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Abstract. This paper presents a technique to enable deformable regions to be 
matched using image databases based on the information provided by the dif-
ferential invariants of local histograms for the key-region. We shall show how 
this technique is robust enough to deal with local deformations, viewpoint 
changes, lighting changes, large motions of the tracked object and small 
changes in image rotation and scale. The proposed algorithm is based on the 
building of a specific template where an orthogonal representation space is as-
sociated with each of its locations. This space is calculated from neighboring in-
formation provided by a vector of local invariants calculated on each of the im-
age’s pixels. Unlike other well-known color-based techniques, this algorithm 
only uses the pixels’ gray level values. 

1   Introduction 

In this paper, we shall explore the problem of matching deformable image regions 
using image databases or image sequences. The basic information used in our work is 
provided by local histograms of a finite set of image-bands defined from invariant 
values calculated on the image. What is new about our approach is the template defi-
nition which provides us with a very robust approach for dealing with local shape and 
lighting deformations. Deformable object matching remains a very challenging prob-
lem mainly due to the absence of good templates and similarity measures which are 
robust enough to handle all the geometrical and lighting deformations that might be 
present in a matching process. 

The use of invariant features to match or index objects from images is a well-
known approach in computer vision although originally, this was mainly used to char-
acterize objects from their outline shape [11]. In order to recognize objects from their 
pixel values, different geometrical and lighting differential invariants have been sug-
gested [5],[16],[18]. In practice, however, this type of invariant has only proved use-
ful when applied on points with rich geometrical structures in their neighborhoods 
[9],[12]. In [6] and [7], a new type of image is introduced where each pixel has an 
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associated histogram of values rather than a scalar value. This new image concept is 
the inspiration for our approach, and we shall use it to associate to each pixel a sum-
mary of the information defining its neighborhood. In our approach, local histograms 
obtained after applying each invariant on all image pixels are used as the local fea-
tures characterizing the neighboring region of each pixel. Our approach is region-
based since spatial features better model the type of application we are interested in. 
Let us consider facial region matching. In recent years, object recognition by parts has 
been suggested as a very efficient approach for recognizing deformable objects 
[1],[3],[4]. Although different approaches are used in the recognition process from 
basic features, the selection and detection of good features is a common task shared 
by all approaches. 

The use of histograms as features of interest can be traced back to Swain & Ballard 
[17] who demonstrated that color histograms could be used as a robust and efficient 
mechanism for indexing images in databases. Histograms have been used widely in 
object and texture recognition and image and video retrieval in visual databases [2], 
[3],[14]. The main drawback of using global histograms as the main feature is the loss 
of spatial information. Recent approaches based on the space-scale theory have incor-
porated the image’s spatial information. In [14], multidimensional histograms ob-
tained by applying Gaussian derivative filters to the image are used. This approach 
incorporates the image’s spatial information with global histograms. In [2], while 
spatial information is also taken into account, a set of intensity histograms are used at 
multiple resolutions. In [8], it is shown how extremely relevant information for de-
tecting salient regions in the image can be extracted from local histograms at different 
scales. None of these approaches, however, explicitly addresses the use of the local 
spatial invariant information present in the image. 

In this paper, unlike the approaches mentioned above, we shall attempt to achieve a 
better compromise between spatial information and robustness to deformations. In our 
case, the matching template for each image region is built as a spatial array, and a set 
of histograms (calculated from a spatial neighborhood centered on this position) is 
associated to each of its positions. Each of these histograms defines a new axis of the 
representation space associated to each pixel. Building a new orthogonal representa-
tion of this space and extracting only the most relevant axis a new parsimonious or-
thogonal representation of it can be obtained. The projection of the histograms into 
the new orthogonal subspace provides the coefficient vector used in the matching 
process. On each image, the template is iterated on all the possible locations within it. 
The matching score on each image location is the Euclidean norm of the vector dif-
ference between the projection coefficients associated to the image and the template, 
respectively. 

This paper is organized into five sections: Section 2 presents the template defini-
tion and the matching process; Section 3 presents the gray value invariants we have 
used in the experiments; Section 4 shows the experimental results; and finally, Sec-
tion 5 details the discussion and conclusions. 

2   Template Definition and the Matching Process 

Let R be a region of an image I , defining our region of interest (ROI).  Different gray 
level invariants can be calculated on each R location according to the geometrical or 
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lighting transformation groups that we expect to deform the region. Standard template 
matching techniques based on these invariants, however, need only be shown to be 
effective if applied on image location with a rich gray level structure such as that 
given by a corner [9][16]. The technique we introduce to characterize the ROI uses a 
different approach. 

Let ni be the number of different independent invariants to be calculated on each R 
pixel location. Let IB(R) ={IB1, IB2,…., IBni} be the set of  band-images calculated 

by applying each invariant to the region R . An nbin×ni matrix, HI, is associated to 
each pixel location of our ROI where the columns of this matrix are the local histo-
gram in a neighborhood of the pixel from each of the IB matrices. The bin number, 
nbin, is fixed beforehand and all the histograms are normalized to this value. Each 
histogram is calculated from a fixed size neighborhood around the pixel. 

The set of histograms associated to a pixel can be considered as the different axes 
of a space characterizing the pixel neighborhood information. According to the gray 
level structure around the pixel, some of the invariant values provide more relevant 
information than others. In order to obtain an orthogonal parsimonious representation 
of this space, we calculate the singular value decomposition on the HI matrix, 
HI=UDVT and we select the s columns Us={U1,…,Us} associated to the s highest 
singular values as the new axis of the space. A threshold on the normalized singular 
values ratio is used to select the most significant ones. The projection of the HI matrix 
into this new space Us is given by: 

),(),()( T yxyxx,y Is HUc ⋅=  (1) 

The c(x,y) matrix  provides us with the set of coefficients characterizing the pixel 
location (x,y). In the matching process, we start by calculating HI on each pixel loca-
tion (r,s) of the target image. We then calculate a similarity measure on each (r,s)  
location by shifting the image template on the target image. The similarity measure is 
given by: 
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where the sum is on all pixel locations (x,y) of the region-template. The matrices 
c(x,y) and Us

T(x,y) correspond to the template location (x,y) and the matrix H’
I to the 

target image in location (x+r,y+s). The estimated target location is given by the loca-
tion of the minimum value of S and we use the Euclidean norm. 

In our case, all the local histograms are very sparse since the range of gray levels 
present in the neighborhood of each pixel is usually very small in comparison with the 
full range of the image. One important consequence of this situation is the need to 
quantize the image’s gray level range before the similarity distances are calculated. A 
consequence of the quantization process is the invariance to illumination changes 
which are smaller than the bin width. In all of our experiments, we use a uniform 
quantization criterion fixing the same length to the interval of the gray levels assigned 
to each bin. The same process is applied to the gray levels of the template region. 
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3   Gray Level Invariants 

In this paper, we use the set of invariants suggested by Schmid in [16]. We only use 
differential invariants based on the three first order derivatives of the image. The 
following table shows the invariants used in our experimentation in tensor notation: 
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where νS represents the differential invariants associated to the SO(2) similarity 

group, νL(1:7) represents the associated invariant  to gray level affine transformations, 

and νL(8:9) represents two invariants associated to lighting  reversible transformation  
[5]. The Cartesian expression of the invariants can be obtained using the usual con-
ventions: 
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4   The Algorithm 

The previous steps can be summarized as follows: 
 

1.- Fix the scale value for the histograms. 
2.- Fix the set of  invariants to be used and calculate their associated image-bands. 
3.- Calculate the local-histogram matrix on each location of the template region. 
4.- Build up the template T (RT) of the region template using SVD on each of the 

      local-histogram matrices. 
5.- For each target image:  
      5.1 Build the local-histogram matrix on each location of the image.   
      5.2 Shift the template frame on all possible image locations. On each location  
            to project the local-histogram matrices on the orthogonal spaces of the     
            corresponding template location to calculate the image coefficients c(x,y). 
      5.3 Calculate the similarity measure associated to each template position using 
            (2). 
      5.4 Take the image location with the S(x,y) minimum value as the best 
            target location. 
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In order to increase the efficiency of the algorithm, it is applied to a sub-sampled 
version of the region template and images. From this, we estimate a set of possible 
points instead of a single location. All these points and their neighboring points (for a 
fixed size) define the set of points on which we shall apply the algorithm on the origi-
nal images. The most costly step in this algorithm is the calculation of the similarity 
maps on each image location. In this respect and taking into account the redundant 
information present in the template, the error measure given in (2) can only be calcu-
lated on a subset of the pixel.  

5   Experimental Results 

Multiple experiments have been performed in order to assess the effectiveness of the 
proposed algorithm. Firstly, we have focused our experiments on showing how robust 
our algorithm is to drastic changes in object pose. Secondly, we have also shown how 
the algorithm is capable of a reasonable level of shape generalization, since with only 
one sample it is possible to successfully match different instances of the same kind of 
object. Thirdly, we have shown how robust our algorithm is when there is a very large 
change in pose and a very hard noise condition. In all of the experiments, we have 
used a frame with a seven-pixel radius for the histogram estimation. We also quantify 
the entire histogram range to 32 bins. The active range of the invariant images is se-
lected using a saturation threshold on the invariant values. In our case, a range of 
values between 100 and –100 was used. In all the experiments, the template region is 
a rectangular sub-image. In all the experiments, we have tried with different sampling 
steps (0-4) on the image axis in order to calculate the expression in (2). In all the im-
ages, a sampling step of 4 pixels in both axes was sufficient to obtain the highest 
saliency value in the best location. The full set of the 17 differential invariants has 
been used in all the experiments. 

Video sequences of human heads in motion and two sequences obtained from the 
Oxford face database1 have been used in our experiments. Our recorded sequences 
have one-hundredth images The head in motion sequences were captured in 640x480 
format by the same digital camera, but in different lighting conditions. For reasons of 
efficiency in our experiments, we reduce the image size to the head zone giving 
176x224 size images. The Oxford Groundhog-Day database comprises 243 images, 
which we split into two different sets with men’s and women’s faces, respectively. 
The pictures from the Oxford database are 81x81 pixels. Our aim is to match the eyes 
and the mouth throughout the entire sequence. In our case, the template region was an 
instance of the matched object chosen from an image of the sequence.  However, we 
also show the results of using a fixed template region on a different image sequence.  

In the different rows in Figure 1, we show relevant results for three different se-
quences where the goal is to match the eye region. The image template for each row is 
shown in the first cell of the row. The first row shows a person moving their head 
from right to left as they change their facial expression. The second and third rows 
show results from the Oxford face database. Figure 2 shows relevant results from the 
mouth matching experiments. As in Figure 1, the first row shows an image from a 
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recorded sequence and the second and third row show the results from the Oxford 
database. 

The experiments show how our algorithm is stable and robust enough for view-
point changes, local deformations, moderate scale changes and illumination changes. 
The images in both figures show how our template is flexible enough to match very 
different instances of an object. This means that the template definition is capable of 
codifying the relevant information about the object by removing local spatial details. 
It is also important to emphasize that the algorithm in our experiment is over 90% 
efficient when the template region and the images are from the same person, but when 
we match a region template from one person with images from another person, effi-
ciency drops to between 50%-60%. This indicates a lack of generalization that could 
be explained by the set of used invariants. It is also relevant to point out that the pre-
sented results have been obtained when the template-regions cover not only the par-
ticular feature of interest but also part of its surrounding area.  

 

      

 

      

 

      

Fig. 1. In this figure, the results of the eye-matching problem are shown. In each row, the re-
gion-template used is shown in the first column. The white rectangle indicates the best match-
ing region. 

 

       

       

       

Fig. 2. This figure shows relevant results for the mouth-matching problem. In each row, the 
region-template used is shown in the first column. The first row shows images from a recorded 
sequence. The two last rows show results from the Oxford database. The white rectangle indi-
cates the best matching region. 
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In all the experiments, we have only considered translation motions of the template 
since we are interested in showing that the proposed algorithm is capable of success-
fully matching a large set of different instances of the original template. Of course, 
the inclusion of motions such as rotation or scale should greatly improve the tech-
nique. One of the main drawbacks of our algorithm is the loss of the image-plane 
rotation invariance that is present when the full image histogram is considered.  

6   Conclusions 

In conclusion, we have proposed a new matching algorithm for the case of deform-
able regions and shown its application to face region matching. This algorithm en-
ables us to match different instances of the same object by making use of the informa-
tion provided by a set of geometrical and lighting invariants. The loss of local order 
imposed by the use of local histograms has resulted in a high level of robustness in 
template matching with strong shape deformations even in high noise conditions and 
moderate lighting changes. Although in theory the algorithm is not robust enough for 
image-plane rotation and scale, experiments have also shown that there is invariance 
to small rotations and scale. Full invariance to scale could be obtained by applying a 
space-scale approach. This, together with achieving higher invariance to lighting 
changes, shall be one of our future lines of research. 
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