Section E.2).

E.1. A reduction semantics for applicative expressions. The λρ̂-calculus is a minimal
extension of Curien’s original calculus of closures λρ [31] to make it closed under one-step
reduction [14]. We use it here to illustrate how to go from a reduction semantics to an abstract
machine. To this end, we present its syntactic categories (Section E.1.1); a plug function
mapping a closure and a reduction context into a closure by filling the given context with the
given closure (Section E.1.2); a contraction function implementing a context-insensitive notion
of reduction (Section E.1.3) and therefore mapping a potential redex into a contractum; and
a decomposition function mapping a non-value term into a potential redex and a reduction
context (Section E.1.4). We are then in position to define a one-step reduction function
(Section E.1.5) and a reduction-based evaluation function (Section E.1.6).

55

E.1.1. Syntactic categories. We consider a variant of the λρ̂-calculus with names instead of de
Bruijn indices, and with the usual reduction context C embodying a left-to-right applicative-
order reduction strategy.

(terms) t ::= x | λx.t | t t

(closures) c ::= t[e] | c c

(values) v ::= (λx.t)[e]

(potential redexes) r ::= x[e] | v v

(substitutions) e ::= ∅ | (x, v) · e

(contexts) C ::= [] | C[[] c] | C[v []]

Values are therefore a syntactic subcategory of closures, and in this section, we make use of
the syntactic coercion ↑ mapping a value into a closure.

E.1.2. Plugging. Plugging a closure in a context is defined by induction over this context. We
express this definition as a state-transition system with one intermediate state, 〈c, C〉plug, an
initial state 〈c, C〉plug, and a final state c. The transition function incrementally peels off the
given control context:

〈[], c〉plug → c

〈C[[] c1], c0〉plug → 〈C, c0 c1〉plug

〈C[v0 []], c1〉plug → 〈C, c0 c1〉plug where c0 = ↑ v0
We now can define a total function plug over closures and contexts that fills the given

closure into the given context:

plug : Closure × Control → Closure

Definition 11. For any closure c and context C, plug (C, c) = c ′ if and only if 〈c, C〉plug →∗

c ′.

E.1.3. Notion of contraction. The notion of reduction over applicative expressions is specified
by the following context-insensitive contraction rules over actual redexes:

(Var) x[e] 7→ v if lookup(x, e) = v

(Beta) ((λx.t)[e]) v 7→ t[s ′] where s ′ = extend(x, v, e) = (x, v) · e

(Prop) (t0 t1)[e] 7→ (t0[e]) (t1[e])

For closed closures (i.e., closures with no free variables), all potential redexes are actual ones.
We now can define by cases a total function contract that maps a redex to the corre-

sponding contractum:

contract : PotRed → Closure

Definition 12. For any potential redex r, contract (r) = c if and only if r 7→ c.

56

E.1.4. Decomposition. There are many ways to define a total function mapping a value clo-
sure to itself and a non-value closure to a potential redex and a reduction context. In our
experience, the following definition is a convenient one. It is a state-transition system with two
intermediate states, 〈c, C〉dec/clos and 〈C, v〉dec/cont, an initial state 〈c, []〉dec/clos and two final
states VAL(v) and DEC(r, C). If possible, the transition function from the state 〈c, C〉dec/clos
decomposes the given closure c and accumulates the corresponding reduction context C. The
transition function from the state 〈C, v〉dec/cont dispatches over the given context.

〈x[e], C〉dec/clos → DEC (x[e], C)

〈(λx.t)[e], C〉dec/clos → 〈C, (λx.t)[e]〉dec/cont
〈(t0 t1)[e], C〉dec/clos → DEC ((t0 t1)[e], C)

〈c0 c1, C〉dec/clos → 〈c0, C[[] c1]〉dec/clos

〈[], v〉dec/cont → VAL (v)

〈C[[] c1], v0〉dec/cont → 〈c1, C[v0 []]〉dec/clos
〈C[v0 []], v1〉dec/cont → DEC (v0 v1, C)

We now can define a total function decompose over closures that maps a value closure to
itself and a non-value closure to a decomposition into a potential redex, a control context,
and a dump context. This total function uses two auxiliary functions decompose ′clos and
decompose ′cont:

decompose : Closure → Value + (PotRed × Context)
decompose ′clos : Closure × Context → Value + (PotRed × Context)
decompose ′cont : Context × Value → Value + (PotRed × Context)

Definition 13. For any closure c, value v, and context C,

decompose ′clos (c, C) =

{
VAL (v ′) if 〈c, C〉dec/clos →∗ VAL (v ′)

DEC (r, C ′) if 〈c, C〉dec/clos →∗ DEC (r, C ′)

decompose ′cont (C, v) =

{
VAL (v ′) if 〈C, v〉dec/cont →∗ VAL (v ′)

DEC (r, C ′) if 〈C, v〉dec/cont →∗ DEC (r, C ′)

and decompose (c) = decompose ′clos (c, []).

E.1.5. One-step reduction. We are now in position to define a total function reduce over closed
closures that maps a value closure to itself and a non-value closure to the next closure in the
reduction sequence. This function is defined by composing the three functions above:

reduce (c) = case decompose (c)
of VAL (v) ⇒ ↑ v
| DEC (r, C) ⇒ plug (contract (r), C)

The function reduce is partial because of contract, which is undefined for stuck closures.
Graphically:

◦
decompose

$$HH
HH

HH
HH

H
reduce // ◦

◦
contract

// ◦

plug
::vvvvvvvvv

57

Definition 14 (One-step reduction). For any closure c, c → c ′ if and only if reduce (c) = c ′.

E.1.6. Reduction-based evaluation. Iterating reduce defines a reduction-based evaluation func-
tion. The definition below uses decompose to distinguish between values and non-values, and
implements iteration (tail-) recursively with the partial function iterate:

evaluate (c) = iterate (decompose (c))

where

{
iterate (VAL (v)) = v
iterate (DEC (r, C)) = iterate (decompose (plug (contract (r), C)))

The function evaluate is partial because reducing a given closure might not converge.
Graphically:

◦
decompose

$$HH
HH

HH
HH

H
reduce // ◦

decompose

$$HH
HH

HH
HH

H
reduce // ◦

decompose

$$HH
HH

HH
HH

H

◦
contract

// ◦

plug
::vvvvvvvvv

◦
contract

// ◦

plug
::vvvvvvvvv

◦
contract

//

Definition 15 (Reduction-based evaluation). For any closure c, c →∗ v if and only if
evaluate (c) = v.

To close, let us adjust the definition of evaluate by exploiting the fact that for any closure
c, plug (c, []) = c:

evaluate (c) = iterate (decompose (plug (c, [])))

In this adjusted definition, decompose is always applied to the result of plug.

E.2. From the reduction semantics for applicative expressions to the CEK ma-

chine. Deforesting the intermediate terms in the reduction-based evaluation function of Sec-
tion E.1.6 yields a reduction-free evaluation function in the form of a small-step abstract
machine (Section E.2.1). We simplify this small-step abstract machine by fusing a part of
its driver loop with the contraction function (Section E.2.2) and compressing its ‘corridor’
transitions (Section E.2.3). Unfolding the recursive data type of closures precisely yields the
caller-save, stackless CEK machine of Section B.2 (Section E.2.4).

E.2.1. Refocusing: from reduction-based to reduction-free evaluation. Following Danvy and
Nielsen [45], we deforest the intermediate closure in the reduction sequence by replacing the
composition of plug and decompose by a call to a composite function refocus:

evaluate (c) = iterate (refocus (c, []))

where

{
iterate (VAL (v)) = v
iterate (DEC (r, C)) = iterate (refocus (contract (r), C))

and refocus is optimally defined as continuing the decomposition in the current reduction
context [45]:

58

refocus (c, C) = decompose ′clos (c, C)

This evaluation function is reduction-free because it no longer constructs each intermediate
closure in the reduction sequence.

Graphically:

◦
decompose

$$HH
HH

HH
HH

H ◦
decompose

$$HH
HH

HH
HH

H ◦
decompose

$$HH
HH

HH
HH

H

//____ ◦
contract

// ◦

plug
::vvvvvvvvv

refocus
//________ ◦

contract
// ◦

plug
::vvvvvvvvv

refocus
//________ ◦

contract
//

Definition 16 (Reduction-free evaluation). For any closure c, c →∗ v if and only if evaluate (c) =
v.

E.2.2. Lightweight fusion: making do without driver loop. In effect, iterate is as the ‘dri-
ver loop’ of a small-step abstract machine that refocuses and contracts. Instead, let us
fuse contract and iterate and express the result with rewriting rules over a configuration
〈r, C〉iter. We clone the rewriting rules for decompose ′clos and decompose ′cont into refocusing
rules, indexing their configurations as 〈c, C〉eval and 〈C, v〉cont instead of as 〈c, C〉dec/clos and
〈C, v〉dec/cont, respectively:

• instead of rewriting to VAL (v), the cloned rules rewrite to v;
• instead of rewriting to DEC (r, C), the cloned rules rewrite to 〈r, C〉iter.

The result reads as follows:

〈x[e], C〉eval ⇒ 〈x[e], C〉iter

〈(λx.t)[e], C〉eval ⇒ 〈C, (λx.t)[e]〉cont

〈(t0 t1)[e], C〉eval ⇒ 〈(t0 t1)[e], C〉iter

〈c0 c1, C〉eval ⇒ 〈c0, C[[] c1]〉eval

〈[], v〉cont ⇒ v

〈C[[] c1], v0〉cont ⇒ 〈c1, C[v0 []]〉eval

〈C[v0 []], v1〉cont ⇒ 〈v0 v1, C〉iter

〈x[e], C〉iter ⇒ 〈v, C〉eval if lookup(x, e) = v
〈((λx.t)[e]) v, C〉iter ⇒ 〈t[e ′], C〉eval where e ′ = extend(x, v, e)

〈(t0 t1)[e], C〉iter ⇒ 〈(t0[e]) (t1[e]), C〉eval

The following proposition summarizes the situation:

Proposition 13. For any closure c, evaluate (c) = v if and only if 〈c, []〉eval ⇒∗ v.

Proof: straightforward. The two machines operate in lockstep. �

E.2.3. Inlining and transition compression. The abstract machine of Section E.2.2, while in-
teresting in its own right (it is ‘staged’ in that the contraction rules are implemented separately
from the congruence rules [14, 69]), is not minimal: a number of transitions yield a configu-
ration whose transition is uniquely determined. Let us carry out these hereditary, “corridor”
transitions once and for all:

59

• 〈x[e], C〉eval ⇒ 〈x[e], C〉iter ⇒ 〈v, C〉eval ⇒ 〈C, v〉cont if lookup(x, e) = v
• 〈(t0 t1)[e], C〉eval ⇒ 〈(t0 t1)[e], C〉iter ⇒ 〈(t0[e]) (t1[e]), C〉eval ⇒ 〈(t0[e]), C[[] (t1[e])]〉eval
• 〈C[((λx.t)[e]) []], v〉cont ⇒ 〈((λx.t)[e]) v, C〉iter ⇒ 〈t[e ′], C〉eval where e ′ =

extend(x, v, e)

The result reads as follows:

〈x[e], C〉eval ⇒ 〈C, v〉cont if lookup(x, e) = v

〈(λx.t)[e], C〉eval ⇒ 〈C, (λx.t)[e]〉cont

〈(t0 t1)[e], C〉eval ⇒ 〈(t0[e]), C[[] (t1[e])]〉eval

〈[], v〉cont ⇒ v

〈C[[] c1], v0〉cont ⇒ 〈c1, C[v0 []]〉eval

〈C[((λx.t)[e]) []], v〉cont ⇒ 〈t[e ′], C〉eval where e ′ = extend(x, v, e)

The configuration 〈r, C〉iter has disappeared and so is the case for c0 c1: they were only
transitory.

Proposition 14. For any closure c, evaluate (c) = v if and only if 〈c, []〉eval ⇒∗ v.

Proof: immediate. We have merely compressed corridor transitions. �

E.2.4. Opening closures: from explicit substitutions to terms and environments. The abstract
machine above solely operates on ground closures. If we open the closures t[e] into pairs (t, e)
and flatten the configuration 〈(t, e), C〉eval into a triple 〈t, e, C〉eval, we obtain an abstract
machine that coincides with the caller-save, stackless CEK machine of Section B.2.

E.3. Conclusion and perspectives. Appendix B illustrated the functional correspondence
between the functional implementation of a denotational or natural semantics and of an ab-
stract machine, the CEK machine, for the λ-calculus with left-to-right applicative order. The
present appendix illustrates the syntactic correspondence between the functional implemen-
tation of a reduction semantics and of an abstract machine, again the CEK machine, for the
λ-calculus with left-to-right applicative order. Together, the functional correspondence and
the syntactic correspondence therefore demonstrate the natural fit of the CEK machine in the
semantic spectrum of the λ-calculus with explicit substitutions and left-to-right applicative
order.

References

[1] Samson Abramsky. Computational interpretations of linear logic. Theoretical Computer Science,
111(1&2):3–57, 1992.

[2] Samson Abramsky and R. Sykes. SECD-M: a virtual machine for applicative programming. In Jean-
Pierre Jouannaud, editor, Functional Programming Languages and Computer Architecture, number 201
in Lecture Notes in Computer Science, pages 81–98, Nancy, France, September 1985. Springer-Verlag.

[3] Mads Sig Ager. Partial Evaluation of String Matchers & Constructions of Abstract Machines. PhD thesis,
BRICS PhD School, Department of Computer Science, Aarhus University, Aarhus, Denmark, January
2006.

[4] Mads Sig Ager, Dariusz Biernacki, Olivier Danvy, and Jan Midtgaard. A functional correspondence be-
tween evaluators and abstract machines. In Dale Miller, editor, Proceedings of the Fifth ACM-SIGPLAN
International Conference on Principles and Practice of Declarative Programming (PPDP’03), pages 8–19,
Uppsala, Sweden, August 2003. ACM Press.

60

[5] Mads Sig Ager, Olivier Danvy, and Mayer Goldberg. A symmetric approach to compilation and decom-
pilation. In Torben Æ. Mogensen, David A. Schmidt, and I. Hal Sudborough, editors, The Essence of
Computation: Complexity, Analysis, Transformation. Essays Dedicated to Neil D. Jones, number 2566
in Lecture Notes in Computer Science, pages 296–331. Springer-Verlag, 2002.

[6] Mads Sig Ager, Olivier Danvy, and Jan Midtgaard. A functional correspondence between call-by-need
evaluators and lazy abstract machines. Information Processing Letters, 90(5):223–232, 2004. Extended
version available as the research report BRICS RS-04-3.

[7] Mads Sig Ager, Olivier Danvy, and Jan Midtgaard. A functional correspondence between monadic eval-
uators and abstract machines for languages with computational effects. Theoretical Computer Science,
342(1):149–172, 2005. Extended version available as the research report BRICS RS-04-28.

[8] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles, Techniques and Tools. World
Student Series. Addison-Wesley, Reading, Massachusetts, 1986.

[9] Anindya Banerjee. The Semantics and Implementation of Bindings in Higher-Order Programming Lan-
guages. PhD thesis, Department of Computing and Information Sciences, Kansas State University, Man-
hattan, Kansas, July 1995.

[10] Fred Bayer. LispMe: An implementation of Scheme for the PalmPilot. In Manuel Serrano, editor, Pro-
ceedings of the Second ACM SIGPLAN Workshop on Scheme and Functional Programming, Firenze,
Italy, September 2001.

[11] Gavin Bierman. Observations on a linear PCF. Technical Report 412, Computer Laboratory, University
of Cambridge, Cambridge, UK, January 1997.

[12] Ma lgorzata Biernacka. A Derivational Approach to the Operational Semantics of Functional Languages.
PhD thesis, BRICS PhD School, Department of Computer Science, Aarhus University, Aarhus, Denmark,
January 2006.

[13] Ma lgorzata Biernacka, Dariusz Biernacki, and Olivier Danvy. An operational foundation for delimited
continuations in the CPS hierarchy. Logical Methods in Computer Science, 1(2:5):1–39, November 2005. A
preliminary version was presented at the Fourth ACM SIGPLAN Workshop on Continuations (CW’04).

[14] Ma lgorzata Biernacka and Olivier Danvy. A concrete framework for environment machines. ACM Trans-
actions on Computational Logic, 9(1):1–30, 2007. Article #6. Extended version available as the research
report BRICS RS-06-3.

[15] Ma lgorzata Biernacka and Olivier Danvy. A syntactic correspondence between context-sensitive calculi
and abstract machines. Theoretical Computer Science, 375(1-3):76–108, 2007. Extended version available
as the research report BRICS RS-06-18.

[16] Dariusz Biernacki. The Theory and Practice of Programming Languages with Delimited Continuations.
PhD thesis, BRICS PhD School, Department of Computer Science, Aarhus University, Aarhus, Denmark,
December 2005.

[17] Dariusz Biernacki and Olivier Danvy. From interpreter to logic engine by defunctionalization. In Maurice
Bruynooghe, editor, Logic Based Program Synthesis and Transformation, 13th International Symposium,
LOPSTR 2003, number 3018 in Lecture Notes in Computer Science, pages 143–159, Uppsala, Sweden,
August 2003. Springer-Verlag.

[18] Dariusz Biernacki and Olivier Danvy. A simple proof of a folklore theorem about delimited control.
Journal of Functional Programming, 16(3):269–280, 2006.

[19] Graham Birtwistle and Brian T. Graham. Verifying SECD in HOL. In Jørgen Staunstrup, editor, Formal
Methods for VLSI Design, pages 129–177. North-Holland, 1990.

[20] Guy Blelloch and John Greiner. Parallelism in sequential functional languages. In Simon Peyton Jones,
editor, Proceedings of the Seventh ACM Conference on Functional Programming and Computer Archi-
tecture, pages 226–237, La Jolla, California, June 1995. ACM Press.

[21] William H. Burge. Recursive Programming Techniques. Addison-Wesley, 1975.
[22] Rod M. Burstall. Writing search algorithms in functional form. In Donald Michie, editor, Machine

Intelligence, volume 5, pages 373–385. Edinburgh University Press, 1969.
[23] Luca Cardelli. The functional abstract machine. Polymorphism, 1(1), January 1983.
[24] Robert (Corky) Cartwright, editor. Proceedings of the 1988 ACM Conference on Lisp and Functional

Programming, Snowbird, Utah, July 1988. ACM Press.
[25] Jaeyoun Chung. An explicit polymorphic type system for verifying untrusted low-level codes. Master’s

thesis, Department of Computer Science, Korea Advanced Institute of Science and Technology, Daejeon,
Korea, December 1999.

61

[26] Anthony Neil Clark. Semantic Primitives for Object-Oriented Programming Languages. PhD thesis, De-
partment of Computer Science, Queen Mary and Westfield College, University of London, 1996.

[27] John Clements. Portable and High-Level Access to the Stack with Continuation Marks. PhD thesis,
College of Computer Science, Northeastern University, Boston, Massachusetts, February 2006.

[28] John Clements, Ayswarya Sundaram, and David Herman. Implementing continuation marks in
JavaScript. In Will Clinger, editor, Proceedings of the 2008 ACM SIGPLAN Workshop on Scheme and
Functional Programming, pages 1–9, Victoria, British Columbia, September 2008.

[29] William Clinger, Daniel P. Friedman, and Mitchell Wand. A scheme for a higher-level semantic algebra. In
John Reynolds and Maurice Nivat, editors, Algebraic Methods in Semantics, pages 237–250. Cambridge
University Press, 1985.

[30] William D. Clinger. Proper tail recursion and space efficiency. In Keith D. Cooper, editor, Proceedings
of the ACM SIGPLAN’98 Conference on Programming Languages Design and Implementation, pages
174–185, Montréal, Canada, June 1998. ACM Press.

[31] Pierre-Louis Curien. An abstract framework for environment machines. Theoretical Computer Science,
82:389–402, 1991.

[32] Olivier Danvy. Three steps for the CPS transformation. Technical Report CIS-92-2, Kansas State Uni-
versity, Manhattan, Kansas, December 1991.

[33] Olivier Danvy. Back to direct style. Science of Computer Programming, 22(3):183–195, 1994. A prelimi-
nary version was presented at the Fourth European Symposium on Programming (ESOP 1992).

[34] Olivier Danvy. From reduction-based to reduction-free normalization. In Sergio Antoy and Yoshihito
Toyama, editors, Proceedings of the Fourth International Workshop on Reduction Strategies in Rewriting
and Programming (WRS’04), volume 124(2) of Electronic Notes in Theoretical Computer Science, pages
79–100, Aachen, Germany, May 2004. Elsevier Science. Invited talk.

[35] Olivier Danvy. A rational deconstruction of Landin’s SECD machine. In Clemens Grelck, Frank Huch,
Greg J. Michaelson, and Phil Trinder, editors, Implementation and Application of Functional Languages,
16th International Workshop, IFL’04, number 3474 in Lecture Notes in Computer Science, pages 52–71,
Lübeck, Germany, September 2004. Springer-Verlag. Recipient of the 2004 Peter Landin prize. Extended
version available as the research report BRICS RS-03-33.

[36] Olivier Danvy. An Analytical Approach to Program as Data Objects. DSc thesis, Department of Computer
Science, Aarhus University, Aarhus, Denmark, October 2006.

[37] Olivier Danvy. Defunctionalized interpreters for programming languages. In Peter Thiemann, editor, Pro-
ceedings of the 2008 ACM SIGPLAN International Conference on Functional Programming (ICFP’08),
SIGPLAN Notices, Vol. 43, No. 9, Victoria, British Columbia, September 2008. ACM Press. Invited talk.

[38] Olivier Danvy and Andrzej Filinski. Abstracting control. In Mitchell Wand, editor, Proceedings of the
1990 ACM Conference on Lisp and Functional Programming, pages 151–160, Nice, France, June 1990.
ACM Press.

[39] Olivier Danvy and Andrzej Filinski. Representing control, a study of the CPS transformation. Mathe-
matical Structures in Computer Science, 2(4):361–391, 1992.

[40] Olivier Danvy and John Hatcliff. On the transformation between direct and continuation semantics.
In Stephen Brookes, Michael Main, Austin Melton, Michael Mislove, and David Schmidt, editors, Pro-
ceedings of the 9th Conference on Mathematical Foundations of Programming Semantics, number 802 in
Lecture Notes in Computer Science, pages 627–648, New Orleans, Louisiana, April 1993. Springer-Verlag.

[41] Olivier Danvy and Julia L. Lawall. Back to direct style II: First-class continuations. In William Clinger,
editor, Proceedings of the 1992 ACM Conference on Lisp and Functional Programming, LISP Pointers,
Vol. V, No. 1, pages 299–310, San Francisco, California, June 1992. ACM Press.

[42] Olivier Danvy and Karoline Malmkjær. Intensions and extensions in a reflective tower. In Cartwright [24],
pages 327–341.

[43] Olivier Danvy and Kevin Millikin. Refunctionalization at work. Science of Computer Programming, 200?
In press. Extended version available as the research report BRICS RS-08-04.

[44] Olivier Danvy and Lasse R. Nielsen. Defunctionalization at work. In Harald Søndergaard, editor, Pro-
ceedings of the Third International ACM SIGPLAN Conference on Principles and Practice of Declarative
Programming (PPDP’01), pages 162–174, Firenze, Italy, September 2001. ACM Press. Extended version
available as the research report BRICS RS-01-23.

[45] Olivier Danvy and Lasse R. Nielsen. Refocusing in reduction semantics. Research Report BRICS RS-04-
26, DAIMI, Department of Computer Science, Aarhus University, Aarhus, Denmark, November 2004.

62

A preliminary version appeared in the informal proceedings of the Second International Workshop on
Rule-Based Programming (RULE 2001), Electronic Notes in Theoretical Computer Science, Vol. 59.4.

[46] Olivier Danvy and Zhe Yang. An operational investigation of the CPS hierarchy. In S. Doaitse Swierstra,
editor, Proceedings of the Eighth European Symposium on Programming, number 1576 in Lecture Notes
in Computer Science, pages 224–242, Amsterdam, The Netherlands, March 1999. Springer-Verlag.

[47] Antony J. T. Davie. Introduction to Functional Programming Systems Using Haskell, volume 27 of Cam-
bridge Computer Science Texts. Cambridge University Press, 1992.

[48] Antony J. T. Davie and David J. McNally. CASE - a lazy version of an SECD machine with a flat
environment. In Proceedings of the Fourth IEEE Region 10 International Conference (TENCON 1989),
pages 864–872, Bombay, India, November 1989.

[49] Arie de Bruin and Erik P. de Vink. Continuation semantics for Prolog with cut. In Josep Dı́az and
Fernando Orejas, editors, TAPSOFT’89: Proceedings of the International Joint Conference on Theory
and Practice of Software Development, number 351 in Lecture Notes in Computer Science, pages 178–192,
Barcelona, Spain, March 1989. Springer-Verlag.

[50] Matthias Felleisen. The Calculi of λ-v-CS Conversion: A Syntactic Theory of Control and State in
Imperative Higher-Order Programming Languages. PhD thesis, Computer Science Department, Indiana
University, Bloomington, Indiana, August 1987.

[51] Matthias Felleisen. Reflections on Landin’s J operator: a partly historical note. Computer Languages,
12(3/4):197–207, 1987.

[52] Matthias Felleisen and Matthew Flatt. Programming languages and lambda calculi. Unpublished lec-
ture notes available at <http://www.ccs.neu.edu/home/matthias/3810-w02/readings.html> and last
accessed in April 2008, 1989-2001.

[53] Matthias Felleisen and Daniel P. Friedman. Control operators, the SECD machine, and the λ-calculus.
In Martin Wirsing, editor, Formal Description of Programming Concepts III, pages 193–217. Elsevier
Science Publishers B.V. (North-Holland), Amsterdam, 1986.

[54] Matthias Felleisen, Mitchell Wand, Daniel P. Friedman, and Bruce F. Duba. Abstract continuations: A
mathematical semantics for handling full functional jumps. In Cartwright [24], pages 52–62.

[55] Anthony J. Field and Peter G. Harrison. Functional Programming. Addison Wesley, 1988.
[56] Andrzej Filinski. Representing monads. In Hans-J. Boehm, editor, Proceedings of the Twenty-First An-

nual ACM Symposium on Principles of Programming Languages, pages 446–457, Portland, Oregon,
January 1994. ACM Press.

[57] David Flanagan. JavaScript: The Definitive Guide. O’Reilly Media, Inc, Sebastopol, California, fifth
edition, 2006.

[58] Daniel P. Friedman and Christopher T. Haynes. Constraining control. In Mary S. Van Deusen and
Zvi Galil, editors, Proceedings of the Twelfth Annual ACM Symposium on Principles of Programming
Languages, pages 245–254, New Orleans, Louisiana, January 1985. ACM Press.

[59] Daniel P. Friedman and Mitchell Wand. Essentials of Programming Languages. The MIT Press, third
edition, 2008.

[60] Yoshihiko Futamura. Partial evaluation of computation process – an approach to a compiler-compiler.
Systems · Computers · Controls, 2(5):45–50, 1971. Reprinted in Higher-Order and Symbolic Computation
12(4):381–391, 1999, with an interview [61].

[61] Yoshihiko Futamura. Partial evaluation of computation process, revisited. Higher-Order and Symbolic
Computation, 12(4):377–380, 1999.

[62] Michael Georgeff. Transformations and reduction strategies for typed lambda expressions. ACM Trans-
actions on Programming Languages and Systems, 6(4):603–631, 1984.

[63] Hugh Glaser, Chris Hankin, and David Till. Principles of Functional Programming. Prentice-Hall Inter-
national, 1984.

[64] Carsten K. Gomard and Peter Sestoft. Globalization and live variables. In Hudak and Jones [72], pages
166–177.

[65] Brian T. Graham. The SECD microprocessor: a verification case study. Kluwer Academic Publishers,
1992.

[66] Timothy G. Griffin. A formulae-as-types notion of control. In Paul Hudak, editor, Proceedings of the Sev-
enteenth Annual ACM Symposium on Principles of Programming Languages, pages 47–58, San Francisco,
California, January 1990. ACM Press.

[67] John Hannan. Staging transformations for abstract machines. In Hudak and Jones [72], pages 130–141.

http://www.ccs.neu.edu/home/matthias/3810-w02/readings.html

63

[68] John Hannan and Dale Miller. From operational semantics to abstract machines. Mathematical Structures
in Computer Science, 2(4):415–459, 1992.

[69] Thérèse Hardin, Luc Maranget, and Bruno Pagano. Functional runtime systems within the lambda-sigma
calculus. Journal of Functional Programming, 8(2):131–172, 1998.

[70] Peter Henderson. Functional Programming – Application and Implementation. Prentice-Hall Interna-
tional, 1980.

[71] Martin C. Henson. Elements of Functional Languages. Computer Science Texts. Blackwell Scientific
Publications, 1987.

[72] Paul Hudak and Neil D. Jones, editors. ACM SIGPLAN Symposium on Partial Evaluation and
Semantics-Based Program Manipulation, SIGPLAN Notices, Vol. 26, No 9, New Haven, Connecticut,
June 1991. ACM Press.

[73] Jacob Johannsen. An investigation of Abadi and Cardelli’s untyped calculus of objects. Master’s thesis,
DAIMI, Department of Computer Science, Aarhus University, Aarhus, Denmark, June 2008. BRICS
research report RS-08-6.

[74] Neil D. Jones. Flow analysis of lambda expressions (preliminary version). In Shimon Even and Oded
Kariv, editors, Automata, Languages, and Programming, 8th Colloquium, number 115 in Lecture Notes
in Computer Science, pages 114–128, Acre (Akko), Israel, July 1981. Springer-Verlag.

[75] Yukiyoshi Kameyama. Axioms for delimited continuations in the CPS hierarchy. In Jerzy Marcinkowski
and Andrzej Tarlecki, editors, Computer Science Logic, 18th International Workshop, CSL 2004, 13th
Annual Conference of the EACSL, Proceedings, volume 3210 of Lecture Notes in Computer Science, pages
442–457, Karpacz, Poland, September 2004. Springer.

[76] Yukiyoshi Kameyama. Axioms for control operators in the CPS hierarchy. Higher-Order and Symbolic
Computation, 20(4):339–369, 2007. A preliminary version was presented at the Fourth ACM SIGPLAN
Workshop on Continuations (CW’04).

[77] Yukiyoshi Kameyama and Masahito Hasegawa. A sound and complete axiomatization of delimited con-
tinuations. In Olin Shivers, editor, Proceedings of the 2003 ACM SIGPLAN International Conference on
Functional Programming (ICFP’03), SIGPLAN Notices, Vol. 38, No. 9, pages 177–188, Uppsala, Sweden,
August 2003. ACM Press.

[78] Oleg Kiselyov. How to remove a dynamic prompt: Static and dynamic delimited continuation opera-
tors are equally expressible. Technical Report 611, Computer Science Department, Indiana University,
Bloomington, Indiana, March 2005.

[79] Werner E. Kluge. Abstract Computing Machines: A Lambda Calculus Perspective. Texts in Theoretical
Computer Science. An EATCS Series. Springer, 2005.

[80] Peter J. Landin. The mechanical evaluation of expressions. The Computer Journal, 6(4):308–320, 1964.
[81] Peter J. Landin. A correspondence between Algol 60 and Church’s lambda notation. Communications of

the ACM, 8:89–101 and 158–165, 1965.
[82] Peter J. Landin. A generalization of jumps and labels. Research report, UNIVAC Systems Programming

Research, 1965. Reprinted in Higher-Order and Symbolic Computation 11(2):125–143, 1998, with a
foreword [115].

[83] Peter J. Landin. A λ-calculus approach. In Leslie Fox, editor, Advances in Programming and Non-
Numerical Computation, Symposium Publication Division, chapter 5, pages 97–141. Pergamon Press,
1966.

[84] Peter J. Landin. The next 700 programming languages. Communications of the ACM, 9(3):157–166,
1966.

[85] Peter J. Landin. Histories of discoveries of continuations: Belles-lettres with equivocal tenses. In Olivier
Danvy, editor, Proceedings of the Second ACM SIGPLAN Workshop on Continuations (CW’97), Tech-
nical report BRICS NS-96-13, Aarhus University, pages 1:1–9, Paris, France, January 1997.

[86] Peter J. Landin. My years with Strachey. Higher-Order and Symbolic Computation, 13(1/2):75–76, 2000.
[87] Clement L. McGowan. The correctness of a modified SECD machine. In Proceedings of the Second Annual

ACM Symposium in the Theory of Computing, pages 149–157, Northampton, Massachusetts, May 1970.
[88] Erik Meijer. Generalised expression evaluation. Technical Report 88-5, Department of Informatics, Uni-

versity of Nijmegen, Nijmegen, The Netherlands, 1988.
[89] Jan Midtgaard. Transformation, Analysis, and Interpretation of Higher-Order Procedural Programs. PhD

thesis, BRICS PhD School, Aarhus University, Aarhus, Denmark, June 2007.

64

[90] Kevin Millikin. A Structured Approach to the Transformation, Normalization and Execution of Computer
Programs. PhD thesis, BRICS PhD School, Aarhus University, Aarhus, Denmark, May 2007.

[91] F. Lockwood Morris. The next 700 formal language descriptions. Lisp and Symbolic Computation,
6(3/4):249–258, 1993. Reprinted from a manuscript dated 1970.

[92] Peter D. Mosses. A foreword to ‘Fundamental concepts in programming languages’. Higher-Order and
Symbolic Computation, 13(1/2):7–9, 2000.

[93] Johan Munk. A study of syntactic and semantic artifacts and its application to lambda definability, strong
normalization, and weak normalization in the presence of state. Master’s thesis, DAIMI, Department of
Computer Science, Aarhus University, Aarhus, Denmark, May 2007. BRICS research report RS-08-3.

[94] Chethan R. Murthy. Control operators, hierarchies, and pseudo-classical type systems: A-translation
at work. In Olivier Danvy and Carolyn L. Talcott, editors, Proceedings of the First ACM SIGPLAN
Workshop on Continuations (CW’92), Technical report STAN-CS-92-1426, Stanford University, pages
49–72, San Francisco, California, June 1992.

[95] Peter Møller Neergaard. Complexity Aspects of Programming Language Design—From Logspace to Ele-
mentary Time via Proofnets and Intersection Types. PhD thesis, Mitchom School of Computer Science,
Brandeis University, Waltham, Massachusetts, October 2004.

[96] Flemming Nielson and Hanne Riis Nielson. Comments on Georgeff’s ‘transformations and reduction
strategies for typed lambda expressions’. ACM Transactions on Programming Languages and Systems,
8(3):406–407, 1984.

[97] Michel Parigot. λµ-calculus: an algorithmic interpretation of classical natural deduction. In Andrei
Voronkov, editor, Proceedings of the International Conference on Logic Programming and Automated
Reasoning, number 624 in Lecture Notes in Artificial Intelligence, pages 190–201, St. Petersburg, Russia,
July 1992. Springer-Verlag.

[98] Larry Paulson. A Compiler Generator for Semantic Grammars. PhD thesis, Department of Computer
Science, Stanford University, Stanford, California, December 1981. Report No. STAN-CS-81-893.

[99] Uwe Pleban. Compiler prototyping using formal semantics. In Susan L. Graham, editor, Proceedings
of the 1984 Symposium on Compiler Construction, SIGPLAN Notices, Vol. 19, No 6, pages 94–105,
Montréal, Canada, June 1984. ACM Press.

[100] Gordon D. Plotkin. Call-by-name, call-by-value and the λ-calculus. Theoretical Computer Science, 1:125–
159, 1975.

[101] John D. Ramsdell. The tail-recursive SECD machine. Journal of Automated Reasoning, 23(1):43–62, July
1999.

[102] John C. Reynolds. Definitional interpreters for higher-order programming languages. In Proceedings of
25th ACM National Conference, pages 717–740, Boston, Massachusetts, 1972. Reprinted in Higher-Order
and Symbolic Computation 11(4):363–397, 1998, with a foreword [104].

[103] John C. Reynolds. The discoveries of continuations. Lisp and Symbolic Computation, 6(3/4):233–247,
1993.

[104] John C. Reynolds. Definitional interpreters revisited. Higher-Order and Symbolic Computation,
11(4):355–361, 1998.

[105] Colin Runciman and Ian Toyn. Adapting combinator and SECD machines to display snapshots of func-
tional computations. New Generation Computing, 4(4):339–363, 1986.

[106] Peter Sestoft. Analysis and efficient implementation of functional programs. PhD thesis, DIKU, Computer
Science Department, University of Copenhagen, Copenhagen, Denmark, 1991. DIKU Rapport 92/6.

[107] Chung-chieh Shan. Shift to control. In Olin Shivers and Oscar Waddell, editors, Proceedings of the Fifth
ACM SIGPLAN Workshop on Scheme and Functional Programming, Technical report TR600, Computer
Science Department, Indiana University, Snowbird, Utah, September 2004.

[108] Chung-chieh Shan. A static simulation of dynamic delimited control. Higher-Order and Symbolic Com-
putation, 20(4):371–401, 2007. A preliminary version was presented at the 2004 Workshop on Scheme
and Functional Programming [107].

[109] Mike Spivey. The SECD machine – a tutorial reconstruction. Unpublished lecture notes, Oxford Univer-
sity, Easter 2003.

[110] Guy L. Steele Jr. Rabbit: A compiler for Scheme. Master’s thesis, Artificial Intelligence Laboratory,
Massachusetts Institute of Technology, Cambridge, Massachusetts, May 1978. Technical report AI-TR-
474.

65

[111] Guy L. Steele Jr. and Gerald J. Sussman. The art of the interpreter or, the modularity complex (parts
zero, one, and two). AI Memo 453, Artificial Intelligence Laboratory, Massachusetts Institute of Tech-
nology, Cambridge, Massachusetts, May 1978.

[112] Joseph E. Stoy. Denotational Semantics: The Scott-Strachey Approach to Programming Language Theory.
The MIT Press, 1977.

[113] Christopher Strachey. Fundamental concepts in programming languages. International Summer School in
Computer Programming, Copenhagen, Denmark, August 1967. Reprinted in Higher-Order and Symbolic
Computation 13(1/2):11–49, 2000, with a foreword [92].

[114] Christopher Strachey and Christopher P. Wadsworth. Continuations: A mathematical semantics for
handling full jumps. Technical Monograph PRG-11, Oxford University Computing Laboratory, Program-
ming Research Group, Oxford, England, 1974. Reprinted in Higher-Order and Symbolic Computation
13(1/2):135–152, 2000, with a foreword [118].

[115] Hayo Thielecke. An introduction to Landin’s “A generalization of jumps and labels”. Higher-Order and
Symbolic Computation, 11(2):117–124, 1998.

[116] Hayo Thielecke. Comparing control constructs by double-barrelled CPS. Higher-Order and Symbolic
Computation, 15(2/3):141–160, 2002.

[117] Vasco Thudichum Vasconcelos. Lambda and pi calculi, CAM and SECD machines. Journal of Functional
Programming, 15(1):101–127, 2005.

[118] Christopher P. Wadsworth. Continuations revisited. Higher-Order and Symbolic Computation,
13(1/2):131–133, 2000.

[119] Mitchell Wand. Continuation-based program transformation strategies. Journal of the ACM, 27(1):164–
180, January 1980.

[120] Hongwei Xi. Evaluation under lambda abstraction. In Hugh Glaser, H. Hartel, and Herbert Kuchen,
editors, Ninth International Symposium on Programming Language Implementation and Logic Program-
ming, number 1292 in Lecture Notes in Computer Science, pages 259–273, Southampton, UK, September
1997. Springer-Verlag.

Department of Computer Science, Aarhus University

IT-parken, Aabogade 34, DK-8200 Aarhus N, Denmark

E-mail address: danvy@brics.dk

Google Inc.

Aabogade 15, DK-8200 Aarhus N, Denmark

E-mail address: kmillikin@google.com

	1. Introduction
	1.1. The SECD machine
	1.2. The authors' thesis
	1.3. Deconstruction of the SECD machine with the J operator
	1.4. Syntactic theories of applicative expressions with the J operator
	1.5. Prerequisites and domain of discourse: the functional correspondence
	1.6. Prerequisites and domain of discourse: the syntactic correspondence
	1.7. Overview

	2. Deconstruction of the SECD machine with the J operator: disentangling and refunctionalization
	2.1. A disentangled specification
	2.2. A higher-order counterpart

	3. Deconstruction of the SECD machine with the J operator: no data stack and caller-save environments
	3.1. A specification with no data stack and caller-save environments
	3.2. A dump-less direct-style counterpart
	3.3. A control-less direct-style counterpart
	3.4. A compositional counterpart
	3.5. Assessment
	3.6. On the J operator

	4. Deconstruction of the SECD machine with the J operator: caller-save dumps
	4.1. A specification with caller-save dump continuations
	4.2. The rest of the rational deconstruction
	4.3. Two other simulations of the J operator
	4.4. Thielecke
	4.5. Felleisen

	5. Related work
	5.1. Landin and Burge
	5.2. Reynolds
	5.3. Felleisen and Burge

	6. Deconstruction of the original SECD machine with the J operator
	6.1. Our starting point: Burge's specification
	6.2. Burge's specification in defunctionalized form
	6.3. A higher-order counterpart
	6.4. The rest of the rational deconstruction
	6.5. Three simulations of the J operator
	6.6. Related work

	7. A syntactic theory of applicative expressions with the J operator: explicit, callee-save dumps
	7.1. The SECD machine with no data stack and caller-save environments, revisited
	7.2. From reduction semantics to abstract machine
	7.3. A reduction semantics for applicative expressions with the J operator
	7.4. From the reduction semantics for applicative expressions to the SECD machine
	7.5. Summary and conclusion

	8. A syntactic theory of applicative expressions with the J operator: implicit, caller-save dumps
	8.1. Reduction semantics
	8.2. From reduction semantics to abstract machine

	9. A syntactic theory of applicative expressions with the J operator: explicit, caller-save dumps
	10. A syntactic theory of applicative expressions with the J operator: inheriting the dump through the environment
	10.1. Reduction semantics
	10.2. From reduction semantics to abstract machine

	11. Summary and conclusion
	12. On the origin of first-class continuations
	Acknowledgments
	Appendices
	Appendix A. Defunctionalizing a continuation-passing version of the Fibonacci function
	A.1. The traditional Fibonacci function
	A.2. The Fibonacci function in CPS
	A.3. The Fibonacci function in CPS, defunctionalized
	A.4. The Fibonacci function in CPS with a trace
	A.5. The Fibonacci function in CPS with a trace, defunctionalized
	A.6. Lockstep correspondence

	Appendix B. A caller-save, stackless evaluator and the corresponding abstract machine
	B.1. The evaluator
	B.2. The abstract machine

	Appendix C. A callee-save, stackless evaluator and the corresponding abstract machine
	C.1. The evaluator
	C.2. The abstract machine
	C.3. Analysis

	Appendix D. A caller-save, stack-threading evaluator and the corresponding abstract machine
	D.1. The evaluator
	D.2. The abstract machine
	D.3. Analysis

	Appendix E. From reduction semantics to abstract machine
	E.1. A reduction semantics for applicative expressions
	E.2. From the reduction semantics for applicative expressions to the CEK machine
	E.3. Conclusion and perspectives

	References

